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Abstract.  We consider a nonlinear coupler formed by two tunnel-
coupled waveguides, one waveguide being made of a conventional 
dielectric and the other – of a negative-index material. The possibil-
ity of the formation of solitary waves from continuous radiation 
having a constant intensity is shown provided that the radiation is 
coupled into the input of a negative-index coupler channel (on the 
back side of the waveguide system). With increasing intensity of the 
input light, the speed and amplitude of the generated solitary waves 
increase and the period of their formation is reduced. 

Keywords: optical solitons, tunnel-coupled waveguides, forward 
and backward waves, metamaterials. 

1. Introduction 

Nonlinear optics of negative-index media is being intensively 
developed at present [1 – 6]. Thus, it turns out that some well-
known phenomena of nonlinear optics that take place in con-
ventional positive-index media can be observed in negative-
index media. As an example, we can mention parametric pro-
cesses (harmonic generation [7 – 14] and parametric 
amplification [15 – 18]), optical bistability [19 – 23], solitons in 
arrays of coupled waveguides [24 – 32] and nonlinear surface 
waves [33 – 36]. Peculiarities of nonlinear optical phenomena in 
negative-index media are caused by the interaction of forward 
and backward waves. In contrast to forward waves, the phase 
velocity and the Poynting vector of backward waves are oppo-
sitely directed. A review of nonlinear phenomena in negative-
index media is given in [37, 38] and in a recent book [39]. 

A simple optical device that provides the interaction of 
forward and backward waves is a system of two tunnel-cou-
pled waveguides, the refractive index of one of them being 
positive, and the other – negative. In weak optical fields, when 
nonlinear properties of a waveguide can be neglected, the 
device acts as a distributed mirror: light entering into one of 
the waveguides is outcoupled from the second waveguide. If 
both waveguides are made of the same material, the propaga-

tion direction of light does not change. This device is known 
in integrated optics as a directional (or waveguide) coupler 
[40]. The coupler, changing the propagation direction of light, 
will be called an oppositely directed coupler. The authors of 
[24, 25] considered an extended nonlinear oppositely directed 
(anti-directional) coupler (ODC) and found solutions corre-
sponding to a stationary electromagnetic wave propagating 
through tunnel-coupled waveguides in the form of a coupled 
solitary wave. Solitary waves are the waves that are localised 
at each instant of time in a finite region of space or localised 
at each point of space in a finite time interval. Based on the 
analogy between the properties of such pulses for a nonlinear 
Bragg waveguide and an ODC, a steady-state solitary wave in 
an ODC was also called a gap soliton. 

As in many other cases, when there appears a steady-state 
solitary wave, including a soliton, the formation of a solitary 
wave requires that the energy of the initial pulse exceeds a 
certain threshold. The process of the formation of a gap soli-
ton from an electromagnetic pulse coupled to the input of one 
of the ODC waveguides was considered in [30].

All steady-state solutions to equations describing the 
propagation of light in an ODC were obtained and listed in 
[29]. In addition to solutions in the form of solitary waves 
(solitons), there are periodic solutions describing cnoidal 
waves. Cnoidal waves can be generated from an initially peri-
odically amplitude-modulated wave. The modulation insta-
bility of a wave with constant amplitude could lead to the 
formation of cnoidal waves [41]. Kudryashov et al. [29] found 
a solution which describes a wave localised in a finite time 
interval. Such waves are called compactons [42, 43]. An infi-
nite array of compactons can also be attributed to periodic 
stationary waves. The question of how and from which initial 
field distribution steady-state (e.g., periodic) waves are for
med is one of the main issues of the theory of nonlinear waves. 

In this paper we have discovered a phenomenon of gen-
eration of steady-state solitary waves in an ODC from con-
tinuous radiation with constant amplitude, specified at the 
input to a negative-index channel, i.e. on the back side of the 
coupler. The number of solitary waves generated during the 
considered time interval depends on the amplitude of radia-
tion and increases with its growth. In this case, the distance on 
the timeline between neighbouring solitary waves, called the 
period of their formation, is reduced. Thus, in an ODC a con-
tinuous wave can be transformed into a series of solitons. 

