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Abstract.  The Anisimov – Luk’yanchuk model is adapted for 
describing the condensation of vapour-plasma plumes produced in 
the irradiation of metal targets by high-intensity (108 – 1010 W cm–2) 
nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resul-
tant data suggest that the initial stages of the development of metal 
ablation plumes correspond with a high degree of accuracy to the 
Zel’dovich – Raizer theory of dynamic condensation; however, at 
the stage of the ablation plume decay, the liquid-droplet phase is 
formed primarily by coalescence of ‘nuclei’. 

Keywords: laser ablation, nanosecond laser pulse, Zel’dovich – Raizer 
theory, dynamic condensation, metal nanoparticles.

1. Introduction

The processes that take place in the laser erosion of metals 
have attracted the attention of researchers since the advent of 
lasers in the 60s of the past century [1 – 5]. The fundamental 
difficulty of describing the behaviour of a laser ablation 
plume arises from the strong nonuniformity and nonstation-
arity of this object, which are caused by the complex nature of 
the interaction of high-power laser radiation with a metal lat-
tice. The physical picture of the laser erosion of metals is addi-
tionally complicated by the interaction of the plume with its 
generating radiation and by the possible effect of the ambient 
gases [1]. 

For sufficiently long laser pulses (longer than 1 ms), the 
general physical picture of radiation interaction with metal 
targets has been rather well described theoretically [1 – 4] and 
verified experimentally [5 – 7] both for vacuum and for a 
broad range of pressure of extraneous gases. In this case, ero-
sion processes are described by the ‘thermal’ model or the 
quasi-stationary ablation model, whereby relatively slow 
solid – liquid – vapour phase transitions take place in a metal 
under laser irradiation [1]. As this takes place, as a result of 
evaporation of the metal and gas-dynamic effects, ejection of 
target material (ablation) may occur in its vapour. 

Shortening the duration of laser pulses to tens of or sev-
eral nanoseconds for their relatively high intensity (108 – 
1010 W cm–2) results in an interesting physical effect [8], when 
the rise time of a laser pulse approaches the characteristic 
electron – ion energy relaxation time in the metal lattice. To 

state it in different terms, the rate of excitation energy input 
into the system, which consists of electron gas and lattice sub-
systems, becomes comparable with the highest rate of heat 
exchange between these subsystems. Therefore, the energy of 
laser radiation absorbed by conduction electrons does not 
have time to propagate into the target depth due to thermal 
conduction – the principal mechanism of energy transfer in 
the ‘thermal’ model. As a result, in the laser irradiation zone 
in the near-surface target region there forms a transition mac-
roscopic layer, which possesses a substantial amount of excess 
energy (this is, in essence, a dense metal plasma) [1]. Owing to 
the detonation of the macrolayer, there occurs ejection of the 
target material (as in the previous case), this time due to dif-
ferent processes, which leads to qualitatively different physi-
cal effects. To describe these processes, use can be made of the 
‘hydrodynamic’ model, or explosive ablation. 

The main practical difficulty in using this model is deter-
mining the dynamics of the absorption coefficient for the inci-
dent laser radiation in dense metal plasma, with the conse-
quence that the resultant plume may acquire additional 
energy. A consistent theory that models these effects has not 
been elaborated to date [9]. Nevertheless, S.I. Anisimov and 
B.S. Luk’yanchuk came up with a rather holistic model for 
describing the processes occurring in suchlike plumes upon 
completion of their formation (i.e. after termination of their 
interaction with the laser radiation). The model of Refs [9 – 12] 
relies on the assumption of the adiabatic expansion (in vac-
uum) of an axially or spherically symmetric vapour plasma 
cloud with parabolic or rectangular initial temperature and 
density profiles with the inclusion of dynamic condensation 
according to Zel’dovich – Raizer theory [13]. A comparison of 
the simulation data for Si, Ge and C plumes (with the initial 
conditions corresponding to the laser ablation of these mate-
rial by high-intensity nanosecond pulses) with the experimen-
tal data of Ref. [14] revealed a good agreement between them 
even without adjustable parameters. 

