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Abstract.  The model of a laser gyroscope (LG) with frequency 
dithering is described by a system of recurrent equations for the 
electric fields of counterpropagating waves. The phenomenon of 
frequency locking is taken into account in the form of the wave 
coupling through backward scattering; the frequency bias factor is 
the controlled phase nonreciprocity. The character of the output 
signal is considered, which corresponds to two types of frequency 
dithering, namely, sinusoidal and in the form of meander that are 
produced by various methods, including intracavity phase modula-
tion. Results of calculation of a frequency characteristic of the LG 
are presented as functions of frequency dithering, rotational veloc-
ity and LG parameters. It is shown that the method of processing 
an output signal by measuring the time interval between intensity 
oscillations has an advantage due to the absence of so-called 
dynamic lock-in zones in the output characteristic.
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1. Introduction

It is known that a He – Ne gyroscope is the only type of a laser 
gyroscope (LG) with practical applications. The main reason 
of failures in the development of other LG types is the fre-
quency lock-in (mutual synchronisation) of counterpropagat-
ing waves, which occurs due to backscattering of oncoming 
waves and is revealed in that the device does not react to small 
rotational velocities.

The frequency lock-in can be eliminated by the use of fre-
quency dithering that is implemented as a phase (frequency) 
nonreciprocity introduced into a ring resonator. It results in 
that the frequencies of the counterpropagating waves differ 
by a considerable value such that the lock-in fails. In gaseous 
LG engineering, in most cases the frequency dithering is 
formed by mechanical dithering or by magneto-optical 
devices based on Faraday, Zeeman or Kerr effects [1 – 3].

Until quite recently, in semiconductor LGs that have a 
substantially lower sensitivity, the frequency dithering has 
not been used, because the level of backscattering in this case 
is higher by several orders of magnitude; hence, the width of 
the lock-in zone is greater, and it is very difficult or impossible 
to provide a frequency bias in these conditions.

The situation has changed with the conclusion made in [4] 
from the model of the frequency lock-in: in a semiconductor 

LG in the case of a long ring resonator formed by an optical 
fibre, the lock-in zone width reduces. Thus, it becomes evident 
that the frequency dithering can be used and there is a simple 
method for implementing it – intracavity phase modulation by a 
sinusoidal signal applied to a piezoelectric actuator [5].

The resulting sensitivity of a semiconductor LG has 
increased by at least three orders of magnitude as compared 
to similar devices described previously [6 – 9]. Thus, the pos-
sibility and promising employment of frequency dithering in 
investigations aimed at designing semiconductor (solid-state) 
LGs has been revealed. Thus, the model [4] needs improve-
ment in order to be applicable to the case of frequency dither-
ing that is formed by intracavity modulation.

In solving this problem, it seems reasonable to expand the 
scope of applications of this model to other types of LGs and 
methods of obtaining a frequency bias. In contrast to the 
known model based on the analogy between the phenomena 
of the frequency lock-in and interaction of two coupled oscil-
lating circuits [10, 11], in the presented model the character 
and parameters of circulating radiation are determined by the 
factors which directly affect the counterpropagating waves. 
It  was supposed that some new features of LG generation 
regimes might be revealed, which favour a better understanding 
of the physics of operation of such a device.

Thus, in the model suggested, the lock-in phenomenon is 
taken into account in the form of the wave coupling through 
backscattering; frequency dithering is considered as a result 
of a controlled action on wave amplitudes and phases in some 
way; the model is written in the form of a system of recurrent 
equations (in two variants) for complex amplitudes of the 
electric fields of the waves.

The method of forming an alternating-sign frequency bias 
in the form of sinus and meander by intracavity phase modu-
lation is thoroughly discussed along with other methods (con-
cise) well known and applied in practice. The intended appli-
cation of the model is considered, namely, modelling of LG 
operation; it is shown that the character of beats at the output 
depends on the shape of frequency dithering, rotational veloc-
ity and LG parameters, including the length of the resonator, 
the level and random phases of the backscattering. The fre-
quency characteristic has been calculated, which relates the 
beating frequency to these factors.

