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Abstract. The characteristics of the gain of Stokes pulses in sin-
gle-mode optical fibres by stimulated Brillouin scattering (SBS) 
of monochromatic and nonmonochromatic pump signals have 
been investigated by numerical simulation using a spectral 
approach. Conditions under which ‘slow light’ (caused by a 
group delay) can be implemented are found (it is reasonable to 
apply this term to a process in which a pulse is delayed with con-
servation of its shape). The plane-wave interaction model is 
shown to describe adequately the dynamics of this process in 
single-mode fibres. A number of gain modes are investigated for 
Stokes pulses with different time structures upon monochromatic 
and nonmonochromatic excitation. A new data transfer technique 
is proposed, which is based on the conversion of stepwise phase 
modulation of the input Stokes signal into amplitude modulation 
of the output signal.

Keywords: single-mode optical fibre, SBS, ‘slow light’, Kramers – 
Kronig relations.

1. Introduction 

The well-known Kramers – Kronig relations, which establish 
a one-to-one correspondence between the imaginary and real 
parts of active-medium permittivity, were widely used in 
numerous studies devoted to ‘slow light’ at stimulated Brillouin 
scattering (SBS) in single-mode optical fibres (see, e.g., [1 – 3]). 
This approach is obvious for monochromatic interacting 
waves in the constant pump approximation. At the same 
time, when calculating the SBS gain, the application of 
Kramers – Kronig relations for nonmonochromatic pumping 
is generally justified by the possibility of using the convolu-
tion of the pump spectrum with the scattering line profile 
[3, 4]. In fact, an analogy (which is far from complete) between 
the gain in a nonmonochromatic pump field at SBS and the 
gain in a medium with population inversion and inhomoge-
neously broadened line profile was used in the aforemen-
tioned studies. Indeed, even at the end of the 1960s and in the 

1970s, it was experimentally and theoretically shown (see, 
e.g., [5, 6]) that the conditions under which the Stokes wave 
gain at a nonmonochromatic broadband pump field (Dwp >> 
1/T2, where Dwp is the pump linewidth and T2 is the phonon 
lifetime) can be implemented are determined by the average 
pump intensity rather than the con volution. Note that these 
studies were devoted to stimulated Raman scattering (SRS); 
however, the results obtained are completely applicable for 
SBS, because the dynamic equations describing both pro-
cesses are identical. In addition, there was an incorrect opin-
ion, according to which the time delay is due to only the SBS 
nonstationarity [7]. The Stokes pulse delay caused by the SBS 
nonstationarity was, in par ticular, observed by us experimen-
tally, and a quantitative theoretical description was developed 
for this effect [8]. Below we find the conditions under which 
the Stokes signal gain is determined by the aforementioned 
convolution at arbitrary Dwp values.

In this study, we consider also the influence of diffraction 
loss on the hypersound-wave damping. The regimes provid-
ing ‘slow light’ and generation of Brillouin solitons are inves-
tigated analytically and numerically, and adequate estimates 
of the transition time to the stationary scattering regime at 
stepwise switching of pumping are obtained.

2. Analysis of the basic equations 

Our analysis is based on the well known equations for slow 
amplitudes of the pump field, Stokes signal and acoustic 
phonons in the plane-wave approximation:
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Here, z is the longitudinal propagation coordinate; V is the 
group velocity; t is the time; g is the SBS gain; and as, Ap and 
Q are the amplitudes of the Stokes signal, pump signal and 
acoustic wave, respectively.

An analytical consideration will be performed in the con-
stant pump approximation. Then, the right-hand side of the 
pumping equation in system (1) is zero. Let us make a stan-
dard change of variables (q = t + z/V ) and search for a solu-
tion to system (1) by representing the pump and Stokes signal 
fields as expansions in series [9]:
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Ap = ( ),exp iA nn0 qW/    as = ( ) ( ) .exp ia z mm qW/
Here, n, m = 0, ±1, ±2, ... are the numbers of the frequency 
components of interacting fields with boundary conditions at 
z = 0:

Ap(t) = ( ),exp iA ntn0 W/    as(t) = ( ) ( ),exp ia mt0m W/

which correspond to the application of a discrete Fourier 
transform to the input amplitudes in the periodicity interval 
T = 2p/W. Obviously, one can choose an interval T suffi-
ciently large to overlap completely all characteristic times 
inherent in the system under consideration. In our opinion, 
this circumstance makes the model in use adequate to physical 
reality. 