In this connection, a point of considerable practical inter-
est is to adapt the Anisimov – Luk’yanchuk model to the case 
of laser erosion of metals by nanosecond pulses at atmo-
spheric pressure. The presence of extraneous gases has a sig-
nificant effect on the evolution and decay of such plumes; as 
a result, however, there also occurs condensation of the 
vapour plasma cloud and the formation of the nanodimen-
sional dust phase of the target material [15 – 18]. Our present 
work is concerned with the development of a mathematical 
model for describing the expansion and condensation of laser 
ablation plumes of metals (produced under irradiation by 
high-intensity nanosecond pulses) at atmospheric pressure. In 
doing this we proceed from the analysis of existing experi-
mental data and adapt the Anisimov – Luk’yanchuk model. 
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2. Vapour plasma cloud expansion

As discussed in the foregoing, from the practical standpoint it 
is expedient to begin the simulation of the ablation plume 
development from the point the plume ceases to interact with 
the incident laser radiation; this point in time corresponds to 
the beginning of free plume propagation without extraneous 
energy inflow. Experimentally, this instant corresponds to the 
attainment of the peak of a spectrum-integrated plume glow 
intensity at the peak of its heating by the radiation; as a rule, 
this instant occurs when the intensity of the irradiation laser 
pulse begins to decline [19]. For every specific metal the inter-
val between the onset of laser irradiation and the instant of 
maximum plume temperature may somewhat vary, depend-
ing on the duration and intensity of the laser pulse. For 
instance, when a 20-ns-long pulse with an intensity of 108 – 
109 W cm–2 irradiates metals (Zn, Ni, Pb, Cu, Ag, Au), this 
interval is equal to 20 – 30 ns [18]. In this case, the spatial 
plume dimension may be determined by probing the plume at 
different heights above the target surface [20]. 

By way of illustration of the proposed approach, to verify 
the model in the present work we use experimental data on 
the laser erosion of lead by high-intensity nanosecond pulses 
at atmospheric pressure, which were obtained by the author 
and published in Refs [17 – 19]. 

In the Anisimov – Luk’yanchuk model, the following 
spherically symmetric model is proposed to describe the 
expansion of an ablation plume in vacuum [11, 9]: 
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where Y(t) is the dimensionless function which characterises 
the propagation dimension of the leading front of the spheri-
cal cloud; R(t) is the radius of the spherical cloud; R0 is the 
initial plume radius; u0 is the initial velocity of plume propa-
gation; E is the initial internal energy of the plume; and M is 
the mass of the plume vapour. 

By analysing the available experimental data [17 – 19] it is 
possible to determine the initial parameters of the erosion 
plume required for this model. When a 20-ns-long pulse with 
an intensity of 109 W cm–2 and a total pulse energy of 200 mJ 
irradiates a lead target, the initial radius of the hemispherical 
cloud which corresponds to the instant of highest temperature 
is R0 ≈ 0.5 mm, the initial velocity of the leading plume edge is 
u0 = 10 km s–1, and the average mass of the target material 
removed per pulse is М = 10–8 kg. To estimate the initial 
internal energy of the vapour (E = 2 mJ), use was made of the 
data on the characteristic ablative loading of metals (the 
fraction of irradiation energy that goes into the kinetic plume 
energy) [21]. 

Curve ( 1 ) in Fig. 1a corresponds to the substitution of the 
initial parameters in formula (1). The experimental points 
were plotted using the data of Ref. [17]. One can see that the 
Anisimov – Luk’yanchuk approximation strongly overrates 
the plume dimensions in comparison with the experimental 
data (this comes as no surprise, considering that the model is 
intended to describe the plume expansion in vacuum). A far 
better result is provided by the spherically symmetric 
Taylor – Sedov model [22], which is employed to describe the 
front propagation for an explosion shock wave in buffer gases 
[Fig. 1, curve ( 2 )]. This model exhibits a good agreement with 
the experimental points even without introducing adjustment 
coefficients (for the sake of pictorial clarity, the consistency of 

experiment to the Taylor – Sedov model is shown both on a 
logarithmic scale, Fig. 1a, and on a linear scale, Fig. 1b): 
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rg is the buffer gas density (rg = 0.029 kg m–3 for the air); and 
gg is the adiabatic exponent of the buffer gas (for gg = 7/5, 
x0 = 1.014). In this case, the expansion of the plume will be 
self-similar [13] up to the point it reaches the radius r0 = 
(E/pg)1/3 ~ 3 mm, where pg is the buffer gas pressure. 

