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Abstract.  We have found the time dependence of the ablation depth 
of aluminium irradiated by a femtosecond laser pulse. It is shown to 
what extent an increase in the radiation energy flux density leads to 
an increase in the quasi-stationary value of the ablation depth. By 
reducing the aluminium film thickness down to one hundred nano-
metres and less, the ablation depth significantly increases. At the 
same time, the quasi-stationary value of the ablation depth of a thin 
film is obtained due to the removal of heat from the focal spot 
region. 

Keywords: femtosecond pulse, metal nanofilm, laser ablation, alu-
minium. 

1. Introduction 

Ablation of metals upon absorption of laser pulses has been 
studied experimentally and theoretically in many papers (see, 
e.g., [1 – 5] and review [6]). The essential difference in the abla-
tion process of bulk samples under the action of femtosecond, 
picosecond and nanosecond pulse has been determined in 
[2, 3]. This difference arises due to changes in the ratio between 
the time of the pulse action and the times of the metal surface 
heating and cooling. Since the last two times depend on the 
size of the sample, we can expect changes in the ablation 
properties in quite small samples compared with those inher-
ent in bulk samples. This fact was confirmed in the studies of 
ablation of thin films of metals [7 – 10]. In particular, a 
decrease in the radiation energy flux density, at which gold, 
nickel [7, 10] and copper films are efficiently ablated [10] with 
decreasing film thickness down to a micron and less, was 
experimentally observed.

The authors of [8] found threshold radiation energy flux 
densities Ith of 200-fs pulses at which gold and nickel films are 
damaged. For gold, the values of Ith increase with increasing 
film thickness L and reach saturation at L » 500 nm. A simi-
lar dependence of Ith on L was found for nickel; however, the 
saturation in this case occurs only at L L 50  nm, which is 
associated with a more efficient transfer of energy from the 
electrons to the lattice [8]. A dependence of Ith on L, similar to 

that from paper [8], was found in [9], where irradiation of a 
gold film by 600-fs pulses lead to a decrease in Ith at L K 
100 – 200 nm. 

In this paper we have theoretically investigated the depth 
of thermal ablation of aluminium samples interacting with a 
relatively weak femtosecond pulse, which leads to the removal 
of a small number of atomic layers of the material. It is shown 
that with increasing time the ablation depth reaches a quasi-
stationary value dt, which is dependent on IL, i.e. the energy 
flux density of incident radiation. The dependence of dt on IL 
is found. It has been demonstrated that the ablation depth 
increases with decreasing film thickness. In sufficiently thin 
films the establishment of a quasi-stationary value of the 
ablation depth becomes possible if the focusing of laser radia-
tion is taken into account. We have found the dependences of 
dt on the focal spot size, film thickness and aluminium param-
eters. 

2. Absorption of radiation and heating of the 
metal 

Consider the interaction of a laser pulse propagating along 
the normal to the film surface with a metal film, which occu-
pies the space region 0 < z < L. The laser radiation field in 
vacuum is given by 

( / ) ( )sint z c t kzE Einc L w= - - , z < 0,	 (1)

where w is the carrier frequency of laser radiation; k = w/c is 
the wavenumber; c is the speed of light; and EL(t) = [0, EL(t), 0] 
is the pulse envelope weakly changing in time ~1/w. The elec-
tromagnetic field penetrates into the film, is reflected from the 
surface z = 0 and passes into the region z > L. The field Em = 
[0, Em(z, t), 0] penetrating inside has the form (see [11]) 
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e0(w) = e0' (w) + ie0'' (w) is the contribution to the dielectric 
constant from the bound electrons; wp is the electron plasma 
frequency; and v is the collision frequency of electrons. 
Assuming that bound electrons pass to the conduction band 
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upon absorption of the field, the power averaged over period 
2p/w and absorbed by the electrons can be expressed in the 
form [11]: 
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where IL(t) = cEL
2(t)/(8p) is the energy flux density of the inci-

dent pulse. 
The description of the metal heating can be based on the 

equation for the electron Te(z, t) and lattice Tlat(z, t) tempera-
tures: 

¶
¶

¶
¶

¶
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where Ce(z, t) is the electron heat capacity; l(z, t) is the ther-
mal conductivity; G(z, t) is the parameter describing the 
energy transfer from the electrons to the lattice; and Clat is the 
heat capacity of the lattice. 

Equations (6) and (7) should be supplemented with initial 
and boundary conditions: 

( , ) ( , )T z t T z t Te lat 0" "3 3- = - = ,	 (8)
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At the same time, the heat loss due to thermal emission of 
electrons is considered negligible [12]. 

