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Abstract.  Methods for estimating the main parameters of holo-
graphic sensors (refractive index modulation depth and hologram 
thickness) from transmission spectra in the absence of absorption 
and light scattering are discussed. The consideration is performed 
for layers oriented parallel to the holographic layer surface under 
normal light incidence. Direct numerical solution of the problem of 
light propagation in a periodic nonabsorbing medium is used to 
study the reflection and transmission spectra of the holographic 
layer in a wide range of variation in its thickness and the refractive 
index modulation depth. A classification of the reflection regimes 
from the holographic layer is proposed (from weak reflection to the 
photonic crystal regime). A comparison with the results obtained by 
the coupled-wave analysis is performed, and the limitations of this 
method at a significant spectral detuning from resonance and under 
conditions of strong reflection are revealed. It is shown that the 
main hologram parameters can be estimated from the experimental 
transmission spectrum of the phase hologram (in the case of strong 
reflection) based on the spectral dip parameters.

Keywords: holographic sensors, light propagation, periodic medium, 
determination of hologram parameters, coupled waves. 

1. Holographic sensors [1, 2] form a new class of diagnostic 
devices. Such a sensor is based on a Denisyuk hologram (a 
layered periodic structure with periodically changing optical 
properties). For definiteness, we will refer to the period of this 
structure as the interference-layer thickness. Under the con
ditions considered below, it is approximately half the wave-
length in the medium. The thickness of the entire periodic 
structure will be referred to as the holographic layer thickness 
or the hologram thickness. Under certain conditions [2], the 
medium forming the holographic layer undergoes nonuni-
form compressions or extensions, and the medium becomes 
aperiodic, i.e., smooth spatial variations in the interference-
layer thickness and/or refractive index occur in it.

This hologram has a narrow reflection spectrum. The inter-
action of a tested material with the materials intentionally 
incorporated into the matrix leads to a change in the degree 
of matrix swelling and, correspondingly, to a change in the 
reflected light wavelength, which characterises the tested com-
ponent content. For a purely phase hologram with strictly 
periodic layers, under conditions of weak reflection, the spec-

tral width of reflected light is inversely proportional to the 
holographic-layer thickness. In the case of strong reflection, 
the dependence is more complicated (see below). Obviously, 
to make sensors operate correctly, one must be able to deter-
mine the layer parameters (primarily, the refractive index 
modulation depth and the layer thickness).

Holographic layers on the basis of silver halides are most 
popular. We will consider bleached holograms based on 
nanograins of transparent silver compounds, in which absorp-
tion and light scattering losses are negligible. To apply cor-
rectly holographic layers of sensors, one must know which 
layer parameters affect the reflection spectrum and how they 
do it.

The propagation of waves of different nature in periodic 
structures has been studied in detail for many years [3, 4], 
and these studies are being continued now. These processes 
can be described using computer simulation methods; how-
ever, for some reasons, various approximate methods are 
often applied to solve practical problems. Concerning one-
dimensional optical problems, the main principles of con-
structing solutions for media with sinusoidally changing 
optical constants were described in [5 – 8] (an example of the 
latest studies in this field is [9]). Nevertheless, computer-
aided calculations are inevitable when practical problems 
must be solved.

An additional difficulty is that the structure often becomes 
aperiodic. The fundamentals of the calculations of multilayer 
aperiodic structures with a step profile were considered, e.g., 
in [10]. The matrix method [10, 11] is widely used to calculate 
these structures (periodic and aperiodic coatings, mirrors) in 
the optical and X-ray ranges.

In the case of strictly periodic layers with a sinusoidally 
changing profile, researchers apply the coupled-wave analysis 
[5 – 7], with makes it possible to obtain easily transmission and 
reflection spectra in a wide range of diffraction efficiencies 
and the field distribution over the layer depth. The simplest 
approach is to consider the light propagation in media with 
low reflectance; however, in the general case, the expressions 
are complicated and require numerical calculations.

Note that the problems of light propagation in Denisyuk 
holograms have been widely discussed since the beginning of 
the 1960s; however, researchers were mainly interested in the 
problems related to the behaviour of reflectance in depen-
dence of the hologram parameters (see, e.g., [8]).

