Рентгеноспектральная диагностика генерации гармоник лазерного излучения при взаимодействии релятивистских фемтосекундных лазерных импульсов с кластерами

А.Я.Фаенов, Е.Окс, Э.Далимиер, И.Ю.Скобелев, С.А.Пикуз, Т.А.Пикуз, И.А.Жвания, Ю.Фукуда, А.Андреев, Д.Кога, Х.Сакаки, Х.Котаки, А.Пирожков, Ю.Хаяси, Т.Кавачи, М.Кандо, К.Кондо, А.Жидков, Р.Кодама

Показано, что при взаимодействии лазерного излучения высокой интенсивности с кластерными мишенями на формировании эмиссионных рентгеновских спектров может сказываться бихроматическое осциллирующее электрическое поле, связанное с процессами генерации второй гармоники лазерного излучения. Предложен способ диагностики генерации гармоник при лазерно-кластерном взаимодействии по форме контуров спектральных линий многозарядных гелиеподобных ионов. Показано, что при плотностях потока лазерного излучения 3×10^{18} Bm/cm² эффективность преобразования во вторую гармонику составляет около 2%.

Ключевые слова: релятивистские фемтосекундные лазерные импульсы, кластеры, генерация гармоник, рентгеноспектральная диагностика.

Несмотря на то что рентгеноспектральная диагностика плазмы возникла уже очень давно, она и сейчас успешно применяется для определения параметров высокотемпературной плазмы – как образующейся в различных лабораторных установках, так и существующей в астрофизических объектах (см., напр., [1–12]). При этом используется то, что излучаемый плазмой спектр зависит от параметров плазмы, и возможен подбор значений этих параметров, обеспечивающих согласие расчетного и наблюдаемого эмиссионных спектров.

Поскольку рентгеновские спектры излучения высокотемпературной плазмы формируются главным образом за счет протекающих в ней атомных процессов, таких как электрон-ионные столкновения и радиационный или автоионизационный распад ионных уровней, а вероятности этих процессов зависят, главным образом, от температу-

Т.А.Пикуз. Объединенный институт высоких температур РАН, Россия, 125412 Москва, ул. Ижорская, 13, стр. 2; адрес в настоящее время: Institute for Academic Initiatives, Osaka University, Osaka, 565-0871, Japan

Y.Fukuda, J.Koga, H.Sakaki, H.Kotaki, A.Pirozhkov, Y.Hayashi, T.Kawachi, M.Kando, K.Kondo. Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215, Japan

A.Andreev. Max Born Institute, Berlin 12489, Germany; 8ELI-ALPS, Szeged H-6720, Hungary

A.Zhidkov. PPC Osaka University and JST, CREST, Osaka 565-0871, Japan

R.Kodama. Institute for Academic Initiatives, Osaka University, Osaka, 565-0871, Japan; PPC Osaka University and JST, CREST, Osaka 565-0871, Japan

Поступила в редакцию 24 февраля 2016 г.

ры и плотности электронов, то, в первую очередь, рентгеноспектральные методы могут использоваться для оценки электронной плотности и температуры плазмы.

Наличие в плазме медленно меняющихся (квазистатических) электрических и магнитных полей также сказывается на ее излучательных характеристиках, приводя, за счет эффектов Зеемана и Штарка, к изменению контуров излучаемых спектральных линий. Соответственно измерения формы спектральных линий позволяют выявлять существующие в плазме квазистатические электромагнитные поля.

Помимо этого в плазме могут существовать достаточно сильные осциллирующие электромагнитные поля, обусловленные как внешними воздействиями на плазму, так и возникновением сильных плазменных неустойчивостей и соответствующих им плазменных колебаний. Например, особенности плазмы, создаваемой мощными сверхкороткими лазерными импульсами, связаны с наличием сильной анизотропии в распределении электронов по скоростям. Следствием этой анизотропии является возникновение сильных электромагнитных колебаний, обусловленных развитием вейбелевской неустойчивости. Это ведет к генерации сильных квазистационарных магнитных полей с напряженностью, зависящей от интенсивности лазерного излучения. В свою очередь, существование магнитного поля может приводить к генерации колебаний бернштейновского типа. Другой пример – высокочастотные электронные ленгмюровские колебания. Дополнительные механизмы могут быть важны в экспериментах с кластерами. В этом случае из-за конечного размера мишени сильные колебания могут развиваться также на частотах $\omega_{\rm p} = 3\omega_{\rm las}$.