The solution for Q will be presented as Duhamel’s integral:
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Substituting the corresponding expansions into the expres-
sion for Q, we obtain
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Let us introduce k = m – n. Then the first equation of sys-
tem (1) yields 
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Having equated the terms with identical exponentials in (2) 
and replaced variables a'l = al exp(iWz 2l/V) [this replacement 
is equivalent to the transition to ‘travelling’ time q = t – z/V in 
coordinate representation (1)], we arrive at
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It follows from (3) that the gain of each spectral compo-
nent (a'l ) depends, generally speaking, on the presence or 
absence of other spectral components of the Stokes field and 
on the phase relations between the Stokes and pump field 
components. At W –1 >> T2, system (3) can be reduced to the 
system of equations giving a model description of stimulated 
scattering of broadband pumping, which was analysed in 
detail in [9]. Here, we consider the case of an arbitrary rela-
tion between W –1 and Т2. Let us take into account only the 
Bragg terms with indices (m – l + k) = 0 in system (3):
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At transition to a continuous spectrum in integral sum (4), 
we obtain the expression (note that the limiting transition 
from a discrete spectrum to a continuous one is the same as in 
[10]):
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The integral in (5) is a convolution of a Lorentzian gain pro-
file with the pump line profile. Here, a' (w) and A(w) are the 
corresponding amplitude spectral densities.

Note that the neglect of oscillating terms in (3) is obvi-
ously equivalent to averaging over the longitudinal coordinate 
z on the assumption of a large interaction length [L >> Lcoh, 
where Lcoh = V(2Dwp)–1 is the coherent interaction length] 
and small-signal gain on the coherent interaction length 
(gIp Lcoh << 1, where Ip is the pump intensity); this situation 
corresponds to the incoherent interaction regime [9]. It fol-
lows directly from (4) and (5) that the gain of each spectral 
component in this regime is exponential and independent of 
the other Stokes spectral components. Specifically this cir-
cumstance makes it possible to interpret the Stokes wave gain 
in terms of variation in the refractive index and apply the 
Kramers – Kronig relations. In practice, the aforementioned 
conditions are generally satisfied in sufficiently long optical 
fibres, and only for this reason the theoretical estimates [3, 4] 
are adequate to the experimental data. For example, for 
two-mode pumping with an intermodal distance ~1/T2 at 
T2 » 10 ns, the coherent interaction length is on the order of 
1 m. At L > 200 m, the condition of small-signal gain on the 
coherent length is obviously satisfied even for a total gain 
increment of ~20, corresponding to the Stokes radiation 
generation threshold from spontaneous noise. Nevertheless, 
the exact equality in systems (4) and (5) is possible only in 
the limiting case of an infinitely large interaction length or 
under monochromatic pumping and arbitrary interaction 
length.

3. Structure of wave vectors in a single-mode 
cylindrical optical fibre 

It is well known that the transverse field distribution for 
the central low-order mode of a cylindrical optical fibre is 
described by the zero-order Bessel function A(r) ! J0(xr), 

Ks

Kp

KQ

Figure 1. Conical geometry of the pump and Stokes signal wave vectors 
in a single-mode fibre: Ks are the Stokes signal wave vectors, Kp are the 
pump wave vectors, and KQ is the acoustic wave vector; the dotted line 
is the fibre axis.
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where x is determined from the zero boundary condition 
[J0(xr0) = 0 and r0 is the fibre core radius]. Note that a similar 
distribution is characteristic of the plane-wave focusing by 
a conical lens; therefore, the pattern presented in Fig. 1 is 
observed at each point of a single-mode fibre in the wave-
vector space. On the assumption of the symmetry of the prob-
lem, one can conclude that any pair of wave vectors of pump 
and Stokes signals in an arbitrary axial cross section interacts 
with the same acoustic wave (with an amplitude Q), propagat-
ing along the fibre axis.

Let us introduce the densities of interacting-wave ampli-
tudes: ( ) /2A Ip! pj  and ( ) /a I 2s! pj , where Ip and Is are, 
respectively, the pump and Stokes signal intensities and j is 
the rotation angle in a fibre cross section with respect to some 
zero direction. For monochromatic pump and Stokes signal 
fields, we have
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Then the gain increment is  
–

G = 1/2 gIpL(1 + iwT2)–1.
Equations of types (4) and (5) can be obtained in a similar 

way. Hence, they are analogous to the plane-wave equations. 
Thus, the generally accepted plane-wave model, which is used 
to describe theoretically the processes taking place in optical 
fibres [11, 12], is adequate to the experimental situation. It can 
easily be shown that the Brillouin shift is smaller than the shift 
in the case of exact backscattering, WMB, by a value on the 
order of D = 1/2WMB(NA/nc)2, where NA is the fibre numerical 
aperture and nc is the fibre core refractive index. Assuming 
that WMB » 10 GHz, we obtain the following estimate for 
typical NA values (0.1 – 0.3): D = 2 – 200 MHz.

