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Abstract.  We study the focusing of an optical electromagnetic 
wave into a nanoscale spatial region in the vicinity of the nanoapex 
of a metal microtip, arising due to a convergent surface plasmon 
wave. The metal boundary near the nanoapex is approximated by a 
paraboloid of revolution. It is proved that an increase in the metal 
absorption in approaching the nanoapex, associated with an 
increase in the frequency of collisions of electrons with the surface, 
is an essential but not limiting factor for this method of light nano-
focusing. It is shown that the minimum possible size of the focusing 
region can be about of 1 nm. 
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1. Introduction 

Nanofocusing of light is the key problem of modern nano-
photonics. Unfortunately, in a uniform space it is impossible 
to obtain under normal focusing conditions a focusing spot 
size smaller than the Rayleigh diffraction limit for conven-
tional optical instruments [1]. Nevertheless, it was shown that 
by using surface electromagnetic waves at the metal surface, 
one can localise light fields of unusually high intensity on geo-
metric singularities of the surface and to focus the light energy 
into a spot with dimensions much smaller than the wave-
length of a plane light wave in vacuum [2 – 5]. 

Experiments demonstrate that the best nanofocusing is 
observed when a TM-mode symmetrical surface plasmon 
wave converges towards the tip apex [6]; therefore, in this 
paper we will discuss a focused field with this kind of symme-
try. It is believed [7] that the TM wave ‘survives’ during nano-
focusing at the microtip apex even when surface plasmons are 
excited using diffraction gratings, located on one side of a 
metal microtip. Problems arising in nanofocusing of a 
TE-mode surface plasmon wave will be addressed in subse-
quent studies.

In paper [8] we determined in the quasi-static approxima-
tion the focused fields in the vicinity of the nanoapex of a 
metal microtip, whose boundary is approximated by an axi-
symmetric paraboloid of revolution. It was assumed that the 
dielectric constant of the metal is described by the lossless 
Drude formula. It turned out that in this approximation the 
size of the focal distribution of the electric field in the vicinity 

of the microtip nanoapex in spatial coordinates normalised to 
the radius of nanoapex curvature is determined only by the 
ratio of the frequency of focused plasmons to the plasma fre-
quency of the metal. In the present work it is shown that in 
approaching the nanoapex an increase in absorption in the 
metal, associated with an increase in the frequency of colli-
sions of electrons with the surface, is a limiting factor at fre-
quencies close to the critical frequency of the existence of sur-
face plasmons rather than at low (compared to the plasma 
frequency of the nanoapex metal) frequencies for the nanofo-
cusing method in question. 

2. Electric field distribution near the nanoapex 
of a metal microtip in the quasi-static  
approximation 

Consider a metal microtip, whose surface near the apex is 
described by an axisymmetric paraboloid of revolution: z = 
R/2 – (x2 + y2)/(2R) (Fig. 1). The complex dielectric constants 
of the metal and the external homogeneous medium are 
denoted by em and ed, respectively. 

The expression for the electric field near the tip apex in the 
quasi-static approximation was obtained in papers [8, 9]. The 
representation of harmonic electromagnetic fields with a tem-
poral dependence of form exp(–iwt), where w is the cyclic fre-
quency of the field, was assumed complex. In the quasi-static 
approximation the electric field potential should obey the 
Laplace equation, and the normal and tangential components 
of the field on the surface of the tip should meet the known 
boundary conditions. We found an axially symmetric solu-
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Figure 1.  Geometry of the problem. 
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tion having a maximum at the tip apex and corresponding to 
the focusing of a TM-mode surface plasmon wave at the 
microtip [8]. 

For brevity, we omit the details of the potential calcula-
tions and present the result, i.e. the potential distribution F in 
the xz plane (Fig. 1):
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where /x x R=u , /z z R=u  are the coordinates normalised to 
the radius R of the microtip curvature; J0 is the zero-order 
Bessel function of the first kind; I0 and K0 are the modified 
zero-order Bessel functions of the first and the second kind; 
and q

*
 is the solution of the equation [8] 

edI0(q)K1(q) + emK0(q)I1(q) = 0,	 (2) 

where K1 is the modified first-order Bessel function of the sec-
ond kind. Distribution (1) enables us to find the potential 
(and hence the electric field) in the vicinity of the metal tip 
nanoapex with an accuracy up to a constant. 

3. Focal distribution of the electric field near  
the microtip nanoapex. Effect of losses in the metal 

The dielectric constant of the metal is approximately described 
by the Drude formula em = 1 – wp2 /(w2 + iwG ), where wp is the 
plasma frequency of the metal, and G is the coefficient taking 
into account losses. For example, for silver [10] wp » 1.36 ´ 
1016 s–1, G » 2 ´ 1014 s–1. Then, equation (2) can be rewritten 
for the metal tip bordering the vacuum as follows: 

( ) ( ) ( ) ( )
i
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+

=
u uc m ,	 (3) 

where   / pw w w=u  is the cyclic frequency of the field, nor-
malised to the plasma ferquency; and g = G/wp is the absorp-
tion coefficient, normalised to the plasma frequency. The 
absence of losses corresponds to g = 0. 

