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Abstract.  We have shown theoretically the possibility of control-
ling nanoscale superfocusing of plasmons in a metal conical tip by 
modulating the carrier frequency of the pulse. The propagation of 
an ultrashort plasmon pulse in a metal nanoneedle is simulated 
numerically. The calculation is based on an asymptotic analytical 
solution of Maxwell’s equations for electromagnetic wave propaga-
tion in a conical conductor in the vicinity of its apex, obtained by 
the approximate separation of variables in spherical coordinates. 
The dependence the field superfocusing on the conductor material, 
pulse chirp and propagation length is studied. 

Keywords: plasmon, ultrashort pulse, superfocusing, tip of a con-
ducting cone. 

1. Introduction 

Generation of femtosecond pulses of variable shape enables 
the control of complex quantum systems [1, 2]. To determine 
the general conditions for the optimal control of quantum-
mechanical systems, Golovinskii [3] formulated a generalisa-
tion of Pontryagin’s maximum principle. However, small 
sizes of nanostructures, as compared with the laser wave-
length, complicate the spatial selectivity and independent 
control of individual nano-objects in such systems using laser 
light. Stockman et al. [4, 5] showed theoretically that limiting 
the localisation of the laser light impact by the diffraction 
limit can be overcome by the near-field effects of different 
nanoemitters. It was found that the spatial propagation of the 
near electromagnetic field can largely depend on the linear 
chirp (linear frequency modulation) of an incident laser pulse. 

The combination of adaptive control [1, 2] and principles 
of nano-optics [6] allows subwavelength dynamic localisation 
of the field at nanoscale levels. If a conic conductor is used as 
a guiding structure, the propagation of a surface plasmon 
polariton along the conductor leads to a decrease in the wave-
length as it approaches the apex of the cone. Babajanyan et al. 
[7] showed that as a result of this, the field is focused in a very 
small spatial region, whereas the electric field strength 
increases significantly. This phenomenon is used in the opti-
cal near-field microscopy for studying nanometre objects, 

because it provides a controlled ‘delivery’ of the field to them. 
Nonlocal effects arising due to the spatial dispersion result in 
a slight decrease in the field intensity [8, 9]. Numerical meth-
ods were used to study a reduction in the degree of maximal 
focusing due to the finite curvature of the tip [10] and the cone 
angle optimal for superfocusing was determined. 

Theoretical works [11, 12] have shown the possibility of 
generating wave packets of plasmons (plasmon polaritons) in 
nanowires, which propagate along the nanoconductor and 
represent a superposition of plasmon modes in a multireso-
nance system. An interesting feature of the experimentally 
observed dynamics of these packets is the concentration of 
energy at the far or near end of the nanowires, or in its central 
portion, depending on the sign of the chirp or in its absence, 
respectively. The essence of the process is that the phase 
velocity of the lowest modes is higher than that of the highest 
modes, and a constructive interference arises between them at 
some distance from the excitation region. The field enhance-
ment at the end of a silver nanowire was also observed exper-
imentally [13, 14].

A unique feature of plasmon nanofocusing is the possibil-
ity of controlling the interference by adjusting spectral phases 
[15, 16]. A simultaneous use of spatial compression and fem-
tosecond control of an optical excitation of surface plasmons 
in a conical metal nanotip can achieve a 10 nm spatially and 
few-femtosecond temporally confined excitation [17]. Thus, a 
possibility was demonstrated of spatial and temporal control 
of an optical field at nanometer scales and femtosecond dura-
tions. Experimentally, the femtosecond pulse propagation in 
a conical gold nanoprobe was observed in [18]. 

At the same time, details of the process of nanofocusing 
of ultrashort pulses are not yet entirely clear. Of interest are 
both the spatial focusing of the field near the tip and the 
concentration of the field in time. The aim of this paper is 
the numerical simulation of chirped ultrashort pulse ampli-
fication by conical metal structures, as well as analysis of the 
effect of the cone angle and the initial chirp of the pulse on 
the gain. The calculations were based on the results of paper 
[7] obtained for a monochromatic field. Using the inverse 
Fourier transform we have analysed the pulse propagation 
along a metal cone with characteristic cone angles of 
0.01 – 0.1 rad, characteristic length of the order of several 
hundred nanometres at characteristic cone base size of less 
than 100 nm. 