In the simulation of the temperature and density distribu-
tions of the gas inside the plume in the case of its adiabatic 
expansion in vacuum, Anisimov and Luk’yanchuk [9] and 
Arnold et al. [23] proposed the use of parabolic profiles with 
the parabola of degree two in order to match the parameters 
inside the plume to external parameters, and Kuwata et al. 
[12] adduced an example of employing rectangular profiles 
(i.e. the parameters are uniform over the plume). However, 
neither the former model nor the latter one provide adequate 
approximations in the case of a sufficiently dense external 
environment. The rectangular profile is a fortiori nonphysical 
owing to the infinitely abrupt transition from internal plume 
parameters to external ones, while a quadratic parabola pro-
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Figure 1.  Dynamics of the leading edge boundary for a lead plume.
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vides too slow a decrease of the initial conditions (the dimen-
sion of the transition zone is much overestimated). That is 
why in the present work the relations from Ref. [9] that model 
the distributions of the gas temperature Tp (along the Poisson 
adiabat) and density inside the plume are adapted to the case 
when atmospheric gases are present by increasing the parab-
ola degree to eight, which furnishes a more realistic size of the 
transition zone from internal parameters to external ones. 
Also added were the terms which provided correct boundary 
conditions (the temperature and density of the atmospheric 
gases at the external boundary of the plume): 

( , ) ( ) ( )T r t T t T1 gP 0
18x xY= - +- ,	 (4)

( , ) ( ) ( )r t t1 / /
g

8 3 2 3 2
0r r x r xY= - +- ,	 (5)

where x = r/R(t) is the dimensionless Lagrangian coordinate 
(inside the plume 0 G x G1); T0 and r0 are the initial vapour 
temperature and density at the plume centre; and Tg ≈ 300 K 
is the buffer gas temperature. 

The value of parameter T0 may be determined by analys-
ing the spectral structure of the glow of the peripheral region 
of the lead plume (under the indicated conditions) given in 
Ref.  [19]. The maximum of the continuous spectrum of the 

outer plume boundary glow at the moment the temperature is 
highest falls on a wavelength of 450 nm. From the Wien dis-
placement law the temperature at the outer plume boundary 
is estimated at 6400 K, which in turn corresponds to T0 ≈ 
15000 K. Knowing the mass and the radial vapour density 
distribution in the plume as well as the initial hemisphere 
radius R0, it is easy to estimate also the initial vapour density 
at the plume centre: r0 = 33M/(20pR0

3) ≈ 40 kg m–3. The three-
dimensional surfaces corresponding to the proposed spatio-
temporal temperature distributions along the Poisson adiabat 
and the lead plume density are plotted in Fig. 2. 

3. Condensation of ablation plume

In the adiabatic vapour expansion, condensation must neces-
sarily set in at some point in time, according to Zel’dovich –  
Raizer theory [13]. This instant may be determined from the 
following considerations: in the phase state diagram, the 
vapour expansion proceeds along the Poisson adiabat until 
the instant of saturation (the intersection of the Poisson adia-
bat with the saturation adiabat defined by the Clausius – 
Clapeyron equation). Next, as the plume vapour continues to 
follow the Poisson adiabat, it becomes supersaturated (super-
cooled), and conditions are formed in it for the emergence of 
nucleation centres of the future droplets. The rate of conden-
sation centre production depends exponentially on the degree 
of vapour supersaturation, which is defined by the supercool-
ing parameter q = (Teq – T )/Teq, where Teq is the temperature 
of thermodynamic equilibrium for the given vapour volume 
and pressure (the temperature along the vapour binodal). A 
sharp growth of q is attended with a mass production of con-
densation centres (‘injection’ of nucleation centres), which 
begin to grow in size due to the adherence of vapour mole-
cules. Due to the release of the latent condensation energy, 
the rapid droplet production in the vapour terminates the 
growth of the supercooling parameter and causes it to 
decrease. In this case, the nucleation centre production, which 
is highly sensitive to the degree of supersaturation, terminates 
and subsequently there occurs only the enlargement of the 
droplets produced. Because of the continuing rapid plume 
expansion, observed at this stage is a gradual decrease in the 
number of the events of adherence of vapour molecules to the 
nuclei and subsequently its complete termination. In this case, 
the degree x of vapour condensation (the ratio between 
the number of vapour atoms in the liquid phase to their total 
number) stabilises, which corresponds to the so-called droplet 
quenching. Therefore, unlike the ‘equilibrium’ static conden-
sation scenario, when the vapour is in the state of thermody-
namic equilibrium at all stages, in the case of rapid adiabatic 
plume expansion the highest attainable degree of condensa-
tion may be well below unity (0.1 – 0.3 in practice) [13]. 

