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Abstract.  The transformation of zero-order Bessel beams into a 
second-order vortex Bessel beam in CaCO3 and LiNbO3 crystals is 
experimentally studied, and a possibility of controlling the beam 
transformation by changing the wavefront curvature of the illumi-
nating beam is shown. A quasi-periodic nature of the Bessel beam 
transformation in a crystal while illuminating the diffraction axi-
con by a convergent beam is observed.

Keywords: Bessel laser beams, diffraction axicon, uniaxial crystal, 
wavefront curvature, telescopic optical system.

1. Introduction

The formation of higher-order Bessel beams, namely vortex 
Bessel beams, represents an urgent task for a number of appli-
cations, including optical manipulation tasks [1 – 3]. 
Preparation of such beams by means of diffraction optical 
elements (DOEs) encounters certain difficulties because of the 
formation of the vortex phase component. In this case, manu-
facturing a DOE with a multilevel micro-relief is required [4], 
which is technologically challenging to implement with high 
accuracy [5]. The DOEs with a comparatively small number 
of levels allow accurate generation of vortex beams if they 
represent the analogues of holograms with a reference beam. 
Herewith, the formation occurs in several off-axis orders, 
which limits the energy efficiency [6, 7]. At the same time, the 
binary annular gratings (phase and amplitude diffraction axi-
cons) allow obtaining zero-order Bessel beams along the opti-
cal axis.

One of the ways in the development of the devices and 
methods for producing vortex Bessel beams is the use of 
anisotropic crystals. Theoretical and experimental studies 
[8 – 12] have shown that, in uniaxial crystals, the zero-order 
Bessel beam, which propagates along the crystal axis, peri-
odically transforms into the second-order vortex Bessel beam. 
A complete transformation requires that the crystal thickness 
is a multiple of the transformation period. As shown in [8], 
the repetition period of the beam shape in a crystal depends 
on the refractive indices of the crystal and the numerical aper-

ture of the axicon, the period constituting tens of microns for 
the axicons with a numerical aperture of 0.15 – 0.5. The 
micron-sized tolerances of the crystal thickness must be main-
tained to form a predetermined beam, which is rather difficult 
because of high complexity of manufacturing and variation of 
the crystal properties. In this paper we propose to perform 
matching of the beam transformation period with the crystal 
length by means of varying the wavefront curvature of the 
beam illuminating the axicon. It is known that supplementing 
the axicon by a lens [13] allows the formation of the Bessel 
beams with a varying spatial frequency [14]. We consider two 
configurations of optical implementation of the dynamic 
matching of the transformation period in the crystal at the 
expense of the changes in the spatial frequency of the Bessel 
beam.

2. Theoretical justification

The electric field intensity in the Bessel beam of an arbitrary 
order m is described by the formula [1]

E(r, j) = Jm(kar)exp(imj),	 (1)

where Jm(x) is the Bessel function of mth order; k = 2p/l is the 
wavenumber; a is the numerical aperture; and r, j are the 
polar coordinates.

At m = 0 the Bessel beam is known as a classical diffrac-
tion-free beam, which is formed by the axicon and has a max-
imal intensity at the centre. At m ¹ 0, as is seen from (1), the 
exponential factor exp(imj) describing the vortex phase 
appears. Thus, the intensity value vanishes on the optical axis. 
This phenomenon is associated with the ‘phase dislocations’ 
or ‘phase singularities’, since the light wave phase is not 
defined at the vortex beam centre and may take any value 
from zero to 2p. The main property of the spiral phase dislo-
cation consists in the fact that a circumvention of the disloca-
tion over the wavefront surface changes the phase strictly by 
2p. Depending on the phase vortex direction, spiral disloca-
tions are divided into the left-hand (negative) and right-hand 
(positive) dislocations. 