The measured parameter of holographic sensors is the 
position of the reflection band maximum. Except for this 
parameter, no other optical properties of holographic sensors 
had been discussed in the literature until 2010, when our study 
[2] was published. Two problems were revealed in that work. 
The first one is the sharp (by almost an order of magnitude) 
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change in the reflectance with a change in the tested-solution 
acidity, which is accompanied by a significant change in the 
centre wavelength of reflected radiation and is related to the 
structural transformation of the layer and the variation in 
the  ion concentration in the solution. The reflectance may 
change from weak (~0.1) to very strong (~1). The second 
problem is the variation in the spectral shape of the reflection 
band: its broadening and, under certain conditions, signifi-
cant violation of symmetry and occurrence of some substruc-
tures in it. In particular, in many transition processes accom-
panied by significant changes in swelling, which manifest 
themselves in the spectral shift of the reflection band, one first 
observes a significant line broadening and occurrence of band 
structuring, which is then transferred over the spectrum at 
small variations in its structure [2, 12]. Since changes in the 
spectral shape are not always related to variations in the total 
reflection, it is evident that the holographic layer matrix swells 
nonuniformly over depth.

In the final stationary state, the band narrows to the ini-
tial state in many cases; specifically, the ratio of the wave-
length in the reflection maximum to the width of the reflec-
tion band is recovered (the value of this ratio can be related to 
the number of effectively reflecting layers). However, this 
does not occur always, which, most likely, indicates violations 
of periodicity.

When carrying out measurements, a natural desire is to 
increase the hologram reflectance. However, in the case of 
strong reflection, the incident light will rapidly attenuate in 
the bulk of the hologram, thus reducing the number of effec-
tive working layers (below, we refer to the number of the lat-
ter as  the effective number of layers). The geometric size 
related to the effective number of layers will be referred to as 
the effective layer thickness. Thus, strong reflection leads to 
an increase in the spectral bandwidth of reflected light and, 
therefore, increases the error in measuring the tested-com
ponent content. Therefore, the operational conditions must 
be chosen so as to exclude the reflectance overshoot above the 
maximum allowable value in the entire working range.

The broadening caused by the layer aperiodicity may also 
reduce the measurement accuracy. Note that the study of the 
kinetics of sensor responses may gain a deeper insight into the 
processes occurring in the layer. Having successfully solved 
this problem, one can obtain phenomenological data not only 
on the amount of a particular material but also on the optical 
characteristics of the solution in the matrix, which may 
expand the range of problems solved by applying sensors.

Therefore, the operation regime of the holographic layer 
should be optimised. It is necessary to perform an adequate 
calculation of the optical parameters of the system, primarily, 
the reflection and transmission characteristics, including the 
shape of the reflected-light band, and determine the degree of 
attenuation for the light transmitted through the layer. The 
propagation of waves in a medium with a harmonic spatial 
dependence of permittivity can be considered in terms of the 
coupled-wave analysis [5 – 7], independent of the reflection 
magnitude. If the spatial dependence of the permittivity con-
tains several harmonics (with a nonsinusoidal permittivity 
profile), the coupled-wave analysis is also applicable; how-
ever, the mathematics is more complicated in this case. Note 
that, along with a nonuniform distribution of the interference 
layer thickness over depth, spatial inhomogeneity of the 
refractive index modulation depth may also occur. As far as 
we know, the solution for these media in the general form has 
not been analysed in the literature.

Most of the aforementioned studies were aimed at solving 
the forward problem, i.e., determining the transmission and 
reflection spectra of a layer with its parameters specified. The 
only exception is the studies devoted to multilayer coatings, 
where a coating design (materials of layers and their thickness, 
and sequence) is chosen for a specified (rather broadband) 
spectrum [11, 13, 14]. This problem has its own specificity, 
because it generally considers a stepwise profile of a single 
layer, and the simple matrix method can be applied to it. 
Recently, nonideal step coatings with a transition layer between 
neighbouring layers have also been investigated [14].

The problem discussed above is fairly universal. It con-
tains a large set of free parameters and some criteria of cor-
respondence, which are comapred with the mismatch func-
tional (depending also on the spectral shape) in the space of 
fitting parameters. This multiparameter functional may have 
a complex structure, with a large number of local minima 
(traps). Generally, the problem of searching for the global 
minimum is stated; however, in some cases, the number of 
close-to-global minima may exceed unity.