The dynamic condensation of ablation plumes described 
above may be represented as the propagation, from the 
periphery to the centre through the expanding cloud, of three 
concentric shock waves: the saturation wave (which corre-
sponds to the instant of intersection of the Poisson adiabat 
with the saturation adiabat in the phase diagram), the wave of 
nucleation centre ‘injection’ (the instant of greatest supercool-
ing), and the ‘quenching’ wave (the stabilisation of the degree 
of plume condensation) [9, 10]. 

To consider the development of condensation in our work 
as well as in Refs [9 – 13], the liquid droplets produced in the 
course of plume expansion are assumed to travel together 
with the vapour (which is true for low degrees of its condensa-
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tion). This assumption permits considering the condensation 
independently for every particle with a certain Lagrangian 
coordinate. 

According to Ref. [9], the vapour temperature that corre-
sponds to the onset of condensation (to the intersection of the 
Poisson adiabat with the saturation adiabat) is Tc = qФ(a), 
where q = Q/Rg is the specific heat of evaporation Q of the 
metal in Kelvin degrees; Rg is the universal gas constant; and 
Ф(a) is the lowest root of the transcendental equation [9]: 
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/( )B R T pg s sm= ; V0 = 1/r0 = 0.025 m3 kg–1 is the initial specific 
volume of the plume; Ts = 300 К is the normalisation tem-
perature; μ is the molar mass of the metal (for lead, m = 
0.2 kg mol–1); and ps is the pre-exponential factor from Ref. [9] 
(for a specific metal it may be determined by approximating 
the data of Ref. [24], and ps = 1010 Pa for lead). Upon substi-
tution of the listed values in Eqn (6) and its numerical solu-
tion we find that Tc = 2480 K. 

The dynamics of thermodynamic equilibrium tempera-
ture Teq(t) (along the saturation adiabat) in the expanding 
plume may be determined by solving the transcendental func-
tional equation [9] 
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is the degree of condensation in the case of thermodynamic 
equilibrium in the vapour. 

As discussed above, when the temperature TP(r, t) reaches 
a value Tc, there sets in an active droplet production, which is 
later attended with an intense liberation of the latent heat of 
condensation. This has the effect that the plume temperature 
departs from the Poisson adiabat and approaches the satura-
tion adiabat. To determine the dynamics of the plume tem-
perature T during this transition period, advantage can be 
taken of the relation for the local energy balance in a two-
phase vapour – liquid system in the adiabatic approxima-
tion [13]:

( ) ( )d dc x c x T R T x V
V1 1g21 - + + -6 @

	 – [ ]( ) dQ c c T x 02 1- - = ,	 (8)

where c1 and c2 are the vapour heat capacity at constant vol-
ume and the liquid heat capacity, respectively; and V is the 
specific volume of the vapour. Considering that c1 = 3Rg/2 (in 
the ideal monoatomic gas approximation) and dV/V = 
3/2(dY/Y), we may write the differential equation for the 
plume temperature, which takes into account the liberation of 
latent condensation energy: 
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where b = (2c2/3Rg) – 1 (b ≈ 1.4 for lead); (0) ( )T T t TP ct tc
= =

=
;  

and tc is the moment at which the vapour reaches the satura-
tion temperature. 

The plume temperature departs from the Poisson adiabat 
at the moment te of mass injection of nuclei, which corre-
sponds the greatest supercooling of the vapour. This point in 
time can be found by solving the transcendental equation [9] 
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s is the force of surface tension; rliq is the liquid phase density; 
kB is the Boltzmann constant; and m is the atomic mass of the 
metal. In our case, a ≈ 0.48, Tv ≈ K, and kv ≈ 1.5 × 1010. 

For the solution of Eqn (9), the dynamics of the condensa-
tion degree x(t) in the plume may be estimated from the rela-
tion 
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The time dependences of T, q and x at the plume centre 
(r = 0), which were obtained in the numerical solution of Eqns 
(7), (9), and (10), are plotted in Fig. 3. This drawing provides 
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a good illustration of the features of condensation, which pro-
ceeds according to the Zel’dovich – Raizer theory (the effects 
of saturation and nuclei ‘injection’ [13]). 

To estimate the spatiotemporal characteristics of the 
‘quenching’ wave (which corresponds to the cessation of 
droplet formation), Luk’yanchuk et al. [10] proposed using 
the relation 
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rq(t) is the radius of the ‘quenching’ wave; and sg is the colli-
sion cross section. 