In the last part of the work, two methods for processing 
the output signal are considered: the first conventionally 
used in the technique of He – Ne gyroscopes, which employs a 
reverse count of the number of oscillations in neighbouring 
half-cycles of the bias; and the second based on measuring 
the time intervals between these oscillations. The advantage 
of the second approach is shown, i.e. the absence of ‘dynamic 
lock-in zones’ in the form of small flats in the output charac-
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teristic which relates the measured rotational velocity to the 
real velocity. This indicates that the origin of flats is related to 
the method of processing the output signal.

2. Presuppositions

When counterpropagating waves run over a rotating closed 
optical loop (resonator) as a result of the Sagnac effect, the 
phase of one wave, let it be wave A, increases by a value dS, 
whereas the phase of the other wave, B, reduces by the same 
value. As a result, the phase difference of the waves, 2dS, arises, 
which, if we assume that this phase difference is regularly 
accumulated in the circulation process and the waves are pre-
sented by single-mode radiation, could lead to beats with the 
frequency

2
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t
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where t = Ln/c is the time needed for the wave to run over the 
resonator loop; L is the resonator length; W is the rotational 
velocity; M = 4S/(lLn) is the scaling coefficient; S is the 
area of the loop (if a fibre coil is used, S is determined by the 
product of the coil area by the number of turns of the fibre); 
l is the radiation wavelength; and n is the refractive index of 
resonator medium. It is also assumed that the plane of the coil 
is normal to the axis of rotation.

However, in a real LG at a low rotational velocity the fre-
quency is locked in, and hence there are no beats. Nevertheless, 
if the rotational velocity increases, beats arise and their fre-
quency nbeat coincides with the Sagnac beat frequency nS. At a 
higher rotational velocity and a lower level of backscattering, 
the coincidence is better.

The same character of LG emission is specific for model 
[4], where the backscattering is assumed concentrated at a 
single point inside a ring resonator. At this point, the counter-
propagating waves circulating in the ring resonator are 
described by the recurrent equations

Ap = Ap – 1exp( jdS) + aBp – 1exp( – jdS),	
(2)

Bp = Bp – 1exp(–jdS) + aAp – 1exp( jdS),

where Ap = ap exp( jfp) and Bp = bp exp( jjp) are the complex 
amplitudes of the electric fields of the waves; ap, bp and fp, jp 
are the moduli and phases of the waves, respectively; p is the 
circulation number counted from an arbitrarily chosen begin-
ning; and a is the backscattering coefficient with respect to 
intensity.

In order to make this model applicable to an LG with 
frequency dithering, the former should be correspondingly 
improved. It is also important to remove the limitation con-
cerning localisation of backscattering: now we will suppose 
that the backscattering is formed by a great number of scat-
tering centres that are randomly located.

We assume that each of the counterpropagating waves is 
still single-mode radiation, the polarisation of scattered light 
is linear and coincides with that of the counterpropagating 
waves, the phase fluctuations arising due to spontaneous 
emission in the gain medium and the nonlinear effects in the 
ring resonator and active medium are neglected; finally, we 
do not take into account the concurrent wave competition 
assuming the two-wave generation regime to be stable. The 
latter assumption requires explanation.

It is known that in the case of a gaseous LG the competi-
tion of counterpropagating waves is excluded due to inhomo-
geneous broadening of the gain related to the Doppler mecha-
nism of broadening and employment of a frequency bias. The 
possibility of stable bidirectional operation of a ring laser 
with homogeneously broadened gain (such a regime is realised 
at a sufficiently strong coupling between the counterpropa-
gating waves through backscattering) was mentioned in [12]. 
This also follows from results of modelling by the considered 
model and from experiments: a stable bidirectional regime of 
generation was observed in [4 – 7, 9] devoted to the study 
of semiconductor LGs, in which, as mentioned, the level of 
backscattering is substantial. Finally, if in an LG of particular 
type the competition of counterpropagating waves is possible, 
there exist methods for suppressing it [8].