The properties of the evolution of temperatures depend 
on the explicit form of the functions Ce(z, t), G(z, t) and l(z, t), 
which are different for different substances. Below we restrict 
our consideration to the study of the heating of aluminium, 
whose plasma frequency is wp = 1.91 ́  1016 s–1 [13]. We assume 
that the film of thickness L is irradiated by a laser pulse 
focused into a spot of radius R and having a frequency  w - 
2.35 ́  1015 s–1. Then, the time dependence of the energy flux 
density has the form: IL(t) = ILexp(–t2/t2p), where tp = 
t/2 ln 2 , and t = 100 fs is a characteristic pulse duration. The 
contribution (corresponding to a given frequency w) to the 
dielectric constant from the bound electrons is e0(w) = 8.5 + 
41i, which corresponds to the absorption coefficient of 0.14 if 
heating is neglected [13, 14]. For the heat capacity of the alu-
minium lattice we use Clat = 2.4 ́  107 erg cm–3 K–1. In accor-
dance with the data of Ref. [15], at Te < 6 ́  104 K the elec-
tronic heat capacity of aluminium is approximated by the 
expression 
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where CAl - 9.1 ́  102  erg cm–3 K–2, and the temperature is 
measured in Kelvins. In turn, taking into account the data of 
Ref. [16], obtained at Te(z, t) < 2 ́  104 K, the parameter G can 
be found by using the approximation: 

( , )G z t GAl=

× 
[ ( , )] .

. . [ ( , )]
T z t

T z t1
10 0 0030

0 0009 0 0028 10
e

e4 4
4

-
+

+
-

-' 1,	(11)

where GAl = 3.5 ́  1018 erg s–1 K–1 cm–3. Under the conditions 
described hereinafter, the electron temperature exceeds 2 eV 
for several hundred femtoseconds in a sufficiently thin (of 
thickness 20 – 30 nm) surface layer, and therefore possible 
errors due to calculation using expression (11) are unimport-
ant. The thermal conductivity in equation (6) has the form 
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where [3 /5 3 ( , ) / ]k T z t ms F B e
2 2u u= +r  is the mean square of the 

velocity of electrons [17]; uF = 2.05 ́  108 cm s–1 is the Fermi 
velocity; kB is the Boltzmann constant; and m is the effec-
tive electron mass. The electron collision frequency n(z, t), 
which determines the thermal conductivity, is equal to the 
sum of the electron – phonon collision frequency vep, 
depending on the lattice temperature, and electron – elec-
tron collision frequency vee, depending on the temperature 
of the electrons: 

( , ) ( ( , )) ( ( , ))z t T z t T z t
5
3

ep lat ee en n n= + .

The introduction of the factor 3/5 is due to difference of 2ur  
from uF

2  at low temperatures. When the lattice temperature 
exceeds the Debye temperature, the frequency of the elec-
tron – phonon collisions can be approximated as follows: 

( ( , )) ( )
( , )

T z t T T
T z t

ep lat ep
lat

0
0

n n=  ,	 (13)

where nep(T0) = 9.4 ́  1013  s–1 is the frequency of collisions 
between electrons and phonons at room (T0 = 300 K) tem-
perature [13]. This approximation is justified, even though the 
Debye temperature for aluminium is 430 K. The fact is that 
due to rapid heating under the conditions to be discussed 
below, the lattice temperature reaches ~430 K for several tens 
of femtoseconds. Usually, at electron temperatures much 
lower than the degeneracy temperature, there is a quadratic 
dependence of vee on Te. However, as Te approaches EF/kB, 
where EF = 11.7 eV is the Fermi energy, the impact of the 
band structure and lifting of the degeneracy lead to a signifi-
cant change in the quadratic dependence [18]. The results 
obtained in [18] are approximated with good accuracy by the 
formula 
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where &  is the Planck constant; b = 1.7; and a = 15. It is this 
dependence of vee on Te that is used below to solve equa-
tion (6). 

The power absorbed by conduction electrons (5) also 
depends on the frequency of collisions. If n << w, formula 
(4) includes the frequency n = nopt, describing the interac-
tion of electrons with a high-frequency field. The frequency  
nopt differs from n(z, t), which enters the thermal conductiv-
ity coefficient (12), and is determined by the constants 

( )v Tep
opt

0  ¹ nep(T0) and a ¹ b (see, e.g., [19, 20], where a = 0 
under low heating conditions). However, in the frequency 
range discussed below at the initial stage of heating, 
absorption by bound electrons determined by e0''(w) is 
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almost an order of magnitude higher than that due to col-
lisions of conduction electrons determined by nopt. This 
makes insignificant the allowance for the differences 
between v and nopt at this stage of heating. If the electron 
collision frequency becomes on the order of w due to heat-
ing, then we can use formulas (13), (14). These expressions 
for the collision frequencies used in the solution of equa-
tions (6), (7). 