A peculiar inverse problem must be solved in the case of 
sensors used for analytical purposes. Here, the case in hand is 
not the fitting of layer parameters to an arbitrary spectrum 
but the estimation of the parameters of a periodic depth-lim-
ited medium (layer thickness, refractive index modulation 
depth, and distance between neighbouring layers) from its 
spectrum. Here, the structure of the mismatch function in the 
fitting-parameter space may be radically different. In this 
study, we will restrict ourselves to a very simple fitting prob-
lem: consideration of a strictly periodic medium and fitting of 
the main parameters of the Bragg dip (its position, width, and 
relative amplitude) by varying the main hologram parameters 
(relative modulation depth of refractive index and holographic 
layer thickness). We will also consider the one-dimensional 
problem, in which periodic layers are parallel to the holo-
graphic layer boundaries, and the wave vector of the incident 
wave is oriented normally to the layers.

The main problems to be solved in this stage of our inves-
tigations is to control the sensor operation regime and deter-
mine the parameters of the medium under all possible con
ditions for holographic layer operation, including the layer 
aperiodicity and inhomogeneous refractive index modulation 
depth. The main purpose of this study is to estimate the 
parameters of a nonabsorbing holographic layer (its thickness 
and refractive index modulation depth) from an experimental 
spectrum using a computer model of plane-wave propagation 
in a strictly periodic layer of finite thickness.

2. Let us consider different operation regimes of the holo-
graphic layer. It is well known [5 – 7] that, in the case of a 
strictly periodic sinusoidal medium, there are three parameters 
completely determining the field propagation regime and the 
formation of the reflection spectrum: structure period, layer 
thickness H, and refractive index modulation depth Dn. Based 
on the reflection bandwidth, provided that the reflection is 
weak (the weakness criteria will be considered below), one 
can easily determine the number of interference layers (i.e., 
the hologram thickness) in the case of strictly periodic layers. 
The refractive index modulation depth can be found from the 
amplitude of the peak in the reflection band (note that the 
reflectance must be calibrated). However, this problem can be 
solved in another way.

The transmission spectrum contains a Bragg dip (Fig. 1), 
the parameters of which (position, depth, and width) are 
related to the reflection band characteristics. Thus, the prob-
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lem to be solved can be formulated as follows: the parameters 
of a hologram must be determined from the characteristics of 
its transmission spectrum, i.e., the resonant wavelength and 
the depth and width of the spectral dip.

First we will solve the forward problem: calculate the 
reflection and transmission spectra of a layer of specified 
thickness H and refractive index modulation depth Dn and 
analyse the dependences of spectral parameters A (relative dip 
depth) and Dl (FWHM) on H and Dn, obtained for a set of 
thicknesses and modulation amplitudes.

Then we can pass to the main problem: estimation of the 
layer parameters from the spectral characteristics. This will be 
done by the fitting method: we will solve the forward problem 
using some H and Dn values and obtain as a result a transmis-
sion spectrum with a dip of depth A and width Dl. Then the 
H and Dn values will be chosen so as to make parameters A 
and Dl of the calculated and experimental spectra coincide.

3. The light propagation in periodic structures with known 
parameters was investigated in detail by coupled-wave analysis 
with allowance for two waves [5 – 7]. Within this approach, 
the transmittance and reflectance can be found from a system 
of analytical expressions. However, this approximation is 
valid for only the central maximum. Figure 2 shows the results 
obtained by us based on the approaches described in [5 – 7] 
and the results of the direct calculation, which is considered 
below. On the scale of Fig. 2a, the curves obtained by both 
methods coincide; however, at a larger magnification, one can 
observe an asymmetry in the amplitudes of lateral maxima 
(Fig. 2b), which is more pronounced in the case of coupled-
wave analysis [5 – 7] as compared with direct calculation. The 
differences in the positions of lateral maxima and minima are 
also pronounced. An increase in the detuning of the incident 
radiation wavelength from the Bragg conditions increases the 
difference in the results obtained by the coupled-wave analy-
sis (according to Kogelnik [5]) and the direct calculation. This 
difference increases also with an increase in the permittivity 
modulation depth.

