Исследование электродинамической системы, состоящей из лазерного резонатора и внешнего слабо отражающего элемента

А.Д.Шатров, М.Н.Дубров, Д.В.Александров

Поведение электромагнитного поля в трехзеркальном лазерном резонаторе описывается методом интегральных уравнений. Приводятся результаты численных расчетов и экспериментальных исследований для конкретных примеров реализации данной конфигурации. Определены условия оптимальной настройки лазерного интерферометра-деформографа с трехзеркальным резонатором. Исследуется вклад отраженного и рассеянного излучений, а также возникающих дополнительных сейсмических помех в результирующую погрешность лазерных гравитационно-волновых детекторов.

Ключевые слова: лазер, интерферометр, деформограф, обратное рассеяние, гравитационно-волновой детектор.

1. Введение

Методы расчета резонансных частот (собственных типов колебаний, мод) изолированного квазиоптического резонатора со сферическими (в двумерном случае - цилиндрическими) зеркалами достаточно полно разработаны и изучены (см., напр., обзор [1]). Однако указанная двухзеркальная электродинамическая система, входящая в качестве составной части в любое лазерное измерительное устройство, приобретает особые характеристики и свойства в случае внесения третьего отражающего или рассеивающего элемента. Эта ситуация реализуется на практике всегда, т.к. любая оптическая нагрузка не может быть сделана полностью согласованной: даже если предприняты специальные меры, часть отраженного и рассеянного излучения возвращается в резонатор лазера и вносит искажения в его спектральные характеристики. Использование этого эффекта, в частности для селекции типов колебаний открытого резонатора, рассмотрено в работе [1]. Благодаря созданию в последние десятилетия высокостабильных лазеров и разработке высокоточных измерительных, в том числе интерферометрических, методов и устройств вопросы влияния несогласованной нагрузки на работу оптического генератора даже при весьма низком уровне обратного отражения оказываются чрезвычайно актуальными.

Простейшей моделью такой электродинамической системы является трехзеркальный лазерный резонатор, в котором роль несогласованной нагрузки выполняет внешнее, слабо отражающее зеркало. Исследования трехзеркальных лазерных резонаторов, начавшиеся практически одновременно с созданием первых лазеров [2, 3], продолжаются до сих пор [4, 5], что свидетельствует о сложности решения данной задачи и ее важности для

Поступила в редакцию 7 июля 2016 г., после доработки – 29 октября 2016 г.

практических приложений. При использовании лазера в качестве источника высококогерентного излучения, например при выполнении точных интерференционных измерений, важными оказываются нестабильности как интенсивности, так и частоты излучения лазера. Влияние второго параметра особенно ощутимо в интерферометрии на больших базах. Анализ показывает, что нестабильность частоты вызывают не только случайные флуктуации параметров лазерного резонатора, но и флуктуации длины и показателя преломления среды внешнего резонатора, образованного каким-либо отражающим или рассеивающим оптическим элементом, например фотоприемником в системе стабилизации частоты лазера.

В настоящей работе в качестве двумерной физической модели лазера с несогласованной нагрузкой изучается трехзеркальный резонатор, состоящий из частично пропускающих зеркал, поперечные размеры которых в квазиоптическом приближении велики по сравнению с поперечными размерами лазерного пучка. Исследуются три случая: промежуточное зеркало плоское; длины парциальных резонаторов равны; резонаторы не согласованы. Для описания электромагнитного поля в трехзеркальном резонаторе используется метод интегральных уравнений. Приводятся результаты численных расчетов и экспериментальных исследований для некоторых примеров реализации таких систем.

2. Метод нахождения собственных частот трехзеркального лазерного резонатора

Решение поставленной задачи рассмотрим на примере двумерной (x, z) модели составного резонатора, образованного тремя зеркалами – 3_1 , 3_2 и 3_3 . Эти зеркала характеризуются соответственно следующими вещественными параметрами: поперечными размерами a_1 , a_2 , a_3 , радиусами кривизны R_1 , R_2 , R_3 и прозрачностями ρ_1 , ρ_2 , ρ_3 , которые связаны с комплексными коэффициентами отражения r_1 , r_2 , r_3 этих зеркал соотношением [6]

$$r_n = -\frac{1}{1+2i\rho_n}, \ n = 1, 2, 3.$$
 (1)

