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Abstract.  Spectral broadening of high-power transform-limited 
laser pulses under self-phase modulation in a medium with cubic 
nonlinearity is widely used to reduce pulse duration and to increase 
its power. It is shown that the cubic spectral phase of the initial 
pulse leads to a qualitatively different broadening of its spectrum: 
the spectrum has narrow peaks and broadening decreases. However, 
the use of chirped mirrors allows such pulses to be as effectively  
compressed as transform-limited pulses. 

Keywords: femtosecond pulses, high-power lasers, cubic nonlinear-
ity. 

Reducing the duration of high-power femtosecond pulses is 
limited by both the spectral amplification band and the 
transmission band of a stretcher – compressor system. In 
practice, this leads to the fact that the pulse duration at the 
output of high-power lasers is 25 – 40 fs for lasers based on 
Ti : sapphire crystals or parametric amplifiers and hundreds 
of femtoseconds for Nd : glass lasers [1]. In such lasers, the 
only way to shorten a pulse is the broadening of its spectrum 
with the help of self-phase modulation and subsequent com-
pression by correction of the spectral phase [2, 3]. This 
method has long been used in low-power (with pulse ener-
gies of less than 1  mJ) lasers by using either a fibre [4, 5], or 
a capillary [6, 7], or a bulk medium [8, 9]. In the latter case, 
the efficiency of the method is limited by the spatial self-
phase modulation nonuniformity associated with the bell 
shape of the beam. The solution to this problem is to use a 
negative lens as a nonlinear element [10]. For example, 
Mironov et al. [11] demonstrated the reduction of durations 
from 40 to 20 fs for a 28-mJ pulse. In petawatt lasers, the 
pulse energy of which amounts to tens of joules, the method 
has not been applied until recently due to a lack of glass or 
crystal elements with an aperture of more than 10 cm and a 
thickness of less than 1 mm. It is shown in [2, 12] that the use 
of polymer materials, such as polyethylene terephthalate, 
can solve this problem. Another important distinctive fea-
ture of high-power lasers consists in the following: their 
pulses are generally not transform-limited due to the 
stretcher – compressor system nonideality and material dis-
persion of the active medium, and the problem of spectrum 

broadening under self-phase modulation has been investi-
gated only for transform-limited pulses, starting with a clas-
sical book [13]. 

In this report we have shown that self-phase modulation 
of a pulse with a residual cubic spectral phase has qualitative 
peculiarities: the spectrum has narrow peaks and the spectral 
is considerably less broadened. In addition, we have found 
that in spite of this fact, such pulses can be as effectively com-
pressed as transform-limited pulses by a simplest phase cor-
rector, which introduces only a quadratic spectral phase. 

Consider the problem of the spectrum broadening of fem-
tosecond pulses with an initial cubic spectral phase. The elec-
tric field envelope A(t) of the pulse and its spectrum S(W ) 
have the form 
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where S0 is the amplitude of the spectrum; W is the detuning 
from the centre frequency; WFWHM is the spectral full width at 
half maximum; and j(W ) = bW 3/6 is the cubic phase. The 
pulse propagation in a nonlinear medium is described by a 
quasi-optical equation in the second approximation of disper-
sion theory: 
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where g = (3pk0 c(3))/(2n0
2); u is the group velocity; z is the 

longitudinal coordinate; k2 is the parameter of the group 
velocity dispersion; n0 is the linear part of the refractive 
index; k0 is the wave vector; and c(3) is the nonlinear suscep-
tibility. The effect of the cubic nonlinearity is determined by 
the B-integral B = g|Amax(z = 0)|2L, where Amax is the maxi-
mum value of the field, and L is the length of the medium. 
Envelopes of a 50-fs transform-limited pulse ( b = 0) and a 
pulse with b = 15000, 60000 and 110000 fs3 leading to their 
stretching by 5 %, 25 % and 40 %, respectively, are shown in 
Fig. 1a. The spectra of these pulses are the same [curves ( 5 ) 
in Figs 1b – d]. Figures 1b – d show the spectra of self-phase 
modulated pulses at different values of b and B. One can see 
that the spectrum of a transform-limited pulse broadens sig-
nificantly greater than the spectra of pulses with cubic phase. 
Moreover, the characteristic scale of spectral modulation of 
the latter pulses is much smaller than that of the transform-
limited ones. Note that this is true even in the case of a small 
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phase value ( b = 15000 fs3), at which the pulse envelope dis-
tortions are minimal – the stretching is only 5 %, and sub-
pulses are almost not visible. Calculations showed that for a 
thin nonlinear medium (the thickness of less than 2 mm at a 
pulse duration of 50 fs) the linear dispersion is not critical 
and can be neglected at В £ 5. In this case, instead of a 
numerical simulation of equation (2), we can use its analytical 
solution [13]. 