If the temperature Tlat(z, t) reaches the melting tempera-
ture of aluminium Tm = 930 K, the lattice is destroyed. In the 
numerical solution, melting is taken into account by stopping 
the temperature growth when the Tlat(z, t) = Tm, and as long 
as at a lattice point in question no energy, which is equal to 
the specific heat of fusion (DHm = 10.8 kJ mol–1), is transmit-
ted [21]. In addition, the frequency of collisions between the 
electrons in the melt is increased by about 50 % [22] (cf. [13]), 
which is taken into account by the temperature dependence of 
the form 

[ ( , )] ( )
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lat m0
0

n n h= + -6 @,	 (15)

where h(...) is the unit Heaviside step function. After melting 
functions G(z, t) and Ce(z, t) are taken the same, as in the 
solid phase. Note that in the case of rapid heating of the 
metal, the lattice may be overheated when the temperature 
Tlat exceeds Tm, but the disorder does not occur within a few 
picoseconds [23]. Since the time scale, on which the ablation 
takes place, amounts to tens of picoseconds, this effect is 
neglected. 

Typical time dependences of the temperatures of the elec-
trons and the lattice on the surface of the film obtained by 
solving equations (6), (7) are shown in Fig. 1 for IL = 
3 ́  1012 W cm–2 and L ® ¥, R ® ¥. It can be seen that in the 
absorption of light, the electrons are rapidly heated while the 
lattice remains relatively cold. Then, during the time   t* » 
ClatT

max
lat /(GAlT

max
e ), which is a few picoseconds, the tempera-

tures of the electrons and the lattice become equalised. Thus 
there is a transfer of heat into the metal by the conduction 
electrons. Note that in the conditions discussed the fraction of 
the energy spent on the melting of aluminium is small com-
pared to the total absorbed energy and the melting process is 
quick enough, as shown by a short horizontal section of the 
dependence Tlat(z = 0, t) in Fig. 1. 

3. Ablation of aluminium

The heating of aluminium is accompanied by ablation. To 
calculate the depth of ablation we will use the relation 

t
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where U0 = DHb/NА = 3.05 eV is the energy corresponding to 
the specific heat of vaporisation DHb = 293 kJ mol–1 for alu-
minium [21]; NA is Avogadro’s number; and the ratio for the 
velocity u(Tlat) is given in the Appendix. 

Figure 2 shows the time dependences of the ablation depth 
of a rather thick film at various energy flux densities of the 
incident unfocused pulse (R ® ¥), i.e. under conditions when 
the influence of the transverse heat transfer is insignificant. 
During a few tens of picoseconds aluminium evaporates, and 
in about a hundred picoseconds the ablation depth reaches a 
quasi-stationary value dt, which is weakly dependent on time. 
From Fig. 3, which shows the dependence of the ablation 
depth per pulse on IL, one can see a sharp increase in dt with 
increasing IL. In this case, one atomic layer of aluminium (i.e. 
dt = 0.4 nm) is removed at IL - 4.2 ́  1012 W  cm–2, corre-
sponding to an energy density of 420 mJ cm–2. This value is 
close to those previously found for aluminium: 400 [24, 25] 
and 540 mJ  cm–2 [26]. In Figs 2 – 5 the parts of the curves, 
where dt is less than 0.4 nm, are shown by dashed lines. 

Figure 4 shows the time dependence of the ablation depth 
for films of different thickness. In experiments the film is usu-
ally located on the substrate. However, the boundary condi-
tion at z = L does not take into account the transfer of heat to 
the substrate. This approximation is justified for relatively 
thick films, or at a relatively low thermal conductivity of the 
substrate. It is seen that for 120-nm-thick films the transfer of 
heat inside the film provides a sufficiently rapid cooling, 
which leads to the fact that d(t) reaches a quasi-stationary 
value at times of a few tens of picoseconds. By reducing the 
film thickness down to 100 nm or less, for a time of about 
100  ps a slightly nonuniform temperature distribution is 
attained in the entire film thickness, and its magnitude is rela-
tively large. As a result, the depth of ablation monotonically 
increases with time. For a quasi-stationary value of the abla-
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Figure 1.  Typical time dependences of ( 1 ) electron and ( 2 ) lattice tem-
peratures at the irradiated sample surface (z = 0). Dependences are plot-
ted for IL = 3 ́  1012 W cm–2 and sufficiently large L and R. 
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Figure 2.  Time dependences of the ablation depth for a thick film at 
maximum energy flux densities IL = ( 1 ) 4.2 ́  1012, ( 2 ) 4.4 ́  1012, ( 3 ) 
4.6 ́  1012 and ( 4 ) 4.8 ́  1012 W cm–2. 
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tion depths of thin films to be reached it is necessary, in par-
ticular, to consider the heat transfer in the transverse direc-
tion, which is important for a small focal spot size. 