It is assumed that the optical vortex is a result of the 
superposition of two or more light beams (in particular, 
monochromatic beams), which in a definite way balance each 
other, so that the wave maxima of one beam overlap the wave 
minima of the other, thus forming the zero-intensity region 
mentioned above. The passage of the zero-order Bessel beams 
through an anisotropic crystal results in the emergence of 
ordinary and extraordinary rays overlapping in the nonpar-
axial case, which, as indicated above, leads to the formation 
of an optical vortex.
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The intensity distribution I (x, y, z) in the Bessel beam 
propagation along the crystal axis appears as [11, 12]:

I (x, y, z) »  | ( )|C z J k x y
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where

C(z) = exp(ikzgo) + exp(ikzge),

S(z) = exp(ikzgo) – exp(ikzge);
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the propagation direction of the ordinary and extraordinary 
rays; no, ne are the crystal refractive indices for the ordinary 
and extraordinary rays, respectively; and z is the travelled dis-
tance.

A complete transformation of the zero-order Bessel beam 
into the second-order vortex Bessel beam occurs periodically 
at the distances that are multiple of 
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As follows from (3), the complete transformation period 
depends on the crystal refractive indices, the axicon numerical 
aperture and the radiation wavelength. To dynamically 
change (adjust) the period, it is proposed to vary the param-
eter a by changing the wavefront curvature of the beam illu-
minating the axicon.

As a rule, it is assumed that the axicon is illuminated by a 
plane-parallel beam, and the larger the diameter of the beam 
illuminating the axicon, the more extended the light segment 
being formed. In most cases, a plane-parallel beam is obtained 
by means of the beam expander that represents a telescopic 
system enlarging the laser beam size. In contrast, we propose 
to coordinate the beam transformation period with the crys-
tal length by varying the wavefront curvature of the illumi-
nating beam. Two configurations are possible in this case.

The first configuration involves the use of a beam 
expander which generates a spherical wavefront by changing 
the distance between the telescopic system’s lenses. The binary 
axicon produces two diffraction orders that form both con-
verging and diverging wavefronts. This configuration uses 
the convergent diffraction order the axicon generates. 
Illumination of the axicon with a spherical wavefront is 
equivalent to summation of the phase functions of the axicon 
and the lens (this element is known as ‘linsacon’ [13]). 
Depending on the wavefront curvature radius of the beam 
illuminating the axicon, the numerical aperture of the formed 
Bessel beam, which determines the distance between the rings, 
will vary. Consequently, the beam transformation period in 
the crystal will also vary. Such an adjustment is possible in 
regard to the formation of both divergent (the period is 
increased) and convergent (the period is decreased) spherical 
wavefronts.

In case of propagation in free space, the Bessel beam spa-
tial frequency (scale) changes in accordance with the travelled 
distance and the wavefront curvature [14]:
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where a0 is the axicon spatial frequency (corresponding to the 
Bessel beam frequency when illuminated by a plane wave); f is 
focal distance of the lens used to form a spherical wavefront; 
and a(z) = a0  f /( f – z) is a variable frequency of the quasi-
Bessel beam being formed.

The second configuration corresponds to the case when 
the axicon is illuminated by a planar beam emerging from 
the expander; then, the beam is transformed by an addi-
tional lens positioned behind the axicon. In this case, a 
diverging diffraction order formed by the axicon is used, 
and we come to the use of the lens as the imaging system that 
forms a real image. A certain cross section of the axicon 
focal region is located in the object plane of the lens, and the 
image plane is positioned within the crystal in such a way 
that a complete transformation occurs at the crystal output. 
In this case, the spatial frequency (scale) of the imaged 
Bessel beam is also varied [3].

The main drawback of this approach is that the transfor-
mation period varies in the course of light propagation 
inside the crystal. Since the axicon forms an extended light 
segment along the optical axis, different parts of the segment 
are imaged within the crystal with different magnifications 
due to the changes in the ratios between the optical system 
distances. This effect is clearly visible in the images obtained 
in the modelling process and presented in the next section 
(see, for example, Fig. 3). It is seen that the repetition period 
of the beam shape is changed along the optical axis, and the 
process is quasi-periodic in this case. This leads to the fact 
that the periods of rings at the input and output of the crys-
tal are different. However, these effects are insignificant at 
small enough magnifications and moderate numerical aper-
tures.