Experiments were performed with a 65-fs pulse from 
the front-end system of the petawatt PEARL laser [14], 
which is 40 % longer than the duration of a transform-
limited pulse. The cubic phase with the parameter b = 
110000  fs3 corresponds to such an increase in the dura-
tion. The spectrum of the input pulse is shown in Fig. 2 
[curve ( 1 )]. The pulse energy was 20 mJ. As a nonlinear 

medium we used a 1.7-mm-thick glass plate. Figure 2a 
shows the spectra integrated over the beam cross section 
at B = 3 and 5. We managed to avoid the breakdown of 
optical elements at such high values of the B-integral due 
to the spatial self-filtration [15]. Although the shape of 
the input pulse spectrum is far from Gaussian, the output 
pulse spectrum characteristics are the same as those 
shown in Fig. 1: we observed only a slight broadening of 
the spectrum and the appearance of narrow peaks. 
Numerical simulations showed that for a transform-lim-
ited pulse with the same spectrum we observe a much 
greater broadening of the spectrum (Fig. 2b), while the 
behaviour of the spectrum of the pulse with a cubic spec-
tral phase with b = 110000  fs3 is qualitatively similar to 
that observed in the experiment. 
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Figure 1.  Envelopes of the input pulse (a) and pulse spectra at B = 2 (b), 3 (c) and 5 (d) for b = ( 1 ) 0, ( 2 ) 15000, ( 3 ) 60000 and ( 4 ) 110000 fs3 and 
the spectrum of the input pulse ( 5 ). 
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Figure 2.  (a) Experimental and (b) theoretical spectra of the input ( 1 ) pulse and output pulse at B = 3 ( 2 ) and 5 ( 3 ), as well as of a transform-lim-
ited pulse at B = 5 ( 4 ). 
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This strong dependence on the spectral phase of the inci-
dent pulse may be used to recover the pulse amplitude and 
phase from a set of spectrum measurements after self-phase 
modulation with different values of the B-integral. The devel-
opment of recovery algorithms is the subject of a separate 
study. 

Consider how effectively phase-modulated pulses can be 
compressed. We restrict ourselves to the simplest case of a 
quadratic phase corrector, which can be represented by com-
mercially available chirped mirrors. Mathematically, such a 
correction is described as follows: 

( ) [ ( , )]exp iA t F F A t z L
2c out

1
2aW

= - =- c m' 1,	 (3) 

where F and F –1 are the direct and inverse Fourier trans-
forms; Aout(t, z = L) is the field at the output from a nonlin-
ear medium; and a is the dispersion parameter of the cor-
rector. Numerically, we found the optimum value aopt, at 
which the maximum amplification of the output pulse 
power magnification ratio Pout/Pin is reached. The spec-
trum of the input pulse was taken the same as in the exper-
iment (Fig. 2a). Results of the optimisation are shown in 
Fig. 3. Note that in the case of a Gaussian input pulse spec-
trum, the optimisation results differ slightly. 

Figure 3 allows us to draw the following conclusions. 
Firstly, increasing the power of a cubic phase pulse is almost 
the same as for a transform-limited pulse. Secondly, in the 
case of optimal correction, an increase in power with high 
accuracy depends linearly on the B-integral and is described 
by the formula 

Pout/Pin = 1 + В/2. 

In particular, it follows from this formula that the power Pout 
in case of two-stage compression at B = Btotal /2 in each stage 
is greater than in the case of a single-stage compression at B = 
Btotal. Thirdly, the compression of a cubic phase pulse requires 
considerably larger dispersion aopt of the phase corrector, 
which is apparently due to a smaller broadening of its spec-
trum (Figs 1 and 2). Fourthly, larger values of the B-integral 
require lower absolute values of aopt. If В ³ 3, one commer-
cially available chirped mirror is sufficient for pulse compres-
sion. 

Calculations also showed that when a deviates from aopt, 
the value of Pout/Pin slowly decreases. For example, if B = 3, 
then Pout/Pin decreases by less than 10 % with a change of a 
from –230 to –100 fs2 for a transform-limited pulse and from 
–400 to –170 fs2 for a pulse with b = 110000 fs3. Therefore, even 
a significant error in the calculation and fabrication of a chirped 
mirror will not lead to a significant reduction in the output 
pulse power. 

Our preliminary experiments on the phase correction have 
demonstrated good agreement with theory. Figure 3 shows 
two experimental points for Pout/Pin. A detailed description of 
these studies will be the subject of a separate publication. 

We have observed the effect of a qualitative influence of 
the cubic spectral phase of a laser pulse on its self-phase mod-
ulation in a nonlinear medium at any values of the B-integral. 
In particular, the pulse spectrum contains narrow peaks and 
the spectral broadening is substantially less than that for a 
transform-limited pulse. It is shown theoretically that regard-
less of the magnitude of the spectral cubic phase of the initial 
pulse, the use of chirped mirrors, introducing only a qua-
dratic phase, can increase the output pulse power by about 
1 + В/2 times.
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Figure 3.  Dependences of the peak pulse power amplification coef-
ficient Pout/Pin and the corresponding value of aopt on the B-integral 
for a transform-limited pulse (solid curves) and a pulse with b = 
110000 fs3 (dashed curves). Diamonds show the results of experiments.