Under the conditions discussed, at t » 2 – 4 ps (see Fig. 1) 
the temperatures of the electrons and the lattice for alumin-
ium are equalised. Starting from this moment of time (t = t*), 
we can use a single equation for the overall temperature: 
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The effect of the electron – electron collisions on the thermal 
conductivity of aluminium at temperatures that do not exceed 
4 ́  103 K is insignificant in comparison with the influence of 
collisions with phonons. By neglecting vee and taking into 
account the fact that at similar temperatures of the electrons 
and the lattice and at Tlat > Tm the dependence of l0 on the 
temperature disappears [see (10) and (15)], for the thermal 
conductivity coefficient in (17) we have l0 = CAlT0uF

2 /3nep(T0) 
= const. 

The boundary conditions for equation (17) 
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are similar to those used previously [see (9)]. In this case, the 
heat loss due to evaporative cooling is considered insignifi-
cant. The corresponding boundary condition must take into 
account the removal of the heat by evaporating particles, each 
of which carries an energy U0 (see [27]). However, because we 
consider the conditions under which only a few atomic layers 
of the material are evaporated, the heat flux outgoing from 
the metal surface during its evaporation is small compared 
with the flux inside the metal. 

The temperature at time t = t* is obtained from the numer-
ical solutions of equations (6), (7) and is given as a function 
that is independent of r in the focal spot region of radius R: 

( , , ) [ ( , ) ] ( )T z r t t T T z t T R r0 0 h= = + - -* * .	 (19)

Typically, the focal spot radius R is greater than the wave-
length of incident radiation, i.e. more than 1000 nm. It should 
be noted that during the time t* heat propagates by about 
uF /t3 * epn  » 300 nm, which is smaller than the typical values 
of R. 

The solution of equation (17), corresponding to condi-
tions (18) and (19), has the form 
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The prime at the sum indicates that the term with n = 0 is 
taken with a weight of 1/2, and I0 is the modified Bessel func-
tion of the first kind. For r = 0 at the centre of the focal spot 
we derive from (20) a simpler expression 
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Equation (17) and formula (21) show that there are two 
characteristic time scales of the relaxation temperature. In the 
plane of the film the relaxation temperature is determined by 
the time 
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4R
lat
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t
l
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which, for example, for R » 3 mm is about ten nanoseconds. 
In turn, the temperature equalisation time over the film thick-
ness is given by 
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and at L » 100 nm is about ten picoseconds (see Fig. 1), i.e. 
significantly less than tR. 
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Figure 3.  Dependence of the ablation depth per pulse on the maximum 
energy flux density in the incident pulse. 
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Figure 4.  Time dependences of the ablation depth for films having a 
thickness of ( 1 ) 100, ( 2 ) 120, ( 3 ) 200 and ( 4 ) 300 nm. The maximum 
energy flux density is IL = 4.2 ́  1012 W cm–2. 
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One can see from (20), (21) that the temperature T(r, z, t) 
has a maximum at z = 0 and r = 0 and determines the maxi-
mum ablation depth. In a thin film during a time t* a tem-
perature distribution that is almost uniform over the thick-
ness is established [28]. Therefore, at times greater than t*, the 
sum over n in formula (21) is determined mainly by the term 
with n = 0 and for T(0, 0, t) we have approximately 

(0,0, ) (0, ) expT t T t t t1*
*

R-
t

- -
-

b l: D .	 (24)

The transverse heat transfer reduces the temperature at 
point z = 0, r = 0 and allows integral (16) to reach a quasi-
stationary value at times of tens of nanoseconds. Typical 
dependences of the ablation depth of the thin film are shown 
in Fig. 5 for different focal spot sizes. It is seen that the quasi-
stationary value of dt increases with R due to an increase in 
time, during which a sufficiently high temperature is main-
tained in the centre of the focal spot. For thin films, the energy 
flux density at which ablation is efficient, as compared with 
the corresponding values for bulk samples, decreases. The 
reason for this reduction is that in the case of thin films, the 
absorbed pulse energy is redistributed in a smaller volume of 
the metal, which further cools during the time tR that is longer 
than tL. Therefore, the characteristic values of the energy flux 
density required to remove several atomic layers of alumin-
ium are much lower in the case of thin films (see Fig. 5) than 
in the case of bulk samples (see Fig. 2). 