2. Field distribution under monochromatic 
excitation 

The study of the dependence of the field enhancement near 
the cone tip on the polarisation of the exciting field for the 
transverse magnetic and linearly polarised waves which are 
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focused on the base of the cone showed that the effective field 
enhancement is typical of a symmetric TM (m = 0) wave [19]. 
This type of polarisation can be obtained, for example, by 
direct focusing of radially polarised laser beams in nanocones 
[20]. In this regard, we will confine our consideration below to 
a wave packet of TM0 waves. 

The main difference of this problem from the classical 
problem of diffraction theory [21] is that the traditional 
assumption about the surface character of the skin effect can-
not be satisfied, and it is necessary to use real experimental 
frequency dependences of complex dielectric constants of 
metals [22] or their convenient analytical approximations 
[23, 24]. The analytical solution of the problem of propaga-
tion and superfocusing of a harmonic surface plasmon in a 
narrow metal cone that is used in the analysis of our problem 
is given by Babajanyan et al. [7], who considered an interest-
ing for us magnetic type of transverse waves, for which only 
the vortex component Hj ¹ 0. The geometry of the problem 
is shown in Fig. 1. 

For further analysis, we expound, first, closely following 
[7], the solution of the problem of propagation of monochro-
matic waves. For the Hj component the propagation equa-
tion is transformed into a scalar equation. In spherical coor-
dinates we can write it in the form of the wave equation [25] 
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where e(w) is the dielectric constant of the medium (the per-
meability m = 1); w is the frequency of the wave; and c is the 
speed of light. For separation of the variables we represent 
solution (1) in the form 

Hj(r, q, t) = R(r)Y (q)exp(–iwt).	 (2) 

Then for the functions Y (q) and R(r) we obtain the equations: 
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in which the constant of separation of variables h is deter-
mined from the boundary conditions on the surface of the 
cone. For small cone angles a, the parameter q << 1 rad, both 
inside and outside the cone, is near its surface. Accordingly, 
equation (3) without significant loss of accuracy can be 
replaced by the equation 
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which after the replacement of variables x = hq takes the form 
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The solution to equation (6) at x ³ 0 is expressed via the 
modified Bessel function I1(x) and the Macdonald function 
K1(x) [26]: 

Y (x) = D1I1(x) + D2K1(x).	 (7) 

In this case, the function I1(x) is regular at zero, and the func-
tion K1(x) falls off exponentially at large x. Therefore, the 
solution to equation (3) for two different ranges of angles has 
the form 

Y (q) = D1I1(hq),   q £ a, 	 (8)

Y (q) = D2K1(hq),   q ³ a.	 (9)

We note that the smallness of the cone angle allows one to 
obtain and investigate analytically the solution. Similarly, it is 
possible to solve the problem of the conical cavity [27]. The 
equation for the radial function (4) is analogous to the equa-
tion for the radial function in the quantum-mechanical prob-
lem of motion in a centrally symmetric field of the polarisa-
tion potential [28]. We introduce the notation W = ew2/c2 and 
make the replacement R(r) = c(r)/r. For the new function c(r), 
instead of (4), we have the equation 
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If we now make the substitution 
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where k W= , we obtain the equation 

r2Z'' + rZ' + ( r2 + n2) = 0,   n2 = h2 – 1/4.	 (10) 

At h2 > 1/4, equation (10) is a differential equation for the 
Bessel functions with a pure imaginary index [29], the solu-
tions of which are sufficiently studied. The equation has two 
independent solutions – Sfn(x) and Cfn(x), which are expressed 
in the form of absolutely convergent series at any values of x 
and n: 
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Figure 1.  Geometry of a conical structure in which superfocusing is 
performed; e1 and e2 are the dielectric constants outside and inside the 
cone, respectively. 
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At the values of the argument x ® 0 we have asymptotic rep-
resentations Sfn(x) µ sin(nlnx), Cfn(x) µ cos(nlnx). 