Figure 4 shows the trajectories of the saturation, ‘injec-
tion’ and ‘quenching’ waves, which were constructed pro-
ceeding from an analysis of the solutions of Eqns (6) – (12) in 
the interval 0 – 3 ms. 

The model spatiotemporal scale of the ‘injection’ wave 
agrees nicely with the experimental probing data for such 
plumes obtained by Goncharov et al. [17]. This physical effect 
manifested itself in Ref. [17] in the emergence and rapid build-
up of the scattered component in the interaction of the probe 
radiation with the plume, i.e. a large number of scattering 
centres did emerge in the probe zone at that point in time. The 
same is also true of the parameters of the model ‘quenching’ 
wave (when the droplets produced in the plume cease to 
grow): in the corresponding drawings in Ref. [17] they are 
characterised by the instants of stabilisation of the intensity 
behaviour of the scattered and absorbed components of the 
probe radiation in the plume, which set in 2 – 2.5 ms after laser 
irradiation. 

According to the Anisimov – Luk’yanchuk model, the 
kinetics of plume condensation is determined by the behav-
iour of the functions x(t) = g(t)v(t) from the instant of nuclei 
‘injection’ to the instant of their ‘quenching’ (g(t) is the clus-
ter-droplet dimension in terms of the number of atoms and 
v(t) is the ratio between the number of nuclei and the total 

number of vapour atoms). To model these functions, 
Anisimov and Luk’yanchuk [9] proposed solving the system 
of the corresponding ordinary differential equations subject 
to the initial conditions that correspond to the instant of 
greatest vapour supercooling. Luk’yanchuk et al. [10] consid-
ered an example of such numerical simulation for the expan-
sion of Si, Ge and  C ablation plumes (T0 = 7000 – 8000 K, 
V0  = 200 – 300 cm3 g–1, R0 = 1 mm, u0 = 6 km s–1 and M = 
0.3 – 0.5 10–9 kg) in vacuum. They showed, in particular, that 
the critical dimension of droplet nuclei (when the supercritical 
nuclei become immune to disintegration) is equal to 10 – 20 
atoms of the corresponding substance. According to 
Refs [9, 10], the critical nucleus size g0 can be estimated as fol-
lows: 

g m
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maxliq B
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2 3
p r q

s
= c cm m ,	 (13)

where qmax is the supercooling parameter at the instant of 
nuclei injection. 

According to Ref. [10], upon injection of nuclei their num-
ber (the function v(t)) is hardly changed; in this case, however, 
owing to the positive adherence – evaporation balance at the 
surface of the nuclei their size increases by a factor of 2 – 3; 
accordingly, the value of x(t) increases by about the same fac-
tor. Due to ‘quenching’, these processes result in the produc-
tion of 1013 – 1014  clusters of average size 2 – 4 nm (depending 
on the type of material). The resultant characteristic dimen-
sions of condensed clusters as well as their size distributions 
are in good agreement with the experimental data of Ref. [14]. 

Itina and Voloshko [25] performed a highly simplified 
consideration of the onset of condensation in laser ablation 
plumes of materials and in high-power electric-discharge plas-
mas at atmospheric pressure. Based on separate relations of 
the Zel’dovich – Raizer theory in the case of thermodynamic 
equilibrium in the vapour, the authors obtained quite similar 
estimates for the size of droplet nuclei and their density at the 
instant of highest supercooling under comparable initial con-
ditions  –  without a detailed consideration of the spatiotem-
poral distributions of the plasma cloud parameters, though. 

The data of Refs [9 – 12] differ markedly from the present 
work as regards the initial parameters of the ablation plume 
(it is significantly denser and possesses a higher temperature) 
as well as its propagation conditions. Furthermore, also much 
different are the final values of the density and size of con-
densed particles: for lead they amount to ~1010 cm–3 (i.e. to 
~1011 clusters in the plume) and to 70 – 80 nm, respectively 
[18]. In this case, the dynamics of the modelled degree of 
plume condensation x(t) during the time interval from the 
instant of nuclei ‘injection’ to the instant of their ‘quenching’ 
are largely consistent with the data of the Anisimov – 
Luk’yanchuk model for vacuum. On substituting our param-
eters in Eqn (13) we obtain g0 ≈ 4 – 5 atoms (for x = 0.1 this 
corresponds to 1015 nuclei in the plume). 