Given that the characteristic times of the ablation are 
much longer than t*, and using (24) at T(0, t*) that is higher 
than the initial temperature T0, from (16) for the quasi-sta-
tionary value of the ablation depth we find 
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ln expd
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where u* º u[T(0, t*)]. In the calculation we take into account 
that a significant contribution to the integral comes from 
small times at which the temperature remains close to T(0, t*). 
The temperature T(0, t*) can be estimated by assuming that 
for a thin film all the absorbed pulse energy in the focal spot 
region during the time t* is uniformly distributed over the film 
thickness L, i.e. ClatT(0, t*)L = AILt, where A is the absorp-

tion coefficient averaged over the time of the pulse action. 
Taking into account the estimate for T(0, t*), from (25) we 
obtain for the energy flux density at which dt = d0 = 0.4 nm
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According to (26) the value of Ith is logarithmically weakly 
dependent on the explicit form of the imprecisely known pre-
exponential factor in (25). Note that a virtually linear depen-
dence of the ablation threshold on film thickness from (26) 
corresponds to that found experimentally [7, 9, 10]. 

In the case when the heat transfer is significant not only in 
the transverse direction but also into the substrate having, as 
a rule, a much lower thermal conductivity than the film, the 
estimates by formula (26) are allowed, if the characteristic 
time of the transverse heat transfer, tR, is replaced by the time 
of the heat transfer into the substrate. However, due to the 
logarithmic dependence of Ith on the characteristic time this 
change will not have a significant impact on the estimate of 
the value of Ith and its dependence on the film thickness. 

4. Conclusions 

We present a relatively simple description of ablation of alu-
minium nanofilms heated by a femtosecond laser pulse. It is 
shown that for sufficiently thick films ablation occurs during 
a time of about ten picoseconds, which is determined by the 
cooling of the surface as a result of the energy transfer into the 
metal. Calculations of the threshold energy flux densities are 
in agreement with the data of a number of experiments 
[24 – 26]. For films whose thickness is less than 100 nm, and in 
the absence of heat removal into the substrate, it is necessary 
to take into account the transverse heat transfer, which at a 
focal spot size of a few micrometres occurs during approxi-
mately ten nanoseconds. The presented study of the alumin-
ium ablation is quite versatile and can be generalised with 
respect to the ablation of films of other metals. 
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Appendix

Let us derive the expression for the velocity of the evapora-
tion front. Following [29], we write the equality of chemical 
potentials in the different phases that are in equilibrium: 

ln ln ln ln
k T k T
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where P is the saturated vapour pressure; M is the mass of the 
atom; c1 = 3 and cV = 3/2 are dimensionless specific heats of 
the condensed phase and gas; e1 and e2 are equilibrium ener-
gies of the atom in the condensed and gaseous phases; and wr  
is the average frequency of lattice vibrations. From (A.1), we 
find the saturated vapour pressure 
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Figure 5.  Time dependence of the ablation depth of a 100-nm-thick film 
for the focal spot radii R = ( 1 ) 3, ( 2 ) 4 and ( 3 ) 4.5 mm at IL = 
2.8 ́  1012 W cm–2.
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According to [29] the rate of evaporation into vacuum is 
determined by the number of atoms leaving the surface per 
unit time per unit surface area of the body. Neglecting the 
influence of the unknown reflection coefficient of gas parti-
cles from the surface, we can estimate the rate of the evapora-
tion front as 

N Mk T
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	 =  ( ) ( / )exp exp
Nk T
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k T
U

T U k T
4 B B

B2

3
0

0/
p
w u- -
r < F ,	 (A.3)

where U0 = e2 – e1, and N is the number of atoms per unit 
volume. 

Let us present an estimate for aluminium. Assuming M = 
4.5 ́  10–23 g, N = 4.9 ́  1022 cm–3, wr  - 2.5 ́  1013 s–1 and T » 
T max
lat  - 5500 K, we have u(T ) - 4.8 ́  105 cm s–1, which is 

close to 4 ́  105 cm s–1, given in [6] for aluminium. 
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