Given this near the cone apex at h2/r2 >> |e|w2/c2, valid is 
the asymptotic expression 
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where the distance r0 from the section to the cone apex deter-
mines the phase of the wave. On the basis of Maxwell’s equa-
tions we obtain 
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Then the spatial dependences of the electrical components of 
the monochromatic field have the form 
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at q ³ a. Here, I0 and K0 are the modified Bessel function and 
the zero-order Macdonald function, respectively. These solu-
tions predict a singular growth of the wave field near the apex 
of the cone, limited by the length of the upper base of the 
truncated cone to its geometric apex. 

3. Focusing of an ultrashort plasmon-polariton 
pulse 

To solve the problem of spatiotemporal focusing, we assume 
that in the case of an incident ultrashort laser pulse exciting a 
magnetic-type wave in a conical structure, the time depen-
dence of the electric field in the centre of the cross section at a 
distance h from the top has the form f (t) = C(t)exp[– iw0t – 
iy(t)], where y(t) = w0 bt2, i.e. the effective frequency has a 
linear chirp b: weff(t) = w0(1 + bt). For a Gaussian pulse C(t) 
= f0exp(– at2), and the corresponding intensity is I(t) = 
f (t) f *(t) = f02exp(– 2at2). The Fourier transform of this pulse 
[30] is 
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The evolution of the pulse in the linear regime is completely 
determined by the inverse Fourier transform: 
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To calculate the Fourier integral (21) we need to know the 
dependence of the parameter h = h' + ih'' on the frequency w. 
This dispersion dependence is determined from the condition 
of continuity of the tangential components of the field on the 
surface of the cone. The corresponding dispersion equation 
has the form 
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where e2 = e2' + ie2''. By specifying Er (h, t) = f (t), we find A(w) 
and the spectral components Er (r, w), Eq (r, w) inside the cone, 
and from the condition of matching solutions on the bound-
ary of the cone we determine the value of B(w) and spectral 
components of the field outside the cone. Parameters A and B 
are measured in V m–1/2. 

The values of real and imaginary parts of the refractive 
index are taken from [31]. We used them to calculate real and 
imaginary parts of the dielectric constant of metals. Then, we 
numerically solved equation (22) for each spectral compo-
nent. The results of calculations of the dependences of real 
and imaginary parts of the propagation parameter h on the 
wavelength l are shown in Fig. 2 for silver, gold and copper 
nanoneedles in vacuum. Using the results of calculations of 
the propagation parameter h' we can estimate the effective 
refractive index in the medium, as well as the phase and group 
velocities of the packet. Figure 3 shows the dependence of the 
effective refractive index neff = n'eff + in''eff  in a silver cone with 
an opening angle a = 0.01 rad on the distance z to the apex of 
the cone. One can clearly see its increase with approaching to 
the apex. 

Figure 4 shows the dependence of the phase and group 
velocities on z for the same cone. At a distance of 500 m from 
the apex at the centre wavelength l0 = 1550 nm the group 
velocity is equal to 0.18c; with a further approach to the apex 
of the cone the wave virtually stops. 

For each spectral component we calculated the change in 
the flow of energy as it propagates to the cone apex. The 
energy flow was calculated by the formula 

[ ( , , ) ( , , )F E r E r*
r r

S
w q w q= y

	 ( , , ) ( , , )] ( )dE r E r S*
pw q w q u w+ q q ,	 (23) 

where S is the cone section plane perpendicular to its gene
ratrix, and up(w) is the phase velocity of the spectral compo-
nent. Figure 5 shows the attenuation of the flow of the spec-
tral components after their propagation from a distance of 
1000 nm up to a distance of 100 nm from the apex of a silver 
cone. Despite the fact that the energy flow of each spectral 
component is significantly attenuated as it propagates along 
the cone due to absorption in the metal, the electromagnetic 
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field of the spectral components increases as it approaches the 
apex of the cone due to the increase in the spatial localisation 
of the field. 