4. Let us consider the case of small refractive index modu-
lation and, therefore, of the weak reflection. We will divide 
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Figure 1.  Experimental transmission spectrum for a phase hologram.
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Figure 2.  Reflection and transmission spectra obtained by numerical calculation (filled symbols) and calculated in terms of the coupled-wave 
analysis (open symbols) for (a, b) weak reflection, (c) strong reflection in the regime of photonic crystal formation, and (d) very strong reflection in 
the photonic crystal regime.
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the holographic layer of thickness H into infinitely thin layers 
of thickness dx with somewhat differing refractive indices 
n(x). Let us consider two such layers with refractive indices n 
and n + dn. The electric field of a wave reflected from the 
interface between these layers can be written as (see [4])

( )
( ) .d dE

n x
n E x

2 0=- 	 (1)

We neglect the multiple reflections of light in the layer and the 
variation in the refractive index in the denominator in view of 
their smallness; then, the wave reflected by the hologram will 
be determined by the sum of waves (1) with a corresponding 
phase delay. The field is described by the expression
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The refractive index is given by the formula 
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where n0 is the average refractive index; x is a coordinate in 
the direction into layer depth; L is the refractive index modu-
lation period; and j0 is phase, which determines the position 
of sinusoid with respect to the holographic layer and is set 
when photoemulsion is exposed. The field phase in (2) can be 
written as 

( ) ,dn x k xj = y 	 (4)

where k is the wave number of the incident light in vacuum. 
Since relation 
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( l/n0 ~ 2L; Dn << 1; l is the wavelength of incident light in 
vacuum) holds true, the integral in (4) over the variable part 
of the refractive index is small and
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A conventional approach is to integrate (2) with allowance 
for (6), neglecting small first-order values. In sum,
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Note that the band FWHM is 
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where N is the number of interference layers. 

Function (7) has a simple form and is convenient for 
application; it is symmetric with respect to k0 (the wave vector 
corresponding to the centre wavelength in the reflection spec-
trum) in the space of wave numbers, but its accuracy is not 
very high. However, it is quite applicable in many cases, espe-
cially for estimations. The concepts of the effective thickness 
and number of layers stem from (9), when Heff and Neff (the 
effective thickness and number of layers, respectively) are 
purely formally determined with known n0, l, and Dl values. 
A more exact expression, with allowance for the small values 
rejected when deriving (7), has the form
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and j1 is the phase of the variable part of the refractive index 
in the output plane. Formula (10) takes into account the first-
order values (which are generally rejected): the term with 
n0k + k0, which is also related to the reflection from the peri-
odic structure [the second summand in (11b)], takes into 
account the reflection from the boundaries [the third term in 
(11b) and the addend in (10) describe the reflection from the 
output and input planes, respectively]. All these three terms 
may contribute to the spectral asymmetry. The factor after A 
in (10) describes the attenuation of the reflected light, emerging 
from the hologram bulk, in the input plane. In the calculations 
described below, it was assumed that the average refractive 
index of the layer coincides with the refractive index of the 
environment. If the refractive index does not undergo a jump 
at the boundaries, the third term in (11b) and the addend in 
the parentheses in (10) become zero, and the asymmetry on 
the whole is determined by the second term in (11b).

5. To solve the problem in the general case, we will per-
form direct numerical calculation of the wave propagation 
problem. We will consider the case of normal incidence of 
light on a hologram (in practice, the wave is incident at a 
small angle, which will be neglected). In this approximation, 
the electric field vector is oriented perpendicular to the wave 
vector of the periodic structure, and the field satisfies the 
equation

( )
( ) ( ) ,

d
d
x
u x

k x u x 02

2
2e- = 	 (12)

where k = w/c.
In most studies, the permittivity modulation is considered 

to be harmonic. One can easily perform generalisation to the 
case of anharmonic modulation. The field in the propagation 
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region of light incident on the hologram (region 1) is formed by 
the incident [Ef = E exp(ikz)] and reflected [Er = E1exp(– ikz)] 
waves. In region 3, the field is formed by the transmitted 
wave Etr = E3exp(ikz). The permittivity modulation region (2) 
is divided into intervals by points M (i.e., a mesh is intro-
duced). The field at point M is taken in the form

ME2 = C (C = E3 is unknown),

ME'2 = ikC.	
(13)

These equations were derived from the continuity condi-
tion for the field and its derivative. Then, using the fourth-
order Runge – Kutta method, we found the field values from 
Eqn (12) at all M – 1 grid points (specifically, we determined 

the i
~
E2 value: the ratio of the field iE2 to the unknown con-

stant C, because, in view of the linearity of (12), the field iE2 
at each point of region 2 is proportional to this constant).