3. Model equations (first variant)

To take into account the phase (frequency) nonreciprocity of 
counterpropagating waves produced externally in some way, 
we substitute phases ±dS in (2) for the phases

DA = dS + FA(t),  DB = –dS + FB(t),	 (3)

where FA(t) and FB(t) are the phases related to the external 
action.

In a ring resonator, we choose point Q where a device is 
placed for extracting part of the power of counterpropagating 
waves. From this point we will count the coordinates of scat-
tering centres xi in the propagation direction of the wave, 
namely, B. Backscattered waves arising in scattering on each 
ith centre can be written in the form Ai

back = hi
AAp – 1 and 

Bi
back = hi

BBp – 1, where hi
A,B = gi exp( j ci

A,B) is a complex coef-
ficient of backscattering. The backscattering is assumed iso-
tropic; hence, the moduli of these coefficients for opposite 
propagation directions are equal, that is, gi

A = gi
B, and the 

imaginary parts are random values.
Then, at point Q the waves can be presented in the form

A ,
back
i p  = gi Ap – 1 exp[ j(dS – 2kxi + ci

A) + FA(t)] ,	
(4)

B ,
back
i p  = gi Bp – 1 exp[ j(–dS + 2kxi + ci

B) + FB(t)] ,

where the phases ±2kxi arise due to different distances of scat-
tering centres from point Q; and k = 2pn/l is the wave number.

Finally, taking into account that the number of scattering 
centres is large and they are located chaotically in the ring 
resonator, the two backscattered waves that are sums of all 
backscattered waves in (4) from all scattering centres can be 
presented as follows:

A back
p 1 a=- Ap – 1 exp[ j(DA + 

~
qA)] ,	

(5)
B back
p 1 a=- Bp – 1 exp[ j(DB + 

~
qB)] ,

where a = Sgi
2 is the intensity of backscattered waves; and 

~
qA and  

~
qB are the random phases.

Thus, Eqns (2), which take into account the wave non-
reciprocity and integral and random character of backscatter-
ing, take the form

Ap = Ap – 1 exp( jDA) + aBp – 1 exp[ j(DB + 
~
qB)] ,	

(6)
Bp = Bp – 1 exp( jDB) + aAp – 1 exp[ j(DA + 

~
qA)] .
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Equations (6) give a mathematical presentation of the 
model of the considered LG with frequency dithering. One 
should pay attention to the constraint on the sum of intensi-
ties of counterpropagating waves that is actually realised in 
an amplifying medium,

|Ap|2 + |Bp|2 = const,	 (7)

and to initial values of the complex amplitudes of counter-
propagating waves.

From the calculations described below one can see that, 
depending on the rotational velocity, intensities and random 
phases of backscattering, resonator length and other param-
eters, either the beating or the lock-in regime is realised. In 
this case, the first summands in the right parts of (6) describe 
the accumulation of the phases of counterpropagating waves 
due to the frequency bias and to the Sagnac effect, which 
finally results in beats. The second summands are responsible 
for the mechanism of the frequency lock-in, which hinders 
phase accumulation and beats.

4. Intracavity phase modulation and the second 
variant of model equations

Consider the method of forming the frequency dithering by 
intracavity phase modulation and show in which way Eqns (6) 
can be presented in another form that can better reveal the 
role of frequency dithering in LG operation and will be used 
in calculations of the bias.

It is assumed that a phase modulator is placed at a random 
point of a ring resonator, the signal controlling the modulator 
is harmonic, and the modulator similarly affects the phases 
of  counterpropagating waves, so that in passing across the 
modulator the waves acquire the same increment F (t) = 
F0 sin(2pnmt + c0), where F0, nm, and c0 are the amplitude, 
frequency and phase of modulation, respectively.

However, at every point Q of the ring resonator except for 
one point (in which the times tA and tB needed for the waves 
A and B to cover a distance from the phase modulator to 
point Q are equal) the phases of the waves after each succes-
sive circulation are different: FA(t) = F (t – tA) and FB(t) = 
F (t – tB), the sign of the phase difference DF (t) = FA(t) – FB(t) 
being unchanged on time intervals equal to half the cycle of 
phase modulation.