2. Basic equations of the ODC model 

We consider a pair of tunnel-coupled waveguides, one of which 
is made of a conventional nonlinear optical dielectric, and the 
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other – of a material having linear optical properties and a 
negative refractive index. The linear properties of the first 
waveguide are determined by the dielectric constant e1(w0) at 
the carrier wave frequency w0, and its permeability is equal to 
unity. It is assumed that both waveguides are made of a mate-
rial that is transparent at frequency w0. Existing negative-
index materials exhibit losses, but active research is being 
conducted in the world to reduce and compensate for such 
losses. The propagation of waves in each channel is character-
ised by the group velocities ug1 and ug2 and tunnel coupling 
constants K12 and K21. It is assumed that the waveguides are 
sufficiently small and therefore the second-order group veloc-
ity dispersion can be neglected. 

The system of equations describing the interaction of 
waves in the ODC, obtained in [37] and used in [25], has the 
form: 
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where the parameter D b – the difference between the propa-
gation constants of the waves localised in the adjacent wave-
guides – is a measure of a mismatch of phase velocities of 
these waves. Nonlinear properties of the first waveguide are 
characterised by the effective third-order nonlinear suscepti-
bility eff

( )3c . For equations (1) to be solved numerically, it is 
convenient to use, instead of electric fields E1,2 (z,t), nor-
malised dimensionless fields e1,2 (z,t): 

E1 = A0e1e–iDbz, / e ,eE A K K Dbi z
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as well as normalised spatial z and time t variables: 
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where 

Lc = (K12K21)–1/2, t0 = Lc(ug1+ ug2)/(2ug1ug2), 

V0
–1 = (ug2 – ug1)/(2 ug1ug2).

It is further assumed that the condition of the wave syn-
chronism  D b = 0 is met. 

The system of equations for the normalised slowly varying 
envelopes of the electric fields e1 and e2 in a positive-index 
waveguide and a negative-index waveguide, respectively, has 
the form: 
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is a dimensionless parameter characterising the nonlinearity 
of the positive-index waveguide. 

In [24, 25] we have found solutions corresponding to a sta-
tionary pulse of the electromagnetic field, which propagates 
in tunnel-coupled waveguides as a whole. This solitary wave 
was called a gap soliton, because the spectrum of linear waves 
in the vicinity of the carrier wave frequency has a band gap, 
similar to that in a Bragg waveguide. 

3. Steady-state solutions in the form 		
of a solitary wave 

Steady-state solutions in the form of solitary waves for the 
model in question were found in [25]. The normalised electric 
field strengths e1, 2 can be represented as fields with real ampli-
tudes a1, 2 and phases f1, 2: e1 = a1eif1, e2 = a2eif2. To find the 
steady-state solutions in the form of a travelling wave, we 
assume that these solutions depend on one variable 
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where b is the propagation velocity of a solitary wave. The 
resulting system of ordinary real differential equations allows 
one to find amplitudes and phases. The amplitudes a1, 2 of the 
solitary wave components in positive and negative-index 
waveguides are defined by the relationships: 
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Parameter Q depends on the nonlinearity coefficient r and is 
defined as 
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This indicates that the parameter b is limited in quantity: 
| b | < 1. The solitary wave phases f1, 2
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must satisfy the condition 

cos[f1(– ¥) – f2(– ¥)] = 0,	 (6)

which is fulfilled at f1(– ¥) = 0, and f2(– ¥) = – p / 2. The 
parameter h0 determines the position of the centre of a soli-
tary wave. 

Note that it follows from the definition of the variable 
h that in light-cone coordinates ( z, t ) the propagation veloc-
ity of a soliton is – b. And the same parameter b determines 
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Figure 1.  Generation of a single solitary wave in the ODC at ( a, b ) the nonlinearity parameter r = 0.1 and amplitude a = 6.26 and ( c, d ) r = 1 and 
a = 2 in ( a, c ) a positive-index channel and ( b, d ) in a negative-index channel. 
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Figure 2.  Generation of several solitary waves from continuous radiation with constant amplitude a, specified (at zL = 40) at the input to the nega-
tive-index ODC channel at ( a, b ) r = 0.1, a = 7 and ( c, d ) r = 1, a = 2.5 in ( a, c ) a positive-index channel and ( b, d ) in a negative-index channel.
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the amplitude of partial waves coupled into a soliton and each 
localised in its waveguide. This means that solitons with the 
same amplitude move with the same velocity. For the soliton 
velocity (more precisely, for the projection of the velocity vec-
tor on the z axis) Vs we can obtain an expression 
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defining it through the group velocities of the partial waves 
ug1, ug2 and the parameter | b | < 1. 

4. Generation of solitary waves from continuous 
radiation with constant amplitude 

The system of equations ( 2 ) has been solved numerically with 
the following boundary conditions: 

e1(t, z = 0) = 0,   e2(t, zL) = a.