А.Д.Шатров, М.Н.Дубров, Д.В.Александров. Фрязинский филиал Института радиотехники и электроники им. В.А.Котельникова РАН, Россия, Московская обл., 141190 Фрязино, пл. Акад. Введенского, 1; e-mail: mnd139@ire216.msk.su

В качестве потенциала U(x,z) выбирается *у*-компонента электрического вектора электромагнитного поля: $U(x,z) = E_y(x,z)$. Функция U(x,z) удовлетворяет волновому уравнению, а также условиям непрерывности на каждом полупрозрачном зеркале $\mathbf{3}_n$. Скачок нормальной производной функции U(x,z) на зеркалах $\mathbf{3}_n$ пропорциональны прозрачностям ρ_n зеркал и определяются следующим выражением:

$$f_n = \frac{1}{\rho_n} U_n, \quad n = 1, 2, 3,$$
 (2)

где $U_n(x, z) = E_{yn}(x, z)$ – электрическое поле на каждом из полупрозрачных зеркал 3_n .

Если прозрачность $\rho = 0$, то имеем идеально отражающее зеркало, которое описывается граничным условием на его поверхности U = 0. Если $\rho = \infty$, то зеркало является абсолютно прозрачным и не взаимодействует с падающей на него электромагнитной волной. Физической реализацией зеркал с такими свойствами может служить частая (в масштабе длины волны λ) решетка из ленточных проводников. Проводники направлены вдоль оси *y*, перпендикулярно плоскости *xz*; коэффициент заполнения решетки определяет прозрачность зеркала.

Путем вычисления полей на каждом из зеркал с учетом текущих по ним токов и с использованием функции Грина свободного пространства в стандартном квазиоптическом приближении получаем систему трех интегральных уравнений [5], решение которой в приближении неограниченных зеркал ($a_n = \infty$) ищется в виде гауссовых пучков. Решение системы уравнений проводится путем интегрирования слагаемых в одной части уравнений и приравнивания показателей экспонент слагаемых в обеих частях уравнений. Полученные в результате равенства будут справедливы, если выполняются условия согласования размеров пятен на зеркалах во всех трех парциальных двухзеркальных резонаторах: 3132, 3233 и 3133. Если эти условия не выполнены, то простого решения системы в виде гауссовых функций не существует. Проанализированы случаи, когда полученную систему интегральных уравнений можно свести к более простой системе двух интегральных уравнений, а также частный случай $a_n = \infty$, $R_n = \infty$ (все три зеркала являются неограниченными и плоскими), когда для нахождения токов на зеркалах можно получить однородную систему двух линейных алгебраических уравнений. Равенство нулю детерминанта этой системы дает соответствующее дисперсионное уравнение для вычисления собственных частот трехзеркального резонатора:

$$r_1 r_{23} \exp(-2ikL_{12}) = 1, \tag{3}$$

где

$$r_{23} = r_2 + \frac{t_2^2 r_3 \exp(-2ikL_{23})}{1 - r_2 r_3 \exp(-2ikL_{23})};$$
(4)

 $t_2 = 2i\rho_2/(1 + 2i\rho_2)$ – коэффициент прохождения волны через зеркало 3₂ [6]; L_{12} и L_{23} – длины парциальных резонаторов; k – волновое число.

В отличие от стандартного дисперсионного уравнения для двухзеркального лазерного резонатора уравнение (3) содержит зависимость одного из входящих в него коэффициентов отражения от длины L_{23} внешнего резонатора и от частоты излучения. При определенных соотношениях между параметрами связанных парциальных резонаторов 3_13_2 и 3_23_3 эти зависимости оказываются достаточно сильными, и незначительные изменения длины L_{23} (возникающие, например, под действием микросейсмических колебаний или акустических вибраций) приводят к значительным флуктуациям резонансных частот исследуемой трехзеркальной системы.