From this follows that, similarly to the case where con-
stant and small in value Sagnac phases ±dS lead to beats, 
the relatively slow varying and slightly different modulation 
phases FA(t) and FB (t) also produce beats. This is confirmed 
by calculations according to (6).

From the calculation it also follows that the result will be 
the same, if each of the phases FA(t) and FB (t) changes; how-
ever, their difference DF (t) is maintained constant. Then the 
phases FA(t) and FB (t) in (3) can be substituted for the phases 
F'A(t) = DF (t)/2 and F'B(t) = –DF (t)/2 and after introducing 
the frequency

( )
2
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2
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t t t

d
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F F F
= =

- 	 (8)

we can rewrite (3) as follows

DA = ptnS + ptnd(t),  DB = –ptnS + ptnd(t);	 (9)

note, that according to (8) the frequency nd(t) is determined 
by the phase difference DF(t) in the same way as the beat fre-
quency nS is determined by the difference of the Sagnac phases 
2dS according to (1).

Now, by substituting (9) into (6) we obtain another repre-
sentation of the model equations:

Ap = Ap – 1 exp[ jptn(t)] + aBp – 1 exp[–jptn(t) + 
~
qB] ,	

(10)
Bp = Bp – 1 exp[– jptn(t)] + aAp – 1 exp[–jptn(t) + 

~
qA] ,

where n(t) = nS + nd(t), from which follows that the term nd(t) 
has a sense of frequency dithering.

5. Variants of alternating-sign frequency bias

From the form of Eqns (10) it follows that the dynamics 
of  the complex amplitudes of counterpropagating waves is 
determined by the parameters and character of the frequency 
dithering nd(t) and is independent of the method of its forma-
tion. Another consequence is that in the frameworks of the 
model considered, the Sagnac frequency nS and the dithering 
frequency nd(t) are equivalent. Thus, similarly to the fact that 
beats only arise at a high rotational velocity, in the case of the 
frequency dithering the beats may occur only at sufficiently 
high values of the bias.

In the case of phase modulation by a harmonic signal F(t) 
= F0sin(2pnmt – c0), the frequency dithering, according to (8), 
looks also as a harmonic function:

( ) [2 ( /2) ],cost td m m0 0
T pn n t

t n t cF=- - + 	 (11)

where Dt = tA – tB, and Dt/t may be termed the geometrical 
factor that takes the maximal value of unity when point Q is 
located near the phase modulator.

Seemingly, the same mechanism is realised when the mod-
ulating signal has the form of an isosceles triangle, i.e., the phase 
difference DF(t) of counterpropagating waves FA(t) and FB(t) at 
any point (except for the single point where tA = tB) periodically 
varies; it should be sufficient to initiate beats. For the modu-
lation signal in the form F(t) = (2F0/p)arcsin[sin(2pnmt) + c0] 
the dithering frequency nd(t) has the form of meander, that is, 
periodically changing the sign it remains unchanged in the 
absolute value:

( ) .t 2
d

m0T
pn t

t nF
=

In He – Ne gyroscopes a sinusoidal bias is formed by tor-
sional vibrations of the resonator (torsion suspension), and 
for producing dithering in the form of meander one can use 
the reverse rotation at a constant rotational velocity. The 
phase nonreciprocity in both the cases is a result of the Sagnac 
effect.

Based on the Faraday, Zeeman and Kerr magneto-optical 
effects, due to their low persistence, one can realise the fre-
quency dithering of both types – in the form of sinus and 
meander [3]. Also, an obvious method of producing the fre-
quency dithering is unidirectional rotation at a constant rota-
tional velocity, which produces the dithering having a constant 
frequency nd = const. This method is used in practice [13], but 
quite rarely because of the difficulties of providing a highly 
stable rotational velocity of the LG.



	 V.K. Sakharov570

6. Character of beats at the LG output

In modelling LG operation, the main attention was paid to 
investigation of the character of beats and the dynamics of the 
phases of counterpropagating waves, because these factors 
determine the properties of the LG as a sensor of rotation. 
However, the modelling gives also a chance to study the 
dynamics of counterpropagating waves and to get convinced 
that one of the simplifying conditions formulated at the 
beginning of the work and concerning the wave competition 
is satisfied.