Характерным спектроскопическим проявлением присутствия монохроматического осциллирующего электрического поля в плазме является возникновение дополнительных спектральных линий (сателлитов) с частотами $\omega_{\rm s} = \omega_{\rm a} \pm m\omega_{\rm las}$, где $\omega_{\rm a}$ – частота атомного перехода; m = 1, 3, 5,..., если атомный переход запрещен по четности; m =

А.Я.Фаенов, И.Ю.Скобелев, С.А.Пикуз. Объединенный институт высоких температур РАН, Россия, 125412 Москва, ул. Ижорская, 13, стр. 2; e-mail: spikuz@gmail.com

E.Oks. Physics Dept, Auburn University, Auburn, AL 36849, USA

E.Dalimier. LULI-UPMC Univ Paris 06: Sorbonne Universites; CNRS, Ecole Polytechnique, CEA: Universite Paris-Saclay – F-75252 Paris Cedex 05, France

И.А.Жвания. Объединенный институт высоких температур РАН, Россия, 125412 Москва, ул. Ижорская, 13, стр. 2

2, 4, 6,... для разрешенного по четности перехода. В зависимости от того, является осциллирующее поле внешним лазерным полем или плазменными колебаниями, такие сателлиты называют лазерными или плазменными. Если частота атомного перехода лежит в рентгеновской области спектра, возникающие сателлиты, как правило, не будут представлять собой изолированные линии, а будут формировать профиль наблюдаемых рентгеновских переходов.

Рентгеновские плазменные сателлиты наблюдались ранее при взаимодействии умеренно интенсивных пикосекундных лазерных импульсов с твердотельными мишенями [13, 14] и при взаимодействии более мощных фемтосекундных лазерных импульсов с кластерными мишенями [15]. При этом теоретическое рассмотрение ограничивалось случаем монохроматических электромагнитных полей.

Однако при очень высоких (релятивистских) интенсивностях лазерного излучения нелинейные процессы должны приводить к появлению в лазерной плазме электромагнитных колебаний с частотами, кратными лазерной, т.е. к генерации гармоник нагревающего лазерного излучения. Одним из возможных сценариев генерации гармоник является следующий. Лазерная поперечная волна t_1 возбуждает продольную ленгмюровскую волну lи ионно-акустическую волну *s*: $t_1 \rightarrow l + s$. Затем, в результате одного из двух процессов, $l + l \rightarrow t_2$ или $l + t_1 \rightarrow t_2$, образуется поперечная волна t₂ на удвоенной лазерной частоте. Важным результатом этих нелинейных процессов окажется то, что на ионы плазмы, излучающие рентгеновские спектральные линии, будет действовать бихроматическое поле (сумма двух монохроматических волн с частотами ω_{las} и $2\omega_{\text{las}}$).

Рассматриваемая задача о поведении излучающего иона в таком бихроматическом поле впервые исследовалась в [16], где было показано, что спектр излучения иона в этом случае весьма нетривиально зависит от отношения амплитуд первой (E_1) и второй (E_2) гармоник. Именно в зависимости от отношения E_1/E_2 в излучаемом спектре могут преобладать те или иные плазменные сателлиты. В бихроматическом поле относительные интенсивности сателлитов, сдвинутых от центра линии на лазерную частоту ω_{las} и на удвоенную лазерную частоту $2\omega_{\text{las}}$, выражаются суммой произведений бесселевых функций, аргумент которых пропорционален отношению nE_1/ω_{las} и $nE_2/(2\omega_{\text{las}})$, где *n* – главное квантовое число энергетического уровня, с которого излучается та или иная спектральная линия. Поскольку бесселевы функции являются осциллирующими, то осциллируют и относительные интенсивности сателлитов на частотах ω_{las} и $2\omega_{\text{las}}$. В результате при некоторых отношениях E_2/E_1 наблюдается подавление плазменных линий на частоте ω_{las} , причем при некоторых отношениях возможна ситуация, когда даже в случае $E_1 > E_2$ сателлиты на частоте первой гармоники будут подавлены. При этом совместный анализ двух спектральных линий, характеризующихся различными значениями n, позволяет однозначно определить отношение E_2/E_1 для рассматриваемых условий эксперимента.