3. Численное моделирование поведения собственных частот

С использованием полученного дисперсионного уравнения (3) для трехзеркального лазерного резонатора вычисляется сдвиг частоты в двухзеркальном резонаторе 3_13_2 при добавлении дополнительного третьего зеркала 3_3 . В приближении слабосвязанных резонаторов, $|r_3| \ll |r_2|$, уравнение (3) имеет аналитическое решение. Сдвиг частоты $\Delta \omega$ при дополнительном условии [5]

$$\omega \ll c/L_{23},\tag{5}$$

где c – скорость света, является гармонической функцией длины L_{23} внешнего резонатора 3_23_3 , и для вычисления этого сдвига можно пользоваться простейшими формулами [3,4]. При нарушении указанных выше условий слабой связи резонаторов трансцендентное дисперсионное уравнение (3) становится достаточно сложным, и для его решения требуется применение численных методов.

Такие расчеты были выполнены с помощью компьютерной программы MATLAB, что позволило определить области параметров, в которых сдвиг частоты описыва-

Рис.1. Сдвиг частоты $\Delta \omega$ в трехзеркальном лазерном интерферометре в зависимости от длины внешнего резонатора L_{23} при связи меньше (*a*) и больше (*б*) критической; $\Omega = c|r_3||t_2|^2/(2L_{12}|r_2|)$.

ется однозначной квазигармонической функцией длины L_{23} (рис.1,*a*). Найдены также критические значения этих параметров, когда решение уравнения (3) становится неоднозначным, и сдвиг частоты при изменении длины L_{23} внешнего резонатора может принимать два или три значения (рис.1, δ). Если изменения длины L_{23} имеют случайный знакопеременный характер (например, из-за турбулентных флуктуаций воздуха или микросейсмических колебаний грунта), в зависимости частоты от L_{23} наблюдаются разрывы, скачки и другие нелинейные эффекты [7]. Положение частоты в этих областях становится неустойчивым, точность интерферометрических измерений на больших базах ухудшается на два-три порядка.

4. Экспериментальное изучение работы трехзеркального лазерного резонатора

Исследовались рабочие параметры трехзеркального лазерного резонатора, включенного в схему длиннобазового интерферометра со слабой и критической обратной связью. Отличительной особенностью исследуемой схемы является одновременная генерация Не-Ne-лазером на двух связанных переходах с $\lambda = 0.63$ и 3.39 мкм [8]. Использовался двухволновый Не-Ne-лазер с тепловым регулированием длины его резонатора, обеспечивающим управление выходной мощностью и частотой излучения. В измерительной схеме на основе трехзеркального интерферометра модуляция лазерного излучения осуществлялась отраженным и рассеянным светом за счет оптической обратной связи. Эксперименты проводились с газоразрядными He-Ne-трубками с внутренними зеркалами и резонатором длиной 23 и 30 см, обеспечивающими двух- и трехчастотный режимы генерации на $\lambda = 0.63$ мкм и одночастотный режим на $\lambda = 3.39$ мкм. Для контроля температуры корпуса лазера применялся прецизионный многоканальный измеритель температуры на основе прибора МИТ-8 с разрешением 0.001 К в диапазоне 273 -378 К [9]. Для лазерного резонатора, закрепленного внутри стальной трубы, полученные оценки температурного коэффициента расширения α и постоянной времени τ , характеризующей тепловую инерционность лазерного резонатора, составляют ~ 1.14 град⁻¹ и ~ 1 ч соответственно.

Рассмотренный выше двухволновой лазер был использован при построении трехзеркальных интерферометрических измерителей перемещений и деформаций. Оптическая схема одного из вариантов такого устройства показана на рис.2 [10]. При перестройке длины лазерного резонатора, вызванной его нагревом, экспериментально обнаружены зоны нестабильности системы регистрации сдвигов интерферограммы, связанные с воздействием отраженного света на спектральный состав излучения лазе-

Рис.2. Оптическая схема трехзеркального лазерного интерферометра-деформографа:

1 – зеркала лазера; 2 – рабочая среда лазера; 3 – светоделительная пластинка; 4 – электрооптический модулятор; 5 – фотоприемник; 6, 7 – линзы согласующего телескопа; 8 – измерительное зеркало.

Рис.3. Вариации оптической длины, зарегистрированные интерферометрами-деформографами с длиной базы 300 м и подземным лучеводом (*a*) и длиной базы 66 м в открытой атмосфере. Звездочкой отмечены автоматические переносы начала отсчета системы регистрации на N = 3, ..., 8 периодов интерферограммы.