At a comparatively strong backscattering, the amplitudes 
of counterpropagating waves ap and bp that initially differ, 
rather quickly become equal and then do not change. Only in 
the case of the weakest (above 100 dB) backscattering, the 
effect of amplitude equalising vanishes. This result confirms 
the possibility of stable operation of a semiconductor LG in 
which the level of backscattering is below 50 dB; the case of 
weak backscattering refers to a He – Ne gyroscope where the 
inhomogeneously broadened gain and the frequency dither-
ing remove the problem of wave competition.

As expected, at a finite level of backscattering in the case 
without frequency dithering, and at low rotational velocity, 
beats are absent and the lock-in regime is implemented. 
However, beats arise if there is frequency dithering or the 
rotational velocity is high. By considering beats as oscillations 
of the intensities of beat waves Ibeat(p) we will calculate them 
by using a conventional expression for the output signal of an 
interferometer:

Ibeat(p) = 0.5 [1 + cos(Dyp)] ,	 (12)

where Dyp = fp – jp is the phase difference of counterpropa-
gating waves and, instead of the number of circulations p, 
one can use time t because these variables are related by the 
formula t = pt.

Without rotation, that is, at dS = 0, the numbers of inten-
sity oscillations in the time intervals corresponding to neigh-
bouring half-cycles of the frequency dithering are always 
equal. If dS ¹ 0, that is, the ring laser rotates, the number and 
the frequencies of oscillations in neighbouring half-cycles of 
the dithering are different. At a positive value of the phase dS, 
the number and frequency of oscillations are greater in the 
half-cycle with the positive sign of the frequency dithering 
nd(t), than with negative. At the negative sign of the phase dS, 
that is, at the opposite direction of rotation, the number of 
oscillations is greater in the half-cycle with the negative sign 
of the dithering. 

An example of beats in cases of the two variants of an 
alternating-sign frequency dithering, namely, sinusoidal and 
meander, is shown in Fig. 1. With the intracavity phase mod-
ulation, such dithering, as was shown in the previous section, 
is produced by phase modulating signals having the form of a 
sinusoid and meander. The following parameters of a semi-
conductor LG were used in the calculation: R = 5 cm, l = 
1.55 mm, L = 600 m, a = 40 dB, Dt/t = 1, nm = 1.2 kHz and F0 
= 25 rad. The phase dS = 0.034 rad (W = 0.5 deg s–1) was inten-
tionally taken large in order to visually demonstrate the differ-
ent character of oscillations in a motionless and rotating ring 
laser.

One can see that in the case of a meander bias, oscillations 
are located regularly in both half-cycles of the dithering, and 
their frequencies within each of the half-cycles are the same – 
in our example 13.6 and 24.5 kHz. With a sinusoidal bias, the 

beat frequency in the central part of half-cycles is approxi-
mately 23 and 34 kHz; however, towards the end of a half-cycle 
the frequency noticeably falls. Moreover, at the boundaries 
between the half-cycles, beats are absent and, obviously, the 
frequency lock-in dominates.

The same character of the output signal (equal and 
unequal numbers of oscillations in neighbouring half-cycles 
at rest and under rotation) is observed in modelling the opera-
tion of a He – Ne gyroscope. Naturally, in this case, other 
values of the resonator length and backscattering coefficient 
are specified, R = 20 – 50 cm and a = 80 – 120 dB, and other 
methods of simulating the dithering are employed, namely, by 
using a torsion suspension or a reverse rotation.

7. Frequency characteristic

A frequency characteristic relates the beat frequency of out-
put waves nbeat to a rotational velocity of the ring laser, LG 
parameters and the frequency dithering. A compact presenta-
tion of a frequency characteristic in the form of the func-
tion nbeat = F(n, a, L,  

~
qA,  

~
qB) is calculated from (10), where the 

time-dependent frequency n(t) is substituted for a constant 
frequency n, which can take arbitrary values and be the Sagnac 
frequency nS, the frequency nd (the dithering with a constant fre-
quency nd = const=const), or the sum of these two frequencies.