Then the fields were matched at the interface between 
regions 1 and 2:

E + E1 = 1
~
E2C,   ikE – ikE1 = 1

~
E'2C.	 (14)

In these equations, the incident-wave field amplitude E is 
known, and the amplitude 1

~
E2 (1

~
E2 = 1E2/C) was determined 

numerically. Based on Eqns (14), we find the amplitudes of 
the transmitted [E3 (= С)] and reflected (E1) waves. In addi-
tion, the formula i E2 = i  

~
E2*С is used to determine the field in 

the hologram region.
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Figure 3.  Reflection and transmission spectra for the cases of (a) weak, (b) intermediate, and (c) strong reflection from a hologram, (d) in the regime 
of photonic crystal formation, and (e) in the photonic crystal regime.
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6. Let us now classify the sensor operation regimes as 
function of the reflection spectrum parameters. In the case of 
weak reflection (we define it as the regime in which the ratio 
of the maximum in the reflection spectrum to the incident 
light intensity is below 0.1), the shape of this spectrum is 
described by the function sin x/x (see Fig. 3).

With an increase in the reflectance from 0.1 to 0.4, the 
spectral shape begins to change: the vertex of the reflection 
peak becomes slightly flattened, but it can still be approxi-
mated by the function sin x/x with a rather high accuracy. The 
thickness Heff is close to the holographic-layer thickness H. 
This regime will be referred to as intermediate reflection.

Strong reflection occurs at reflectances ranging from 0.4 
to 0.865. In this regime, the reflection peak vortex is flattened 
(a dip arises in the spectral dependence of the second deriva-
tive), and Heff becomes smaller than the layer thickness, 
whereas the field penetration depth into the holographic layer 
becomes comparable with the layer thickness.

With a further increase in the reflectance, the field pene-
tration depth into the layer amounts from 1 to 0.2 of the 
holographic-layer thickness.

The regimes with smaller penetration depths can be consid-
ered as photonic crystal formation regimes. For example, for a 
sample of thickness H = 20 mm, regimes of weak (Fig. 3a), inter-
mediate (Fig. 3b), and strong (Fig. 3c) reflection are implemented 
at Dn/n0 = 0.002, 0.005, and 0.01, respectively; Dn/n0 = 0.02 corre
sponds to the photonic crystal formation regime (Fig. 3d); and, 

at Dn/n0 = 0.1, well-developed band gaps are formed (Fig. 3e), 
and one can speak about the formation of a photonic crystal.

Figure 4 shows the dependences of the relative dip depth 
A on the refractive index modulation depth Dn and thickness 
H of the holographic layer. At small modulation depths and 
thicknesses, the relative dip depth A behaves, in correspon-
dence with formula (8), as H 2 (Fig. 4a) and (Dn)2 (Fig. 4b). 
Then it tends to a constant value: A = 1.

The dependences of the width Dl of Bragg transmission 
minimum on the same parameters are presented in Fig. 5. At 
small H, these dependences behave as H –1 [i.e., according to 
formula (9)]. With an increase in H, the reflection becomes 
significant and the effective thickness Heff becomes smaller 
than the total thickness H. Since Dl ~ H–1

eff, the dependences 
deviate from H–1 (Fig. 5a). With a change in Dn, the width 
Dl  first remains constant and then linearly depends on Dn 
(Fig. 5b). The reason is that an increase in the modulation 
amplitude Dn leads to an increase in reflection, and, under 
strong reflection, the reflected wave is formed at a smaller 
depth Heff.

Thus, the dependences of the relative dip depth A in the 
spectrum and the width Dl of the Bragg transmission mini-
mum on the hologram parameters are monotonic, due to 
which one can construct an algorithm of searching for the 
hologram parameters proceeding from the spectral charac
teristics; i.e., to solve the inverse problem.
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7. Figure 6 shows an experimental spectrum of a bleached 
hologram. The refractive index of the solution is n = 1.33. 
The dip parameters, determined when fitting by a function 
equal to the sum of a Gaussian function and a constant back-
ground, were found to be Dlехp = 6.16 nm, Dlехp = 635.85 nm, 
and Aехр = 0.16. First we found the lexp value and then per-
formed fitting of the two remaining parameters. We used a 
previously calculated set of dip depths A and widths Dl in 
some range of hologram thicknesses H and refractive index 
modulation amplitudes Dn. The forward problem of light 
propagation in a medium was solved for H and Dn, and the 
transmission spectrum (for which the dip parameters were 
determined) was calculated. If the mismatch between the dip 
depth A and width Dl and the corresponding experimental 
values was intolerable, the H and Dn values were varied to 
minimise the function