Calculations have shown that at frequencies / 2p1w w  
(where / 2pw  is the upper limiting frequency of existence of 
surface plasmons) in the absence of losses (g = 0), equation (3) 
has a unique and purely real solution q. In this case, special 
functions appearing in (3) can be regarded as function of the 
real variable. In the presence of losses (g ¹ 0), the solution is 
also unique, but complex. To find numerically a complex 
solution of equation (3), it is necessary to express analytically 
the special functions of Eqn (3) on the complex plane. This 
was done by using the following well-known integral repre-
sentations for these functions: 

p
( ) ( ) ( )cos exp cos dI q n q1
n

0p q q q= y ,

3

( ) ( ) ( )cosh exp cosh dK q n q1
n

0p q q q= -y . 

One can see from equations (1) and (3) that for the metal 
in the absence of losses (g = 0), the size of the region of the 
field maximum near the nanotip apex (focal spot), expressed 
in units of the radius of the nanoapex curvature, depends 
only on the normalised frequency wu . The closer the wu  to   

/1 2cw =u , i.e. the normalised critical frequency of existence 
of surface plasmons on a flat metal surface, the smaller the 
focal spot size. In the presence of losses (g ¹ 0) the normalised 
size of the region of the field maximum near the nanotip apex 
will be a function of two parameters, namely, wu  and g. 

It is known from the theory of light scattering on small 
spherical metal particles [11] that for a given metal the effec-
tive coefficient G depends on the radius of the particle. This is 
due to the fact that the decay constant is proportional to the 
frequency of collisions of conduction electrons, resulting in a 
loss of the energy of the directional motion of the electron gas 
and conversion of the energy of the directional motion to the 
energy of the thermal motion of the electrons. Near the sur-
face, apart from collisions with bulky scatterers we should 
additionally take into account collisions with the surface. 
Under the assumption that the boundary scatters diffusely, 
the coefficient G can be represented in the form G = Gbulk + 
uF /L, where Gbulk is the loss factor in the bulk of the metal; uF 
is the Fermi velocity; and L is some effective length. 

To assess the impact of this effect on the focusing of light 
in the vicinity of the microtip nanoapex, we can use the radius 
R of the tip curvature as an effective length L. Figure 2 shows 
the dependence of G /Gbulk = 1 + uF /(RGbulk) on R for silver 
(uF = 1.392 ´ 106 m s–1). It can be seen that by decreasing the 
radius of the nanoapex curvature down to 1 nm the effective 
loss factor increases by eight times compared with the case 
R » 1 mm. 

We investigate the impact of the parameter g on the distri-
bution of the maximum of the electric field vector modulus Ea 
in the vicinity of the focus at certain fixed frequencies .wu  
Considering the distribution with increasing g, we will be 
able to assess how the distribution changes with decreasing 
radius of the nanoapex curvature. 

Let us describe in detail the method for calculating Ea  at 
each spatial point of the xzu u  plane. First, at the point under 
study we found complex components ¶ ¶/E xx F=- uu  and 

¶ ¶/E zz F=- uu  of the complex vector of the electric field E = 
–ÑF. Note that, because in (1) the potential (and hence, the 
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Figure 2.  Dependence of G/Gbulk = 1 + uF/(RGbulk) on the radius of cur-
vature R for silver (uF = 1.392 × 106 m s–1). 
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electric field) is determined to within a constant, we can 
perform differentiation in the normalised coordinates xu  and 
zu . Then, we found the real terms of the components 
[ ( )]Re exp iE tx w-u  and [ ( )]Re exp iE tz w-u  at some point in time 

t. Finally, we calculated the length of the instantaneous elec-
tric field vector and determined its maximum value for the 
period 

( ) ( )max Re exp Re expi iE E t E ta
t

x z
0 2
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Note that the calculation by the formula | | | |E E Ea x z
2 2
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would give a correct result only if the complex values Exu  and 
Ezu  had equal phases. In general, this is not the case, an so the 
calculations in this paper were carried out by using a strict 
formula (4). 

