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Abstract.  A model is developed to study the precession dynamics 
of the relativistic electron spin in a laser-plasma accelerator versus 
the initial energy of the electron and its injection phase. Optimal 
parameters providing minimum depolarisation of the electron in the 
acceleration process are determined.

Keywords: laser-plasma acceleration, spin precession, electron polari-
sation dynamics. 

1. Introduction

Spin represents a fundamental property of particles on a par 
with the mass and charge and significantly affects the inter­
action cross section of the particle bunches in high-energy 
physics experiments [1]. The interaction cross section depends 
on the polarisation defined by the average spin of the particles 
comprising a bunch. Currently, the studies being conducted on 
modern accelerators employ polarised bunches of particles, 
thus allowing, for example, testing the accuracy of a standard 
model [1, 2]. Some accelerators have been purposely modernised, 
while others are initially designed with allowance for the use 
of polarised particle sources. Spin dynamics in accelerators [3] 
has been investigated and methods for controlling the degree 
and polarisation direction have been developed [4].

Maximal acceleration gradients that can be achieved in 
conventional accelerators, and the increase in which directly 
affects the accelerator size and cost, are limited by the break­
down threshold of the waveguide wall material. In the 1970s, 
an alternative way of electron acceleration was proposed, 
based on the use of the so-called wake field generated in 
plasma under the action of short and intense laser pulses. The 
acceleration gradients in this method are several orders of 
magnitude higher compared to the field gradients in tradi­
tional accelerators [5]. A successful experimental demonstra­
tion of the high (100 GeV m–1) [6] gradient has given an impetus 
to further development of this field of research. Different sci­
entific teams attain increasingly greater particle energies by 
improving laser technology and waveguide structures. To date, 
the highest result constitutes 4 GeV [7], while theory shows 
that the energies exceeding those obtained in conventional 
high-frequency linear accelerators are quite achievable. There­
fore, a study that will enable us to determine the variation 

range of the electron bunch polarisation during the laser-
plasma acceleration and to understand the factors it depends 
on, is very urgent.

The aim of this work is to study the dynamics of the elec­
tron polarisation in the laser-plasma accelerator. For this 
purpose, a model and a set of computer programmes have 
been developed for numerical evaluation of the spin preces­
sion of the electron during its acceleration in the wake-field 
wave generated by a laser pulse in the plasma channel. The 
precession dynamics of a single electron versus the injection 
phase and initial energy is analysed. The parameters that 
ensure minimal deviation of the electron spin from its initial 
value during the acceleration process are derived. The results 
of a self-consistent numerical simulation are compared with 
some theoretical estimates of acceleration in constant fields.

2. Basic equations

When a laser pulse interacts with low-density plasma, elec­
trons turn out shifted relative to ions under the high-fre­
quency pressure action. The thus emerging electron density 
fluctuations give rise to a wake-field wave which may accelerate 
electrons to a high energy. In this paper we consider the accelera­
tion of electrons in a wake field formed by the passage of a 
short high-intensity laser pulse along the z axis of a cylindri­
cally symmetric plasma channel with increasing radial plasma 
concentration. Numerical simulation of the nonlinear wake-
field waves is performed using the LAPLAC code [8] based 
on  the solution of hydrodynamic equations describing the 
dynamics of a cold relativistic ideal electron liquid, jointly 
with Maxwell’s equations [9 – 11]:

¶
¶ ( ) ,
t
n n 0ud+ = 	 (1)

¶
¶

,
t

e mc
p

E p
2dg= - 	 (2)

¶
¶ 4 ,
t

ne e
cE p
2

# #d dp u=- - 	 (3)

p
| |

, ,
m c
p a

m
p

1
p2 2

2 2

g u= + + =
2 g 	 (4)

and the equation that determines the evolution of the nor­
malised complex envelope of the laser pulse a = eEL /(mcw) 
[8, 12]:
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where c is the speed of light; n, p and u are the concentration, 
specific momentum and speed of electrons in the plasma; 
e and m are the charge and mass of electrons; N0 is the initial 
electron density on the plasma channel axis; wp0 = 4 /e N m2

0p  
is the plasma frequency; w and k = w/c are the frequency and 
wave number of laser radiation; E is the electric field in 
plasma, which slowly varies on the scales w–1 and k–1; and D^ 
is the transverse part of the Laplace operator. The complex 
amplitude EL of the laser field is associated with the high-fre­
quency electric field Eu  of the laser pulse by the relation