Evidently in this case the picture of condensation must be 
substantially different from that considered in the 
Anisimov – Luk’yanchuk model: during the period from the 
nuclei ‘injection’ to their ‘quenching’ for a smooth increase in 
the degree of condensation in the plume (from 0 to 0.2) there 
occurs a sharp (by 5 – 6 orders of magnitude) reduction in the 
number of nuclei along with the equally sharp growth of their 
size (the growth of linear size by two orders of magnitude cor-
responds to the increase in volume by six orders of magni-
tude). Clearly in this case it is no longer possible to attribute 
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‘quenching’ ( 3 ) waves, as well as the radius of the leading edge of the 
plume ( 4 ). 
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the nuclei growth to only the positive balance of adher-
ence – evaporation of the vapour atoms at the nuclei (more-
over, this mechanism of droplet growth may now be neglected 
as being insignificant): the inclusion of coalescence of the 
nuclei themselves is called for. This effect has a simple physi-
cal interpretation: at the points in time close to the quenching, 
the external atmosphere ‘decelerates’ the leading edge of the 
plume, and as this takes place the inner nuclei inevitably ‘dash 
against’ the decelerating peripheral ones and, since the drop-
lets are still far from solidification at that time, they readily 
merge into big object of regular shape. 

The fact that this mechanism is quite probable is borne 
out by the following estimation scheme (Fig. 5). According 
to the previous reasoning, the production of nanoparticles 
terminates upon the propagation of the ‘quenching’ wave 
through the plume, and there occurs only their further 
expansion in accordance with mechanical momentum con-
servation law. Therefore, for the formation of a nanoparti-
cle 70 – 80 nm in diameter to be possible due to only the 
coalescence of nuclei (without ‘attachment’ of the vapour 
atoms to them), the solid angle which is subtended by the 
cross section of the nanoparticle at the instant of ‘quench-
ing’ termination and whose vertex is at the plume centre 
must contain a sufficient amount of the nuclei (i.e. ~106), 
which would run into each other in the radial rectilinear 
propagation to produce the nanoparticle. Since the forma-
tion of nuclei terminates upon the passage of the ‘injection’ 
wave, it is necessary to estimate their number in the cone 
subtended by the projection of the nanoparticle cross sec-
tion on the plume’s front at the instant at which the ‘injec-
tion’ wave reaches the plume centre. It is readily shown that 
the number of nuclei that fall within such a cone is 
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xMr R

2
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e
e0
4

2 2
q

= ,	 (14)

where rpart is the nanoparticle radius; Re and Rq are the respec-
tive radii of the leading edge of the plume at the instants of 
‘injection’ and ‘quenching’ termination; and M0 is the mass of 
a nucleus. Substitution of the model and experimental data in 
formula (14) gives Ne ≈ 0.9 × 106 nuclei, i.e. the calculation 
strongly suggests that the most probable (and quite sufficient) 
mechanism of metallic nanoparticle production at the final 
stages of the expansion of ablation plumes at atmospheric 
pressure is the mechanism of ‘mass coalescence’ of the nuclei 
in their slowing-down by the decelerating leading edge of the 
plume. 

Since the nuclei coalescence mechanism under description 
is due to the difference of pressures inside and outside the 
ablation plume, the following empirical relation may be sug-
gested for describing their growth dynamics: 
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a , tc < t < tq,	(15)

where p(t) is the time dependence of the pressure at the point 
of the plume under consideration; and pc is the plume pres-
sure corresponding to the instant of time tc. This relation pro-
vides a good correspondence of the proposed model and the 
experimental data [18] for a broad range of metals (Pb, Zn, 
Ni, Cu, Ag, Au, Pt). 

4. Conclusions

In the present work we have demonstrated that the 
Anisimov – Luk’yanchuk model can be adapted for describ-
ing the process of droplet formation in laser erosion plumes of 
metals at atmospheric pressure. Despite the radical difference 
between the practical cases considered by the authors of the 
model and the range of application proposed in this paper as 
regards the behavior of the final stage of condensation, with a 
certain improvement the Anisimov – Luk’yanchuk model 
provides, by and large, a good agreement with experimental 
data even without adjustment parameters. Since the type of 
plume expansion discussed in the present work possesses the 
property of self-similarity, it is possible to easily and accu-
rately predict the development of an erosion laser plume for 
different initial conditions like the initial internal plume 
energy and the pressure of extraneous gas. This makes it pos-
sible to control rather smoothly the average size of condensed 
phase particles and their density. This in turn plays an impor-
tant role in the development of a new avenue in technology  –  
controlled laser-induced deposition of surface metal nano-
structures at atmospheric pressure [26]. 
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