Obviously, the interaction of any other pair of pump and 
Stokes signal wave vectors with a sound wave results in off-
axis components of the acoustic wave. However, the absence 
of spatial resonance makes their contribution into the ampli-
fication process much smaller than the contribution of the 
axial component, and these components can be neglected in 
the first approximation.

Let us estimate the influence of diffraction loss on the 
hypersound decay constant. To this end, we can use the fol-
lowing circumstance: as was shown above, an axial compo-
nent of a hypersonic wave is generated in a single-mode fibre. 
Since the hypersound wavelength is lhyp = lp /2 ( lp is the 
pump wavelength), the relative amplitude loss on the Fresnel 
length can be estimated as lp(nd0

2)–1, where d0 is the fibre core 
diameter. Assuming the diffraction loss and the loss related 
to hypersound absorption to be additive, we determine the 
damping coefficient: a = a0 + lp (nd0

2)–1, where a0 is the hyper-
sound absorption coefficient. Then the total inverse damping 
time is 1/t = 1/T2 + Vhyp /lFr. Here, lFr is the Fresnel length for 
a sound wave and Vhyp is the speed of sound in the active 
medium.

4. Analytical properties of the output Stokes 
signal

Based on the equations for the Stokes spectral components, 
(4) and (5), one can draw a number of qualitative conclusions 
about the characteristic features of the temporal behaviour of 
output Stokes signal for signals with different spectra at the 
input of the active medium. Equations (4) and (5) can be writ-
ten as
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is the mean pump intensity and g(w) is the effective gain. The 
expression for g(w) is the simplest in the case of a pump spec-
trum described by a Lorentzian profile, because a convolu-
tion of two Lorentzian profiles in expression (5) yields again 
a Lorentzian profile with the following parameters:
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Here, DwL = 2/T2 is the Brillouin resonance linewidth and t = 
2/(DwL + Dwp). The equation for the spectral components (6) 
can easily be integrated:
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is the stationary gain increment.
Expression (8) allows one to draw certain conclusions 

about the temporal behaviour of the output Stokes signal, 
depending on the input signal spectrum. For example, at a 
spectral width of the input Stokes signal smaller than the 
bandwidth of the SBS medium, Dw ! ( G t)–1, and G >> 1, 
the phase of the last factor in (8) depends almost linearly on 
frequency. This means that, in the case of the inverse Fourier 
transform, we have an output signal reproducing the shape 
of the input signal, with a temporal shift with respect to L/V 
by the ‘slow light’ value: ~ tG/2. Hence, one can see that the 
‘slow light’ effect is related to the linear phase modulation in 
the gain bandwidth rather than to the scattering nonstation-
arity, as was erroneously suggested in [7]. Specifically this cir-
cumstance makes it possible to explain the temporal shift in 
terms of variation in the Stokes signal group velocity.

Furthermore, we assume that the input signal amplitude 
a(w)  is an even function of frequency (which generally corre-
sponds to its bell-shaped time envelope) and its spectral width 
exceeds the bandwidth of the SBS medium. Then, the product 
of the first two factors in (7) is also an even function. At G >> 1, 
the phase, as in the case of ‘slow light’, depends linearly on 
frequency; however, the cutoff of the signal spectrum by the 
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bandwidth distorts the temporal behaviour of the output 
pulse in comparison with the behaviour of the input signal. 
Therefore, a signal with a distorted shape is recorded at the 
output. Nevertheless, its intensity peak is shifted in time by 
the same value: ~ tG/2. It is noteworthy that the case with 
an odd function a(w) of the input signal corresponds to the 
formation of Brillouin solitons, i.e., implies a stepwise change 
in the phase of the input signal by p [13]. Repeating the above 
considerations, one can conclude that the zero of the output 
signal intensity should also be delayed with respect to the input 
signal zero by tG /2 + L/V.

5. Some results of computer simulation

Unfortunately, simple analytical expressions for g(w) cannot 
be obtained in the general case of an arbitrary pump spec-
trum. Therefore, to confirm the above considerations, we car-
ried out computation of the SBS gain process for pump spec-
tra of different shapes. System (1) was numerically solved 
within the constant pump approximation, with the corre-
sponding initial and boundary conditions. The interaction 
domain length was taken to be 100 m; the acoustic phonon 
lifetime was Т2 = 8 ns. To obtain amplitudes with Lorentzian 
and Gaussian pump spectra, we used a function in the form fn 
= rnd(1) exp(2pi∙rnd(1)), which served (after the Fourier 
transform, subsequent transmission through the correspond-
ing virtual-frequency filter, and inverse Fourier transform) as 
a model of stationary random process with a Lorentzian or 
Gaussian spectrum. Here, n is the number of steps in the pro-
gramme of numerical solution of system (1) (in our case, n = 
6750 on a time interval of 125 ns) and rnd(1) is a function 
generating a quasi-random number with a uniform probabil-
ity distribution from 0 to 1 at each addressing operation.