Из сказанного выше следует, что сравнение наблюдаемого спектра с расчетными может позволить не только зафиксировать сам факт генерации второй гармоники, но и оценить ее интенсивность по отношению к интенсивности основной гармоники. В настоящей работе мы использовали подход [16] для интерпретации результатов экспериментов по нагреву аргоновых кластеров фемтосекундными лазерными импульсами с плотностью потока до 3×10^{18} BT/см².

Эксперименты проводились в Кансайском оптическом институте Японского агентства по атомной энергии (KPSI, JAEA, Япония). Были использованы две лазерные титан-сапфировые установки с длиной волны излучения 800 нм. В первом случае лазер JLITE-Х генерировал импульс с длительностью 40 фс и энергией 160 мДж, имевший контраст 10⁵, что позволяло проводить эксперименты при плотностях потока вплоть до 4×10^{17} BT/см² [17]. Во втором случае применялся лазер J-KAREN [18], обеспечивающий гораздо более высокий контраст, 10⁸-10¹⁰ (в пикосекундном масштабе). Такое улучшение контраста достигалось посредством установки насыщающегося поглотителя между задающим генератором и стретчером. Улучшение контраста в наносекундном масштабе обеспечивала сверхбыстрая ячейка Поккельса. Длительность лазерного импульса этой установки также составляла 40 фс при энергии до 800 мДж, что давало при фокусировке в пятно диаметром 30 мкм плотность потока 3×10¹⁸ Вт/см² [19]. В обоих случаях лазерный пучок фокусировался внеосевым параболическим зеркалом на струю аргоновых кластеров (рис.1).

Аргоновые кластеры создавались при расширении газа высокого начального давления в вакуум через специально разработанное сверхзвуковое сопло [20,21], которое состояло из трех коаксиальных конических поверхностей. Эксперименты проводились главным образом при начальном давлении 6 МПа, когда средний размер кластеров Ar составлял около 1.5 мкм в области фокального лазерного пятна. Сочетание большого размера кластеров и высокого контраста лазерных импульсов обеспечивало сохранение плотной сердцевины кластера до прихода основного импульса, т.е. лазерный предымпульс не разрушал кластеры полностью.

Эмиссионные спектры плазмы регистрировались с высоким спектральным и пространственным разрешениями с помощью спектрометра ФСПР [22–24]. В нем применялись сферически изогнутые кристаллы кварца (2*d* = 4.912 Å, радиус кривизны *R* = 150 мм). Спектрометр настраивался на диапазон 3.05–3.5 Å, в который попадали спектральные линии Не-подобного Ar XVII (резонансная серия 1snp–1s² при *n* = 3 – 7). Спектральное разрешение $\lambda/\Delta\lambda$ было не хуже 3000.

Примеры денситограмм спектров, полученных при интенсивности лазерного потока 3×10^{18} Вт/см², приведены на рис.2. На профилях спектральных линий He₅ и особенно He₆ отчетливо видны пички (плазменные сателлиты), отстоящие по длине волны от основных линий на $2\omega_{\rm las}[\lambda_n^2/(2\pi c)]$, тогда как плазменные сателлиты, сдвину-

Рис.1. Схема эксперимента.

Рис.2. Сравнение экспериментальных и расчетных спектров линий ArXVII, обусловленных переходами 5p-1s (He₅), 6p-1s (He₆) и 7p-1s (He₇). Экспериментальные данные получены на установке J-KAREN при интенсивности потока лазерного излучения 3×10^{18} BT/cm². Расчетные спектры (*a*-*s*) получены для относительно малой области плазмы с бихроматическим полем $E_1 cos(\omega t) + E_2 cos(2\omega t)$ ($E_1 = 14 \Gamma B/cm$, $E_2 = 7 \Gamma B/cm$) [16]. Суммы рассчитанных спектров [16], излучаемых из относительно малой области с бихроматическим полем и из относительно большой области, где нет периодических полей, а также экспериментальные спектры (пуктирные кривые) приведены на рис. *г*-*e*.