A calculation of the frequency characteristics nbeat = 
F(n, a, L,  

~
qA,  

~
qB)   includes specifying a series of values {ni}, 

which cover a wide range of frequencies, calculation of the 
corresponding phase differences for two waves {Dyi

p} under 
the assumption of a sufficiently large value of p, and, finally, 
finding the frequency values ni

beat from the relationship

ni
beat = DY i

p /(2ppt).	 (13)

Since the frequency characteristic is an odd function of fre-
quency n, the result of calculation, obtained as several frequency 
characteristics differing in some parameters, is presented graphi-
cally only for positive values of frequency n (Fig. 2).

In Fig. 2, three groups of frequency characteristics for a 
semiconductor LG with a finite coefficient of backscattering 
are presented, and one characteristic, which corresponds to 
absolutely absent backscattering (the case of an ideal LG). 
For all characteristics R = 5 cm and l = 1.55 mm, each group 
comprises the characteristics for a fixed resonator length (3 or 
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Figure 1.  Phase modulation signals of sinusoidal and triangular shapes 
(nm = 1.2 kHz, F0 = 25 rad) and beats at output of a semiconductor LG 
under the rotation at the velocity of W = 0.5 deg s–1.
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600 m) and for three values of the backscattering coefficient a 
(40, 45, and 50 dB).

One can see that the beat frequency nbeat in a low-fre-
quency range for all characteristics except for the one, related 
to the ideal LG, takes a zero value, which points to the fre-
quency lock-in in that range. It is a fundamental property: the 
frequency lock-in occurs in an LG even at a minimal back-
scattering level. The greater the backscattering, the wider the 
lock-in zone.

It is also seen that the width of the lock-in zone nlock also 
called the static lock-in zone depends on the length of the ring 
resonator. Thus, for a group of characteristics calculated at 
L = 3 m (it is an approximate length of ring resonators in 
semiconductor LGs in [6 – 8]), the width of the lock-in zones is 
250 – 350 kHz, and at L = 600 m (the central group of charac-
teristics) it is from 0.3 to 1.1 kHz. Recall that this important 
feature in the case of a long fibre in a semiconductor LG 
allows one to reduce the width of the lock-in zone and employ 
frequency dithering.

This effect is explained by that the level of backscattering 
in a semiconductor material is much higher than in a fibre. 
Hence, extension of the resonator length L does not result in 
an increase in a, which is determined by a sum of backscat-
tered waves from all scattering centres in a circular optical 
tract. As a result, the effect of the frequency lock-in after each 
successive circulation remains unchanged; however, at increasing 
L, the number of circulations in a finite time interval reduces. 
In this way, the total result of the frequency lock-in reduces.

Frequency characteristics in Fig. 2 also show that as the 
frequency n increases, the beat frequency nbeat, after leaving 
the lock-in zone, rapidly rises and approaches a linear part of 
the characteristic. Thus, if the frequency n is so high that the 
beat frequency nbeat is 3 – 5 times greater than the width of the 
lock-in zone nlock, the LG reliably emerges from the lock-in 
regime. Moreover, in this case the beat frequency the most 
of time or all the time (the dithering in the form of sinus or 
meander, respectively) remains within the linear part of the 
frequency characteristic; hence, the beat frequency in these 
periods is determined by the expression

nbeat ~= n.	 (14)

Finally, let us consider the dependence of frequency char-
acteristics on random phases  

~
qA and 

~
qB. As was found, on the 

great part of the range of values of random phases, for example, 
in a square with a side width multiple of 2p, the width of 
lock-in zones nlock negligibly differs from the average value 
–nlock obtained by averaging nlock over the whole range. In this 
case, the widths of the lock-in zones at the phases satisfying 
the condition 

~
qA =  

~
qB = 0.65 rad coincide with the value  

–nlock; 
this is why the most of frequency characteristics given in 
Fig. 2 have been calculated at these values of random phases.