To verify our calculation, we compared the results of 
numerical simulation for monochromatic pumping with the 
similar results obtained using the exact formula [9]. The 
comparison showed complete adequacy of the numerical 
simulation in the range of variation in the stationary gain 
increment from 0 to 35. Note that the time response of the 
stationary scattering Тeqv = Gt/2, which was reported in 
[14, 15], is in fact the response time of the system to a D-shaped 
pulse of input Stokes signal under constant pumping; it is 
shorter by a factor of at least 2 than the real response time 
(Fig. 2; see also [8]). Note that the input Stokes pulse in all 
figures is shifted by a value equal to the light travel time along 
the fibre: L /V. Figures 3 and 4 show the results of numerical 
calculation of the gain of a 20-ns Stokes signal with a Gaussian 
shape of the input pulse without a sudden phase change (Fig. 
3) and with a sudden phase change by p at the centre of the 
input pulse (Fig. 4); these data confirm completely the quali-
tative conclusions drawn in Section 4. Specifically, in corre-
spondence with relations (7) – (9), we have G = 1/4 gáIpñL and 
t = 1/4Т2 for a Lorentzian pump spectrum of width Dwp = 
3DwL at T2 = 8 ns. Therefore, the numerical results for the 
mean gain increment (equal to 32) should be equivalent to the 
results for monochromatic pumping with a gain increment G 
= gIpL = 8 and t = 2 ns.

To compare the results obtained using nonmonochro-
matic pumping of different spectral compositions, we calcu-
lated numerically the gain for pump fields with Lorentzian 
and Gaussian spectra. It should be noted that, at identical 
FWHM values for Gaussian and Lorentzian pumping spec-
tra, their correlation functions have different widths, i.e., 

different time statistics. It was found that the similarity cri-
terion for this case is the equality of correlation function 
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Figure 2. Response of a SBS amplifier to (a) D-shaped and (b) step input 
Stokes pulses: ( 1 ) output Stokes signal, ( 2 ) pump level, and ( 3 ) input 
Stokes signal. The stationary gain increment is G = 16; T2 = 8 ns.
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Figure 3. Amplification of a Stokes pulse with a Gaussian shape and 
duration t = 20 ns in a 100-m-long fibre (a) under monochromatic 
pumping at a gain increment G = 8 and T2 = 2 ns and (b) under pumping 
with a Lorentzian spectral profile having a spectral width 3DwL at 
T2 = 8 ns and mean gain increment áG  ñ = 32. The other designations are 
the same as in Fig. 2.
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widths rather than the identity of pump spectral widths (at 
identical spectral widths, a Gaussian pulse is more ‘mono-
chromatic’ than a Lorentzian one, because it has not any 
wide high-frequency wings). Figure 5 shows the output 

Stokes signals for Lorentzian and Gaussian pump spectra at 
identical widths of correlation functions at the e–1 level. 
Similar results were obtained at other values of the gain 
increment and pump spectral widths. It is noteworthy that 
the gain of a p-phase modulated Stokes signal can be used to 
convert phase modulation into amplitude modulation 
(Fig.  6), i.e., to detect information.

6. Conclusions

Our study showed that the convolution of a pump spectrum 
with SBS profile can be used to estimate the gain efficiency 
and band in sufficiently long active SBS media. Each spectral 
component of the Stokes signal is amplified independently. 
Due to this circumstance, one can interpret an additional 
delay of the Stokes signal at the output of the active medium 
in terms of variation in the group refractive index. It was also 
shown that the process can be theoretically described using 
the plane-wave interaction approximation in the SBS dynamic 
equations. The diffraction of sound waves is an additional 
damping mechanism, which may cause broadening of the SBS 
gain line. In addition, it was shown that a p-step-phase modu-
lated Stokes signal with its subsequent detection in a Brillouin 
amplifier can be used to transfer information along single-
mode fibres.
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Figure 5. Comparison of the time characteristics of a SBS amplifier un-
der pumping with (a) Lorentzian and (b) Gaussian spectral profiles at 
identical widths of correlation functions. The designations are the same 
as in Figs 2 – 4.
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