тые на основную частоту, отсутствуют. Если бы излучение собиралось из области плазмы, где существует только волна t_2 , то интерпретация экспериментальных спектров была бы совершенно очевидной. Но так могло бы быть, если бы излучала только закритическая плазма с концентрацией $N_{\rm er}$, лежащей в диапазоне от $N_{\rm cr}$ до $4N_{\rm cr}$, где $N_{\rm cr} = 1.8 \times 10^{21}$ см⁻³ для лазерной частоты 2.4×10^{15} с⁻¹. Однако при таких концентрациях штарковские ширины линий He₅, He₆ и т.д. должны были бы быть гораздо больше наблюдаемых. Таким образом, мы вынуждены считать, что в области, ответственной за излучение спектров, наряду с волной t_2 присутствует и волна t_1 , причем ее интенсивность превышает интенсивность волны t_2 .

Теория плазменных сателлитов в бихроматическом поле была недавно предложена и развита в работе [16]. Из нее следует, что при некотором отношении амплитуд E_1 и E_2 интенсивность плазменного сателлита, сдвинутого на основную частоту, должна быть много меньше, чем сдвинутого на удвоенную частоту. Поскольку в эксперименте это наблюдается по крайней мере для двух переходов, He₅ и He₆, то можно найти не просто отношение амплитуд E_1/E_2 , но и абсолютные значения каждой из них. Например, в случае, показанном на рис.2, для согласия экспериментальных и расчетных контуров необходимо взять $E_1 = 14 \ \Gamma B/см$ и $E_2 = 7 \ \Gamma B/см$. Поскольку при интен-сивности потока $3 \times 10^{18} \ B T/сm^2$ амплитуда электрического поля лазерной волны в вакууме $E_0 = 48 \ \Gamma B/cm$, то эффективность преобразования лазерного излучения во вторую гармонику в данном эксперименте достигала 2%, что также нашло подтверждение в работе [16], где было выполнено моделирование методом крупных частиц.

При моделировании экспериментальных профилей спектральных линий необходимо учитывать, что наблюдаемое излучение представляет собой суперпозицию излучения, идущего от плотной области плазмы с бихроматическим полем с t_1 и t_2 , и излучения от менее плотной, но большей по размеру плазменной области, где осциллирующие электрические поля отсутствуют. Более плотная область формирует около каждой спектральной линии относительно широкий пьедестал, а менее плотная излучает существенно более узкую и более интенсивную компоненту. Такие суммарные профили также показаны на рис.2. Наилучшее согласие экспериментальных и расчетных результатов было получено, когда электронные концентрации в первой и второй областях составляли 3×10^{20} и 10^{20} см⁻³ соответственно.

Следует отметить, что в общем случае рассматриваемые нелинейные процессы в плазме могут приводить к генерации гармоник и более высоких порядков различной интенсивности. При этом хорошее согласие экспериментальных и модельных данных с учетом вклада только второй гармоники позволяет сделать вывод о том, что при рассматриваемых интенсивностях лазерного импульса в плазме не создается условий для развития высших гармоник с интенсивностью, сравнимой с интенсивностью второй гармоники.

При снижении интенсивности лазерного потока эффективность генерации второй гармоники должна падать. Это должно приводить к исчезновению плазменных сателлитов, сдвинутых на удвоенную частоту, и к появлению сателлитов, сдвинутых на частоту основной лазерной гармоники. Данное утверждение подтверждено экс-

Рис.3. Сравнение экспериментальных спектров линий ArXVII переходов He₅ (5p-1s) и He₆ (6p-1s), полученных при интенсивности потока лазерного излучения 4×10^{17} Вт/см² и длительности лазерного импульса 500 фс (установка JLITE-X), с результатами моделирования. Кривые на рис.*a*, δ – расчетные спектры из относительно малой области плазмы с бихроматическим полем $E_1 cos(\omega t) + E_2 cos(2\omega t)$ ($E_1 = 14 \ \Gamma B/cm$, $E_2 = 7 \ \Gamma B/cm$). Сплошные кривые на рис.*a*, ϵ – суммы рассчитанных спектров, излучаемых из относительно малой области с монохроматическим полем и из относительно большой области, где нет периодических полей; пуктирные кривые – экспериментальные спектры.