The maximal width of the lock-in zone is above –nlock by at 
most 40 %, and the minimal width may be substantially less. 
In Fig. 2, one can see that for the left group of frequency char-
acteristics at the resonator length of 600 m and  

~
qA +  

~
qB = ±2p, 

the width of the lock-in zones is 3 – 11 Hz. However, extreme 
values only occur in small ranges of random phases, and the 
reason of the sharp fall of zone widths is a large value of 
phases 

~
qA and 

~
qB, which substantially exceeds the phases DA 

and DB in (6); this results in a more rapid growth of the phase 
difference for counterpropagating waves Dyp.

Such a dependence of frequency characteristics on random 
phases is observed, as was verified, for He – Ne gyroscopes 
as well.

8. Output signal processing by counting 
the number of oscillations

As known, a measurement of the angular rotational velocity or 
Sagnac frequency nS (1) by He – Ne gyroscopes is performed 
by converting intensity oscillations to a series of pulses which 
are then calculated and separately summed in even and odd 
half-cycles of the bias. The sought frequency nS (denote it nS

out) 
is calculated from the relationship nS

out = DN/T, where DN is 
the difference between the numbers of pulses in two half-
cycles accumulated in a time interval T >> 1/nm.

In this case, the flats mentioned above arise on the out-
put characteristic that gives a dependence of experimentally 
measured values of the angular rotational velocity Wout or 
frequency nS

out on real values. This is especially noticeable if 
torsion suspension is used; in the case of meander, this effect 
is less pronounced.

With the model considered, the output characteristics in 
both the cases are easily calculated. In the calculations, first 
the angular rotational velocity W or frequency nS is specified, 
then from (6) an array of phase differences {Dyp} is deter-
mined for two waves; a value of p is chosen corresponding 
to an integer number of frequency dithering periods K, that 
is, p = K/(tnm); the frequency nS

out is found (by the formula 
nS
out = Dyp/(2ppt)) and the angular rotational velocity Wout. 
In the course of calculations, the prescribed values W or nS are 
varied and in this way the output characteristic nS

out = Fcounts(nS) 
or Wout = F’counts(W) is obtained.

In Fig. 3, the characteristic nS
out = Fcounts(nS) obtained for a 

He – Ne gyroscope with a square resonator and the perimeter 
of 50 cm is presented. The method of torsion suspension was 
simulated with the bias amplitude of 32 kHz at the modula-
tion (vibration) frequency of nm = 1.2 kHz; Also, the coeffi-
cient a = 100 dB and random phases 

~
qA = 

~
qB = 0.65 rad have 

been specified. One can see that the flats are located at the 
frequencies multiple of the frequency nm. The calculation yields 
that the width is greater at a higher backscattering coefficient; 
in addition, it depends on the modulation amplitude and fre-
quency. In simulating the reverse rotation, flats also arise on 
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Figure 2.  Frequency characteristics of a semiconductor LG nbeat = 
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the output characteristic, however, with a substantially smaller 
width.

The same behaviour of the output characteristics (with 
flats and the dependence on the type of bias) follows from a 
calculation of the output characteristic for a semiconductor 
LG with the dithering produced by intracavity phase modu-
lation.

The reason of arising flats is, obviously, the frequency 
lock-in that occurs in short time intervals when the bias changes 
the sign. To eliminate flats one has to employ additional noise 
realised by mixing a small pseudo-random signal to the fre-
quency dithering [14]. The measurement accuracy in this case 
increases, but due to the employment of the signal filtering 
that is necessary in this case, the duration of measurements 
becomes longer.

9. Output signal processing by measuring time 
between oscillations

The method of processing the output signal considered in this 
section eliminates origin of flats on the output characteristic. 
The approach was used in [5] for real-time processing of the 
output signal, and its functionality has been approved. How
ever, the method needs a more thorough investigation with 
the numerical simulation of the corresponding algorithm of 
signal processing.