.
A

A A

exp

exp

exp

exp
2 2

T

T T
T

T T

l
l l

Y =
-

+
-e co m 	 (15)

The programme performing variation in H and Dn yielded 
a spectrum with a dip depth A and width Dl maximally close 
to the corresponding parameters of the experimental spec-
trum. Their values for the spectrum presented in Fig. 6 are Dn 
= 0.0039 and H = 22.8 mm. Expression (9) yields the effective 
thickness Heff = lNeff /(2n) = 21.86 mm for the same spectrum 
(Neff = 0.886 l/Dl = 91.4). Thus, the thickness found by fitting 
the spectrum exceeds the effective thickness by 4.3 %.

For a spectrum with a smaller dip depth (Aexp = 0.062, 
reflectance less than 10 %) and significant dip width in the 
transmission spectrum (Dlexp = 17.03 nm), for the Bragg dip 
minimum located at lexp = 665.04 nm, the holographic layer 
parameters are as follows: Dn = 0.0077, H = 8.97 mm, Neff = 
0.886 l/Dl = 34.6, and Heff = lNeff /(2n) = 8.65 mm. This set 
is consistent with the fact that the thickness found from the 
spectrum slightly exceeds (by 3.5 %) the effective thickness.

8. A noteworthy feature of all experimental spectra reported 
above is the absence of lateral maxima, which are characteristic 
of reflection spectra from periodic structures. At the same time, 
Fig. 6 demonstrates a weak ‘excrescence’ near the boundary 
of the central maximum (on the right from it), which corre-
sponds to the first lateral maximum. It is especially pro-
nounced in Fig. 7, which shows the transmission spectrum of 

a hologram based on silver emulsion, in which light absorp-
tion and scattering by silver nanograins occurred. The dip 
was observed against a wide Rayleigh background, decaying 
to zero at short wavelengths. After subtracting the back-
ground and adding a constant background corresponding to 
the long-wavelength transmission, the dip was approximated 
by a Gaussian function. The spectrum parameters were found 
to be Dlexp = 10.2 nm, lexp = 620.7 nm, and Aexp = 0.49. The 
fitting procedure yielded Dn = 0.011 and H = 15.9 mm, and an 
estimate according to formula (9) at Neff = 0.886l/(Dl) = 54.0 
gave Heff = lNeff /(2n) = 12.6 mm. In this case, the reflection is 
strong (from 40 % to 86.5 %), and the found effective thick-
ness is smaller by 20 %. However, in this case, one must take 
into account that the transmitted wave is attenuated not only 
due to the energy transfer from the transmitted wave to the 
reflected wave but also as a result of light scattering and 
absorption by silver particles. In sum, the background in the 
wavelength range of the minimum of the Bragg transmission 
band is about 50 % of its value on the long-wavelength edge. 
The damping at the resonant wavelength should be approxi-
mately the same; this circumstance also reduces the effective 
number of layers and contributes to the observed broadening 
of the transmission band. Therefore, the thus obtained param-
eters in the presence of light absorption and scattering are 
only estimates. To obtain a more exact solution of this prob-
lem, one must take into account the attenuation of light 
propagating in a medium with allowance for scattering and 
absorption.

The spectrum in Fig. 7 exhibits pronounced ‘excresences’ 
on the right and left from the central maximum. They may be 
related to the finite width (5.5 nm at half maximum) of the 
instrumental function of the spectrometer with a fibre input, 
which is shown in Fig. 8a. Figure 8b presents a calculated 
spectrum of reflected light for a sinusoidal grating at H = 20 mm 
and Dn = 0.01 (the spectral width of reflected light is 6.4 nm), 
the instrumental function, a convolution of these two func-
tions, and their approximation by a Gaussian function with a 
width of 7.7 nm. In Fig. 8c, the same curves are given on an 
enlarged scale over the ordinate axis. It can be seen that the 
central part of the maximum (more than 6 % of the maximum 
value) is approximated well by a Gaussian function; the lateral 
maxima are smoothed out to a great extent (compare with 
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Figure 6.  (–) Transmission spectrum of a phase hologram in the case of 
weak reflection and its approximations ( ) by a Gaussian function and  
( ) with the aid of direct calculation.
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Figure 7.  (–) Transmission spectrum of a hologram based on silver 
emulsion and its approximations ( ) by a Gaussian function and ( ) 
with the aid of direct calculation.
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Fig. 7). At large layer thicknesses, i.e., at smaller spectral 
widths, the lateral maxima become even less pronounced. For 
example, at H = 60 mm, they are transformed into a slowly 
decaying background. Undoubtedly, this is one of the main 
reasons for the absence of lateral maxima in the experimental 
spectra.