периментом, проведенным на установке JLITE-X. В этом случае лазерный поток был почти на порядок меньше, и зарегистрированные спектры (рис.3) прекрасно описывались расчетами, сделанными с учетом только монохроматического поля.

Таким образом, в настоящей работе показано, что при взаимодействии лазерного излучения высокой интенсивности с кластерными мишенями на формировании эмиссионных рентгеновских спектров может сказываться бихроматическое осциллирующее электрическое поле, связанное с процессами генерации второй гармоники лазерного излучения. Исследование особенностей формы контуров спектральных линий многозарядных ионов позволяет определять структуру этого поля и, в частности, оценивать эффективность генерации второй гармоники при лазерно-кластерных взаимодействиях.

Работа выполнена в ОИВТ РАН при финансовой поддержке Российского научного фонда (проект №14-50-00124).

- 1. Negus C.R., Peacock N.J. J. Phys. D, 12, 91 (1979).
- 2. Burkhalter P., Davis J., Rauch J., et al. J. Appl. Phys., 50, 705 (1979).
- Бойко В.А., Виноградов А.В., Пикуз С.А., Скобелев И.Ю., Фаенов А.Я. Итоги науки и техники. Сер. Радиотехника (М.: ВИНИТИ, 1980, т.27).
- Pikuz S.A., Sinars D.B., Shelkovenko T.A., et al. *Phys. Rev. Lett.*, 89, 035003 (2002).
- Kinkhabwala A., Sako M., Behar E., et al. Astrophys. J., 575, 732 (2002).
- Abdallah J.Jr., Csanak G., Fukuda Y., et al. *Phys. Rev. A.*, 68, 063201 (2003).
- Vrielmann S., Ness J.-U., Schmitt J.H.M.M. Astronom.Astrophys., 439, 287 (2005).

- Robrade J., Schmitt J.H.M.M. Astronom. Astrophys., 449, 737 (2006).
- 9. Nazé Y., Rauw G. Astronom. Astrophys., 490, 801 (2008).
- Рязанцев С.Н., Скобелев И.Ю., Фаенов А.Я. и др. Письма в ЖЭТФ, 102, 817 (2015).
- 11. Faenov A.Ya., Colgan J., Hansen S.B., et al. *Scientif: Rep.*, **5**, 13436 (2015).
- Nishiuchi M., Sakaki H., Esirkepov T.Zh., et al. *Phys. Plasmas*, 22, 033107 (2015).
- Беляев В.С., Виноградов В.И., Курилов А.С. и др. Письма в ЖЭТФ, 78, 1216 (2003).
- Gavrilenko V.P., Belyaev V.S., Kurilov A.S., et al. J. Phys. A, 39, 4353 (2006).
- Oks E., Dalimier E., Faenov A.Ya., et al. J. Phys. B, 47, 221001 (2014).
- Oks E., Dalimier E., Faenov A.Ya., et al. *Opt. Express*, 23, 31991 (2015).
- Fukuda Y., Faenov A.Ya., Pikuz T., et al. *Appl. Phys. Lett.*, 92, 121110 (2008).
- 18. Kiriyama H., Mori M., Nakai Y., et al. Opt. Lett., 35, 1497 (2010).
- Colgan J., Abdallah J.Jr., Faenov A.Ya., et al. *High Energy Density* Phys., 7, 77 (2011).
- Boldarev A.S., Gasilov V.A., Faenov A.Ya., et al. *Rev. Sci. Instrum.*, 77, 083112 (2006).
- Jinno S., Fukuda Y., Sakaki H., et al. *Appl. Phys. Lett.*, **102**, 164103 (2013).
- 22. Faenov A.Ya., Pikuz S.A., Erko A.I., et al. *Phys. Scripta*, **50**, 333 (1994).
- 23. Blasco F., Stenz C., Salin F., et al. Rev. Sci. Instrum., 72, 1956 (2001).
- Lavrinenko Ya.S., Morozov I.V., Pikuz S.A., Skobelev I.Yu. J. Phys. CS, 653, 012027 (2015).