Figures 6 – 8 show the results of calculation of the field on 
the surface of silver, gold and copper nanoneedles for a 32-fs 
chirpless and positively (negatively) chirped laser pulse with a 
centre wavelength of 1550 nm. The angle of the cone for all 
calculations was 0.01 rad. The pulse travels a distance from 
1000 nm to 100 nm from the apex of a metal cone. 

For Figs 6a, 6b and 6c the gain in a silver cone is 11.62, 
11.44 and 13.69, and the change in the pulse duration is equal 
to 0.2, 5.3 and – 6.4 fs, respectively. For Figs 7a, 7b and 7c the 
gain in a gold cone is 7.28, 7.02 and 10.15, and the change in 
the pulse duration is equal to 0.2, 6.1 and – 6.4 fs, respectively. 
For Figs 8a, 8b and 8c the gain in a copper cone is 6.23, 6.05 
and 7.57, and the change in the pulse duration is equal to 0, 
4.9 and – 4.6 fs, respectively. 

For the silver cone we calculated the gain (at the same 
parameters as before) as a function of the cone angle for a 
laser pulse without an initial chirp, with a centre wavelength 
of 1550 nm and an initial duration of 32 fs. The results of 
calculations are presented in Fig. 9. It can be seen that by 
increasing the cone angle the focusing effect is enhanced. In 
fact, at a » 14°, this enhancement is already close to the max-
imal. It should be noted that a further increase in the angle 
actually does not guarantee the growth of the focused field, 
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because the field is transferred to other modes due to the vio-
lation of single-mode propagation [32]. 

For the silver cone we also calculated the gain and com-
pression ratio of the pulse as a function of its initial chirp. The 
calculation was performed, starting with the distance of 
1000  nm to 150 nm from the apex of the cone with an opening 
angle of a = 0.1 rad. The calculation results are shown in 
Fig. 10 for the initial pulse duration t0 = 32 fs and the centre 
wavelength l0 = 1550 nm. It follows from Fig. 10 that the 
change in the initial chirp of pulse allows one to reach a 10 % 
enhancement of the focusing effect with respect to the gain 
and a 10 % pulse compression. Our results are consistent with 
the overall picture of spatiotemporal superfocusing observed 
in the experiment [17]. 

4. Conclusions 

Analytical formulas for the field near the apex of a metal cone 
have allowed us to calculate the propagation of ultrashort 
plasmon pulses in nanoneedles of three metals: silver, gold 
and copper. We have calculated the propagation constant as 
a function of frequency and determined the phase and group 
velocities of propagation as functions of the distance to the 
apex of the cone. When approaching to the apex of the cone 
the velocity of the pulse is reduced, and the field of the electro-
magnetic wave is amplified. Superfocusing of plasmon pulses 
is observed in a metal cone and the gain depends on the mate-
rial of the cone. When the pulse travels a distance of 850 nm 
in a conical structure of length 1000 nm at an opening angle 
a = 0.01 rad, we have observed that the electric field of a 32-fs 
nonchirped pulse increases by 11.6 times for the silver cone, 
by 7.3 times for the golden cone and by 6.2 times for the cop-
per cone. A further enhancement of the focusing effect can be 
achieved at a greater angle of the cone. 
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The focusing effect is enhanced in the case of pulses with a 
negative initial chirp. This allows the use of frequency modu-
lation to obtain optimal superfocusing of a femtosecond plas-
mon pulse.
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31.	 Rakić A.D., Djurišic A.B., Elazar J.M., Majewski M.L. Appl. 
Opt., 37, 5271 (1998).

32.	 Ding W., Andrews S.R., Mailer S.A. Phys. Rev. A, 75, 063822(10) 
(2007).