The method is based on the linear character of the fre-
quency characteristic nbeat = F(n, a, L,  

~
qA,  

~
qB) which follows 

from (14) at a sufficiently high beat frequency; thus, the beat 
frequency can be presented in the form:

nbeat(t) ~= nS + nd(t).	 (15)

Let us isolate in two neighbouring half-cycles of an alter-
nating-sign frequency bias the pairs of oscillations separated 
by equal numbers q of the half-cycles and denote the maximal 
intensities Ibeat(p) on time scale in the pairs by t1+, t2+ and t1–, 
t2–. The phase difference for two waves, which corresponds to 
each pair of times, in one half-cycle will be 2pq and in the other 
half-cycle it will be –2pq, which can be written as follows

t2 [ ( )] 2 .dt qS d
t

t

1

2
!p pn n+ =

!

!

y 	 (16)

By combining two expressions (16) we obtain

tt
( ) ( ) ,d d

t t
t t t t1

S d d
t t1

2

1

2

T T
n n n=

+
++ - +

+

-

-

c my y 	 (17)

where Dt+ = t2+ – t1+.
In the case of the dithering in the form of meander, expres-

sion (17) is simplified

| |.
t t
t t

S d
T T
T Tn n=

+
-

+ -

+ -

	 (18)

From (17) and (18) follows that, if the parameters of the 
frequency dithering are known, from detected beats Ibeat(t) 
one can find the frequency nS and, correspondingly, the rota-
tional velocity W.

The method of processing beats under consideration was 
verified in two stages: at the first stage, the frequency nS 
was chosen, and LG operation was modelled in order to cal-
culate the output signal; at the second stage, by modelling the 
algorithm described above, actually an inverse problem was 
solved, i.e., calculation of the frequency nS

out. In beat process-
ing, operations that simulate the digital-to-analogue conver-
sion of the output signal Ibeat(p) and formation of the corre-
sponding sampling array have been employed. The sampling 
array was used for determining the times t1+, t2+ and t1–, t2–. A 
‘noise’ signal in the form of chaotic pulses can be added to 
beats, in which case averaging procedures were used at vari-
ous stages. Variation of the frequency nS in the calculations 
yielded the output characteristic nS

out = Ftime(nS).
An example of the output characteristic nS

out = Ftime(nS) 
calculated for a He – Ne gyroscope with torsion suspension 
and the parameters used in the previous sections is presented 
in Fig. 3. As one can see there are no flats and the character-
istic looks like a straight line, which indicates that the speci-
fied and calculated frequencies coincide (within the error of 
at most 0.5 %) nS

out ~= nS over the whole range 0 – 2500 Hz. The 
dependence on the level of backscattering was noticeable only 
at a considerable backscattering for a < 20 dB. A similar cal-
culation for a semiconductor LG with phase modulation 
yields nS

out = Ftime(nS), which is also a straight line.
Thus, the modelling shows that the origin of flats is related 

to the method used for processing the output signal. The 
question whether this method is appropriate in the case of a 
He – Ne gyroscope requires a particular study.

10. Conclusions

The model of an LG with frequency dithering is suggested, 
which is described by a system of recurrent equations for the 
electric field of counterpropagating waves and is an alterna-
tive to the known model based on the analogy between the 
phenomena of the frequency lock-in and interaction of two 
coupled oscillating circuits.

In the frameworks of this model, the alternate-sign fre-
quency bias is considered, which is produced in various ways, 
including intracavity phase modulation. It is shown, that the 
character of the output signal corresponds to two main types 
of dithering, i.e., sinusoidal and in the form of meander. The 
model is used for calculating the frequency characteristic as a 
function of the dithering frequency, the rotational velocity of 
a ring resonator and the LG parameters, which include the 
length of  the ring resonator, the coefficients and random 
phases of backscattering.

In addition, two methods of output signal processing 
are considered and compared: by calculating the number of 
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Figure 3.  Output characteristics nSout = Fcounts(nS) and nSout = Ftime(nS) of 
the He – Ne gyroscope with vibration-reducing suspension.
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intensity oscillations in neighbouring half-cycles of the fre-
quency dithering and by measuring the time intervals between 
these oscillations. The demonstrated advantage of the second 
method is that there are no dynamic lock-in zones on the 
output characteristic, which are inherent in the first method 
and complicate its employment.
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