3. Numerical simulation

Simulation of the Bessel beam propagation in a uniaxial crys-
tal has been conducted by means of the method of expansion 
in plane waves, set forth in [11, 12]. The period of the ampli-
tude diffraction axicon is set equal to 4 mm, the LiNbO3 crys-
tal thickness is 0.554 mm, the refractive indices are no = 2.286, 
ne = 2.200 and the wavelength is l = 632.8 nm. The calculated 
intensity distributions at the crystal output along the propa-
gation axis for different wavefronts are shown in Figs 1, 2 (the 
near-axis parts of the beams are displayed).

The results of simulation show that the Bessel beam’s 
transformation period constitutes hundreds of micrometres. 
This allows manufacturing of miniature beam transducers 
on the basis of thin crystals, on the surface of which a dif-
fraction axicon is formed. The use of a complementary lens 
leads to a quasi-periodic dependence of the Bessel beam 
transformation in the crystal along the propagation axis. 
This is particularly well-observed for a convergent beam, a 
decrease in the transformation period along the propagation 
axis being accompanied by a change in the transversal scale 
of the beam (Fig. 3).

For a convergent beam, the transformation period 
decreases with increasing distance from the crystal input sur-
face, whilst for divergent beam it increases. Therefore, the use 
of a movable lens extends the possibility of beam transforma-
tion, since in this case both the scale and transverse intensity 
distribution can be varied.
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4. Experimental study

To investigate the optical-mechanical transformation of the 
zero-order Bessel beam into the second-order vortex beam, an 
optical setup has been assembled, the schematic of which is 
shown in Fig. 4. The setup comprises a radiation source, a 
beam expander, a diffraction axicon, a crystal, a microlens 

and a CCD. To measure the wavefront, a Hartmann sensor 
and an optical-quality beam splitter were used. The crystal 
axis was oriented parallel to the optical axis of the scheme. A 
two-dimensional angular frame was used to ensure exact 
alignment of the crystal axis with the system optical axis. 

To form the zero-order Bessel beam on a glass substrate, 
an amplitude diffraction axicon was manufactured, with a 
40-mm diameter and a period of rings of 4 mm, which corre-
sponds to the angular aperture a = 0.159 for l = 0.6328 mm. 
The photoresist mask exposure was carried out using the 
CLWS-200 installation in vector mode, which ensured the 

a b c

Figure 1.  Calculated intensity distributions at the LiNbO3 crystal output at the distances between the objective lens and lens L1 (see Fig. 4): (a) 0, 
(b) 10 and (c) 20 cm.

a b c

Figure 2.  Calculated intensity distributions along the propagation axis at the distances between the objective lens and lens L1: (a) 0, (b) 10 and (c) 
20 cm.

a b

Figure 3.  Calculated intensity distributions (a) along the propagation 
axis and (b) at the crystal output in illuminating the axicon by a con-
verging beam.
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Figure 4.  Experimental setup.
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absence of step topology defects and high quality of the thus 
formed Bessel beam. A photograph of the diffraction mask 
(strips of chromium of 100 nm in thickness) obtained with an 
electron microscope is shown in Fig. 5. The width of the light 
and dark rings is the same and constitutes 2 mm. Two rings 
with enlarged width, located in the central part of the axicon, 
are required for the laser beam alignment. Since the radius of 
the outer wide ring of chromium does not exceed 50 mm, the 
distortion this ring introduces into the Bessel beam is observed 
at the distances up to 350 mm at the aperture a = 0.159. Given 

the crystal is distanced by 5 mm from the axicon and the 
diameter of illuminated axicon area is 15 mm, the presence of 
such defects does not affect the results of experiments.