Figure 3 shows the calculated dependences ( )E xa u  at the 
line /z 1 2=u , which corresponds to the intersection of the xzu u  
plane and the focal plane. The dependences were obtained for  

.0 62252w =u  and g values corresponding to the absence of 
losses (g = 0), losses in silver ( g = gAg =0.01471), as well as to 
four times larger losses ( g = 4gAg) and eight times larger losses 

( g = 8gAg). The frequency w =u  0.62252 is chosen such that the 
radius of the focal distribution was approximately equal to 
the radius of the nanoapex curvature [8]. One can see from 
Fig. 3 that, although the focal spot expands with increasing g, 
this expansion is small. Consequently, the electric field distri-
butions in the focal plane at the line /z 1 2=u  are weakly 
dependent on the absorption in the metal at the selected fre-
quency   0.6225.w =u  

In addition to Fig. 3, Fig. 4 shows the distributions of Ea, 
i.e. the maximum of the electric field vector modulus in the xzu u  
plane near the tip apex at the same values of the damping 
constant g. From these distributions we can draw the follow-
ing conclusion: although the distributions in the focal plane 
weakly change with increasing g, an increase in absorption 
leads to a greater damping of the wave converging to the tip 
apex, and, obviously, to a decrease in the absolute value Ea at 
the maximum of the focal distribution (at the same intensity 
of convergent waves). 

A similar but stronger dependence is observed for a 
higher, normalised working frequency (w =u  0.6742), which is 
closer to the critical frequency of existence of surface plas-
mons 1/ 2cw =u  (Fig. 5). At this higher frequency, although 
the spatial oscillation wavelength and the focal spot size are 
smaller, the influence of the attenuation of the waves converg-
ing to the tip apex is enhanced. Thus, even at g = 4gAg the 
electric field amplitude is significantly reduced within the 
rounded apex of the microtip. 

Thus, when the working frequency wu  approaches the crit-
ical frequency 1/ 2cw =u , the influence of the damping on 
the absolute value of the maximum electric field near the 
nanotip apex increases. Although the focal spot size decreases 
with increasing frequency, the focused surface plasmon wave 
energy at such frequencies is strongly absorbed at the periph-
ery of the nanotip. 

De Angelis et al. [2] used the light with a wavelength l = 
532 nm in free space. Surface plasmons were focused at the 
nanoapex of a metal microtip. For the silver tip the wave-
length l = 532 nm corresponds to the frequency 0.26053.w =u  
This frequency is much less than critical, and so one can 

0

0.2

0.4

0.6

0.8

Ea

–2 –1 0 1

4

3
2

1

x̃

Figure 3.  Normalised maximum of the electric field vector modulus Ea 
at the line z̃ = 1/2 as a function of x̃ for the normalised frequency w̃ = 
0.62252 and normalised absorption coefficient g = 0 ( 1 ), g = gAg ( 2 ), 
g = 4gAg ( 3 ) and g = 8gAg ( 4 ). 
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Figure 4.  Distributions of the normalised maximum of the electric field vector modulus Ea in the vicinity of the nanoapex of the silver microtip for 
wu  = 0.62252, g = 0 (a), g = gAg (b), g = 4gAg (c) and g = 8gAg (d). 
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expect a weaker influence of absorption on the focusing. 
Calculations show that this is true. 

Figure 6 shows the distributions of Ea in the vicinity of 
the nanoapex at .0 26053w =u  and two values of g. Although 
the absorption in the second case (Fig. 6 b) is substantial, 
the electric field distribution is almost unchanged in the 
vicinity the nanoapex. Inside the metal the field is virtually 
uniform and low, while outside the metal the distribution is 
close to the static distribution of the electric field near the 
apex of the metal tip. From this it can be concluded that at 
these frequencies the absorption of the metal does not sig-
nificantly affect the focal distribution in the vicinity of the 
nanoapex. 

4. Conclusions 

We have considered nanofocusing of a surface plasmon wave 
at the nanoapex of a metal microtip whose boundary near the 
tip is approximated by a paraboloid of revolution. It is shown 
that the absorption in a well-conductive metal of the microtip 
with a nanoapex radius up to 1 nm has virtually no effect on 
the size of the focal field distribution in the vicinity of the 
nanoapex up to w » 0.6wp. When the frequency approaches 
the maximum frequency of existence of surface plasmons  

/ 2c pw w= , focusing properties of the microtip decrease due 
to absorption in the metal. For an optical frequency range 
(much less than critical) and highly conductive metals with 
wp ~ 1016 s–1, the effect of absorption on nanofocusing can be 
neglected. The focal spot size in this case is only determined 
by the radius of the curvature of the microtip nanoapex and 
can be about 1 nm. 

It is obvious that the observed phenomenon is extremely 
important in the development of nanooptics devices, which 
use nanofocusing of surface plasmons at the nanoapex of the 
microtip. In particular, the studied method of nanofocusing 
has been used to design a variety of electro-optical gradient 

thin film structures in order to control thin-film interference 
systems.
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Figure 5.  Same as in Fig. 4, but for wu  = 0.6742, g = gAg (a) and g = 4gAg (b).
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Figure 6.  Same as in Fig. 4, but for wu  = 0.26053, g = gAg (а) and g = 32gAg (b). 