ра. На рис.3 показаны характерные примеры работы двух лазерных интерферометров-деформографов – с длиной базы 300 м (пучок излучения экранирован подземным лучеводом, рис.3,*a*) и 66 м (лазерный пучок распространяется в открытой атмосфере, рис.3,*б*). Резкие вертикальные разрывы на обеих зависимостях (отмечены звездочкой) соответствуют переносам начала отсчета системы регистрации на величину ΔL_N , кратную половине длины волны: $\Delta L_N = N\lambda/2$ (N = 3, ..., 8). Амплитуды микросейсмических колебаний грунта и случайных флуктуаций из-за турбулентности воздуха в обоих интерферометрах превышают длину волны излучения лазера, т. е. $k\Delta L_{23} > 2\pi$.

В зоне нестабильной генерации 66-метрового трехзеркального лазерного интерферометра (левая часть рис.3, δ) работа системы регистрации нарушается вследствие значительных быстрых флуктуаций частоты лазера – регистрируемый сигнал подвергается случайным хаотическим искажениям. При непрерывной перестройке длины резонатора лазера в режиме свободной генерации такие зоны появляются периодически. Их появления можно избежать, подстраивая частоту генерации лазера, т.е. изменяя длину резонатора в пределах ± 157 нм, что соответствует ширине зоны его стабильной работы.

5. Обратное рассеяние и сейсмические шумы лазерного гравитационно-волнового детектора

Более сложную электродинамическую систему образуют лазерные интерферометры, построенные по схеме двухлучевого интерферометра Майкельсона. Это, в частности, относится и к лазерно-интерферометрическим гравитационно-волновым детекторам, которые помимо основных (ведущих и ведомых) лазерных резонаторов содержат множество дополнительных оптических элементов и устройств, образующих внешние парциальные резонаторы.

Вклад отраженного и рассеянного излучений в результирующую погрешность лазерных гравитационноволновых детекторов исследован в [11]. Показано, что в создаваемых за рубежом длиннобазовых (0.3–4 км) интерферометрах, построенных по многозеркальной симметричной схеме Майкельсона или Фабри–Перо, эффекты воздействия обратного рассеяния могут вносить дополнительные неконтролируемые погрешности в результаты измерений. Возникающие в этих условиях флуктуации интенсивности и частоты используемых твердотельных стабилизированных лазеров [12] будут сравнимы с такими главными источниками помех, как технические и квантовые шумы лазерных излучателей и фотоприемников. Должны быть учтены также остаточные сейсмические шумы и другие природные и техногенные помехи [13, 14].

В модернизируемых гравитационно-волновых детекторах, содержащих сложные оптические системы (рециркуляторы, оптические изоляторы, сейсмические компенсаторы и другие регулирующие и управляющие устройства), с неизбежностью будут присутствовать отраженное и рассеянное излучения, которые искажают резонансные частоты как рабочих многозеркальных лазерных систем, так и опорных оптических резонаторов, используемых для стабилизации частоты. Длины парциальных резонаторов L_{2n} , не включенных в цепь автоматического регулирования и вибростабилизации, будут испытывать случайные флуктуации под действием постоянно присутствующих микросейсмического фона и акустических помех.

Возникающие при этом дополнительные шумы в системах интерферометрической регистрации, обеспечивающих инструментальное фазовое разрешение 10⁻⁹- 10^{-10} рад в диапазоне частот 10 Гц – 10 кГц, могут оказаться сравнимыми с остаточными сейсмическими, квантовыми и другими технологическими шумами или даже превышать их. Действительно, наличие в современных схемах гравитационно-волновых детекторов обратного рассеяния на уровне 10⁻⁶ от мощности прямого излучения [15] (что соответствует параметру $|r_3| = 0.001$) с необходимостью приведет к существенным частотным погрешностям. Если не предприняты специальные меры, искажения могут возникнуть, например, в системе стабилизации используемых в этих детекторах лазеров высокой мощности [12]. Так, сдвиги центральной частоты Δω высокодобротного опорного резонатора (параметр $|t_2|^2 \approx 10^{-4}$) [12] при его длине $L_{12} = 0.2$ м будут достигать ~70-80 с⁻¹ (рис.1 и 2), что на один-два порядка больше требуемого предельного уровня частотных шумов для конструкций этих инструментов [12-14].