The increase in the beam sizes at the crystal output is pro-
vided by a 40´ objective lens with an aperture NA = 0.65 
exceeding the axicon aperture. The laser beam expansion is 
performed by a 60´ lens and a plano-convex lens L1 with a 
focal length of 15 cm. The lens L1 was capable of moving 
along the optical axis, thus providing a change in the curva-
ture of the wavefront illuminating the axicon. Figure 6A 
shows experimental results of the Bessel beam transformation 
in the CaCO3 crystal with a length of 15 mm at different posi-
tions of the lens L1, while Fig. 6B demonstrates the corre-
sponding wavefronts of the illuminating beam. The presence 
of the zero- and second-order Bessel beams at the crystal out-
put, described theoretically in [12], corresponds to the experi-
mentally observed intensity distributions. The vortex nature 
of the second-order Bessel beam formed at the output from a 
uniaxial crystal was proved earlier in [11] using the output 
beam interferogram (Fig. 7). It is known that spiral disloca-
tion leads to emergence of a so-called ‘fork’ in the finite-width 
fringes of the interferogram, with a centre in the dislocation 
region, those fringes being a result of interaction of the wave-
front under study with a tilted planar wavefront. This ‘fork’ 
looks like a branching of a single fringe into m fringes, where 
m indicates the vortex order. Indeed, one can observe a dou-
ble fork at the centre of the interferogram shown in Fig. 7, 
which indicates the presence of the second-order vortex beam 
component.

Figure 5.  Photograph of the diffraction axicon with a period of rings of 
4 mm.
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Figure 6.  (A) Measured intensity distributions at the CaCO3 crystal output and (B) the wavefronts of illuminating beams at the distances between 
the objective lens and the lens L1: (a) 18, (b) 18.5 and (c) 19 cm.
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A very urgent problem is to reduce the overall sizes of the 
device, which requires reducing the transformation period. It 
is clear from preceding consideration that the transformation 
period can be reduced by increasing the axicon numerical 
aperture. To solve this problem, experiments with a diffrac-
tion axicon having a period of rings of 2 mm have been carried 
out. Since the axial segment length of such an axicon is not 
large, the LiNbO3 crystal with a thickness of only 0.554 ±  

0.002 mm was used. To increase the beam diameter and the 
axial segment length, the lens L1 with a focal length of 15 cm 
was replaced by a lens with a focal length of 20 cm. The trans-
formation results and relevant wavefronts are shown in Fig. 8. 

As it follows from the data in Figs 6 – 8, a change in the 
wavefront curvature allows the zero-order Bessel beam to be 
transformed into the second-order vortex beam. This trans-
formation may employ both concave and convex wavefronts 
that correspond to converging and diverging beams. Thus, 
the displacement magnitude being required for complete 
transformation is determined by the crystal length, birefrin-
gence indices and numerical aperture of the axicon. The 
experimental results are in good agreement with the data pre-
dicted by numerical simulation.

5. Conclusions

We have experimentally studied the propagation of the zero-
order Bessel beam formed by a diffraction axicon along the 
uniaxial crystal axis. A mutual transformation of the zero- 
and second-order Bessel beams in the crystal by means of the 
collimator lens displacement is shown. A possibility is speci-
fied for periodic and quasi-periodic Bessel beam transforma-
tion determined by the wavefront curvature of the illuminat-
ing beam.

It is found that the diffraction axicon with a period of a 
few micrometres allows one to obtain a transformation period 
of hundreds micrometres of the Bessel beam in a crystal (in 

Figure 7.  Output beam interferogram.
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Figure 8.  (A) Measured intensity distributions at the LiNbO3 crystal output and (B) the wavefronts of illuminating beams at the distances between 
the objective lens and lens L1: (a) 0, (b) 10 and (c) 20 cm.
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the visible wavelength range). This makes it possible to design 
miniature beam transducers based on thin uniaxial crystals, 
on the surface of which a diffraction micro-relief is formed.

A comparison of the optical-mechanical approach with 
other possible methods of adjusting to the crystal parameters, 
including heating the crystal and varying the wavelength, 
reveals undoubted advantages of the optical-mechanical 
approach due to the ease of implementation and broadness of 
the tuning range.

A variation of the spatial transformation period by means 
of a movable lens changes the output beam sensitivity to the 
optical system parameters, such as the wavelength, crystal 
birefringence, position of optical elements, etc., which allows 
setting the starting working point of the beam transducer and 
tuning its sensitivity to external influences. Given the process-
ability and low cost of such transducers, this makes it possible 
to use them in the measurement technique.
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