Another factor that may lead to the same effect is the 
decrease in the refractive index modulation depth near the 
holographic layer boundaries (i.e., apodization). For weak 
reflection (less than 10 %), the spectral shape can in principle 
be found using integral (2) with a corresponding change in 
expression (3). However, this approach is invalid in the case 
of strong reflection. Figure 9 shows the changes in the spec-

trum with a change in the apodization function, which were 
calculated using our program for a 20-mm-thick layer. An iso
sceles trapezoid was applied as an apodization function: the 
amplitude of the variable part of the permittivity of free 
space in both transition regions changed linearly from zero at 
the layer boundary to the maximum value (0.005). Figure 9 
shows the results for the transition-region sizes equal to zero 
(apodization is absent) and 1 – 10 mm (for a triangular apo-
dization function). It can be seen that an increase in the tran-
sition region width leads to spectral broadening, reduction of 
the intensity in the maximum, and suppression of the lateral 
maxima. For a triangular function, the amplitude of the first 
lateral maximum decreases by more than two orders of mag-
nitude.

Thus, the developed model makes it possible to solve the 
problem of wave propagation in a more complex medium. In 
practice, both above-described effects, related to the distor-
tion of the reflection band shape, will yield underestimated 
values of thickness if the hologram parameters are determined 
disregarding the broadening factors. This effect is less consid-
erable when the spectral width of reflected light significantly 
exceeds the instrumental function width. The broadening can 
be taken into account when processing the spectrum with the 
aid of deconvolution algorithms for the spectrometer instru-
mental function.
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Figure 8.  (a) Instrumental function of the spectrometer (   , spectral 
width 5.5 nm) and its approximation by a Gaussian function ( ́ , width 
5.0 nm), (b) the spectrum found using a computer model (  , H = 20 mm, 
Dn = 0.01) and a convolution of the spectrum and instrumental function 
( ), and (c) the same as in panel b but on an enlarged scale.
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Figure 9.  Reflection spectrum of a 20-mm-thick holographic layer (re-
fractive index modulation depth 0.01), found using a computer model 
of apodization of the variable part of the refractive index at a zero 
width of the transition region ( ) and for widths of ( ) 1, ( ) 2, (+) 5, 
and (´) 10 mm.
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10. Thus, we have proposed an algorithm for determining 
the parameters of a holographic nonabsorbing layer (its 
thickness and the amplitude of the variable part of its refrac-
tive index) from the parameters of the Bragg dip in the trans-
mission spectrum of this layer (the relative amplitude of the 
dip and its width). The results of applying this algorithm to 
some experimental spectra are presented.

A computer model has been used to analyse possible rea-
sons for the deviation of the spectral shape of the observed 
Bragg reflection and the dip in the transmission spectrum 
from the function sin x/x: finite width of the instrumental 
function and decrease in the amplitude of the variable part of 
the refractive index near the holographic layer boundaries.

The differences in the reflection spectra of a layer in a 
periodic medium, obtained by the coupled-wave analysis and 
direct calculation of the field propagation in this layer, are 
considered for weak reflection.

In the case of weak reflection, analytical expressions have 
been derived for the spectrum within the single-reflection 
approximation, and these expressions have been analysed 
with allowance for the generally rejected values, leading to a 
spectrum asymmetry with respect to the resonant wavelength.

Within the direct calculation, we have considered (using a 
computer model) the behaviour of the reflection spectra of a 
holographic layer in a wide range of its parameters and pro-
posed (based on the changes in the spectral shape of the 
reflection band in the layer spectrum) some criteria for clas-
sifying the reflection regimes from the layer.
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