О реальном наличии указанных помех, связанных с отраженным и рассеянным излучениями, свидетельствуют результаты тщательного анализа источников погрешностей для последних из наиболее продвинутых прототипов гравитационно-волновых детекторов – Advanced LIGO H1, L1 [15]. Таким образом, рассмотренные в предыдущих разделах эффекты необходимо учитывать при интерпретации результатов для уже существующих гравитационно-волновых детекторов, а также при создании новых, более совершенных устройств.

6. Заключение

Методом интегральных уравнений исследовано влияние несогласованной нагрузки на работу оптического генератора при различных уровнях обратного рассеянного и отраженного излучений. Найдены области параметров, в которых сдвиг частоты системы описывается однозначной квазигармонической функцией, а также их критические значения, когда сдвиг частоты может принимать два или три значения. Поведение частоты в этих областях становится неустойчивым, точность интерферометрических измерений ухудшается.

В трехзеркальном лазерном интерферометре обнаружены зоны нестабильной работы лазера в двухволновом режиме генерации. Определены условия оптимальной настройки, обеспечивающие стабильную работу лазерного интерферометра-деформографа с трехзеркальным резонатором. Рассмотрены особенности работы двухволнового He–Ne-лазера в режиме генерации на связанных переходах с $\lambda = 3.39$ и 0.63 мкм в трехзеркальном интерферометре.

Проанализирован возможный вклад отраженного и рассеянного излучений в результирующую погрешность лазерных гравитационно-волновых детекторов, приведены оценки возникающих при этом дополнительных сейсмических помех и акустических шумов в системах интерферометрической регистрации.

Результаты настоящей работы могут быть использованы при создании двухволновых источников когерентного излучения и основанных на них измерительных средств для применения в интерферометрии, метрологии, геофизике, а также для анализа данных существующих гравитационно-волновых детекторов и разработки новых, более совершенных прецизионных приборов различного назначения.

- Авербах В.С., Власов С.Н., Таланов В.И. Радиофизика, 10, 1333 (1967).
- Сикора С.В., Симкин Г.С. В сб.: Труды Харьковского государственного НИИ метрологии (М., 1969, с. 104).
- 3. Brannon P.J. Appl. Opt., 15, 1119 (1976).
- Дмитриев А.К., Дычков А.С., Луговой А.А. Квантовая электроника, 35, 285 (2005).
- 5. Александров Д.В., Дубров М.Н., Шатров А.Д. *Радиотехника и* электроника, **56**, 1149 (2011).
- Войтович Н.Н., Каценеленбаум Б.З., Коршунова Е.Н. и др. Электродинамика антенн с полупрозрачными поверхностями. Методы конструктивного синтеза (М.: Наука, 1989).
- Дубров М.Н., Алешин В.А. Оптика и спектроскопия, 72, 640 (1992).
- Aleksandrov D.V., Dubrov M.N., Remontov M.S. Proc. 11th Int. Conf. LFNM-2011 (Kharkov, Ukraine, 2011); DOI:10.1109/LFNM.2011.6144996.
- Многоканальные прецизионные измерители температуры серии МИТ-8. Каталог фирмы «ИзТех» (М.: ИзТех, 2016); http://www. iztech.ru/catalog/3/.
- Александров Д.В., Дубров М.Н. В сб.: *Лазеры, измерения,* информация – 2009 (СПб.: Изд-во Политехн. ун-та, 2009, т. 3, с. 105).
- Dubrov M.N. Abstr. Gravitational Wave Physics & Astronomy Workshop 2012 (Hannover, Germany, 2012); http://gwpaw2012. aei.mpg.de/accessibility-info.
- 12. Kwee P. et al. Opt. Express, 20, 10617 (2012).
- Smith J.R., Ajith P., Grote H., Hewitson M., Hild S., Luck H., Strain K.A., Willke B., Hough J., Danzmann K. *Classical Quantum Gravity*, 23, 527 (2006).
- Beker M.G., Cella G., DeSalvo R., Doets M., Grote H., Harms J., Hennes E., Mandic V., Rabeling D.S., van den Brand J.F.J., van Leeuwen C.M. *Gen. Relativ. Gravitation*, 43, 623 (2011).
- 15. Martynov D.V. et al. Phys. Rev. D, 93, 112004 (2016).