The coefficient a determines the amplitude of the constant 
input radiation, which is set at zL = L /Lc in a negative-index 
ODC channel of length L. In the numerical simulation the 
nonlinearity parameter r in the system of equations ( 2 ) has 
been set in the range of 0.1 to 1, and the dimensionless length 
of the ODC was  zL = 40. 

Solitary waves in the ODC with nonlinearity in a positive-
index channel are produced from a continuous wave with 
constant amplitude, specified at the input to a negative-index 
channel of the coupler, i.e. the back side of the waveguide 
system. At r = 0.1 and a < 6, and at r = 1 and a < 2 solitary 
waves in the ODC were not formed, and the main part of 
radiation, partially penetrating into the ODC, remained 
localised near zL. It is known that the ODC acts like a mirror 
for the pulse with an amplitude that is less than a certain 
threshold [30, 44]. In this case we also observed the existence 
of the threshold required for the generation of a solitary wave 
from continuous radiation with constant intensity. If the 
amplitude of this radiation exceeds a certain threshold value 
ath, then due to the nonlinear phase modulation there occurs 
generation of solitary waves propagating in the ODC. 

To assess ath, we will use the following assumptions. At 
some point in time the value of the radiation intensity in both 
waveguides will be the same because of the interaction of the 
waves in the waveguides. In this case, the instantaneous fre-
quency of radiation, as follows from equations ( 2 ), is shifted 
by 0.5 ra2. If the system of equations ( 2 ) is linearised, it is pos-
sible to determine in a standard way (see [25]) the spectrum of 
the linear waves in the coupler under study: n2 = 1 + q2 (here n 
is the frequency in terms of the carrier frequency w0 and q is 
the wavenumber in terms of the wavenumber of the carrier 
wave). This formula implies the existence of a gap (band gap) 
in the spectrum of the linear waves, the width of the gap being 
equal to 2 in units of w0. The threshold intensity can be esti-
mated by setting the value of 0.5 ra th

2  equal to the width of the 
gap in the spectrum of the linear waves, then a th

2  » 4/r. At  r 
= 0.1, ath » 6.32, and at r = 1, ath » 2. These values of ath are 
close to those obtained in the calculation of the threshold 
amplitude of radiation at which solitary waves are formed in 
the ODC (see Figs 1 and 2). 

Figures 1 – 3 shows the plots of the distributions of |e1| and 
|e2| in the positive-index and negative-index ODC channels, 
respectively. 

The value of ath, at which the first solitary wave is gener-
ated, decreases with increasing nonlinearity parameter r (see 
Figs 1 and 4). An increase in the amplitude a reduces the time 
required for the formation of the first solitary wave (see Figs 1 
and 2), as well as the period of the formation of solitary waves 
T, i.e. the time interval (along the t axis) necessary for the 
emergence of each of the following solitary waves (Fig. 4a). 
Figure 4b demonstrates the dependence of the solitary wave 
velocity parameter b on the amplitude a. For the same values 
of a, the parameter b of the produced solitary waves is greater 
at larger values of the nonlinearity parameter r. An increase 
in a (for a given value of r) increases the propagation velocity 
and amplitude of solitary waves formed from the input radia-
tion with amplitude a. 

5. Conclusions

We have considered the interaction of forward and backward 
waves in a nonlinear oppositely directed coupler which repre-
sents two closely spaced waveguides, one of which is made of 
a nonlinear positive-index dielectric, and the other – of a lin-
ear negative-index material. Because this coupler (being infi-
nitely long) does not transmit weak waves, acting as a distrib-
uted mirror [25], it is necessary for the input intensity to 
exceed the threshold value. Then, a coupled pair of solitary 
waves is formed, each localised in its coupler channel. 

Increasing the intensity of continuous radiation at the 
input to a negative-index ODC channel increases the number 

a

b

Figure 3.  Solitary waves arising in ( a ) positive- and (b) negative-index 
ODC channels at r = 1, a = 4. 
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of solitary waves appearing on the considered time interval. 
The velocity and the amplitude of the solitary waves increase 
with increasing amplitude of the input continuous radiation; 
however, the velocity of the solitary wave does not exceed the 
velocity of the linear wave. The threshold value of the ampli-
tude of continuous radiation, at which the first solitary wave 
is formed, decreases with increasing nonlinearity parameter r 
of a positive-index channel of a nonlinear oppositely directed 
coupler.
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