Eu  = eLRe{ELexp[–i(wt – kz)]},	 (6)

where eL is the laser pulse polarisation vector.
Using the dimensionless variables

x = kp0(z – ct),  z = kp0 z,  r = kp0 r̂ , 	 (7)

where kp0 = wp0 /c, we can re-write equation (5) with regard to 
cylindrical symmetry in the form [8, 12]
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The nonlinear relativistic plasma response n/gp can be expressed 
through the scalar function (potential) F = gp – pz /(mc) [8, 12]:
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where n0 = n0 /N0; n0 = n0( r, z) is the initial distribution of 
electrons; and the wake-field potential F is normalised to 
mc2/e. In the quasi-static approximation [13], in the case of 
a  ‘wide’ (compared to the length 1/kp0) laser pulse, system 
(1) – (4) gives an equation for the potential [12] 
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In the dimensionless variables, the motion equations for elec­
trons take the form [8, 14]
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where the forces acting on a relativistic electron moving along 
the z axis with a speed close to the speed of light can be 
expressed in terms of the potential F  [12]:
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Here, the components of electric (E) and magnetic (B) fields 
are normalised to mcwp0 /e; Fr = {Fx, Fy} = Fr{cos f, sin f}; qz 
and q^ = {qx, qy} are the longitudinal and transverse compo­
nents of the dimensionless electron pulse q = pe /(mc); f = arc­
tan (y/x) is the angle characterising the position of the elec­
tron in the plane xy; t = wp0 t is the dimensionless time; and 
g  = q q1 z

2 2
+ + =  is the relativistic electron factor.

The equation describing the spin precession of a relativistic 
electron,
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was obtained in 1959 by V. Bargmann, L. Michel and V. Telegdi 
[15], and is referred to in the literature as the Thomas – BMT 
equation. In this equation am » 0.0011614 is the anomalous 
magnetic moment of the electron, and b = ue /c is the nor­
malised electron velocity. It should be emphasised that the 
spin s in (16) is defined in the particle’s rest frame, while all 
other values, including the fields E and B, are given in the 
laboratory frame. Furthermore, it is assumed that the spin 
does not affect the particle trajectory.

On the basis of equation (16), using the facts that the 
magnetic field in a cylindrically symmetric plasma channel is 
azimuthal, B = Bf ef, the electric field only contains the longi­
tudinal and transverse components, and E = Er er + Ez ez, let 
us formulate a system of differential equations in the Cartesian 
coordinate system in terms of the dimensionless variables (7), 
describing the spin precession of an electron, the speed of 
which along the plasma channel axis is close to the speed of 
light, while its transverse velocity component is small com­
pared to the speed of light:
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where with allowance for bz » 1 and  g = 1/ 1
2b-  >> 1, it is 

assumed that am + 1/( g + 1) » am + 1/g. Thus, relations (8), 
(10) – (15) and (17) – (19) represent a closed system of equa­
tions describing the acceleration of polarised electrons in the 
wake-field wave generated by a laser pulse in the plasma 
channel.

3. Spin precession dynamics of relativistic 
electrons

In this work, the electron dynamics and spin precession have 
been simulated by means of numerical solution of equations 
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(11) – (14) and (17) – (19) in the dimensionless coordinates 
z, x, r:
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where bz = qz /g. The forces acting on an accelerated elec­
tron are calculated by means of numerical solution of the self-
consistent problem represented by equations (8), (10) and (15) 
in the LAPLACE code [8]; in the case of constant fields, these 
forces are assumed to take the prescribed constant values.

3.1. Simulation results in constant fields

To obtain an approximate analytical description of the spin 
precession of an accelerated electron and to test the numerical 
implementation of the model, we consider the motion of rela­
tivistic electrons under the action of the constant accelerating 
field Eac and the linear focusing force Fr :

Fz = Eac ,   Fr = a|x̂ |,	 (25)

where the vector x̂  = {x, y} defining the electron position in 
the plane perpendicular to the direction of its acceleration 
is  normalised to kp0. Under assumption that the transverse 
component of the electron velocity is much smaller than the 
speed of light, the gamma-factor (i.e. the energy) of acceler­
ated electron increases in time linearly: g = g0 + Eac t, where g0 
= g(t = 0), and the equation of its oscillation relative to the 
transverse coordinate x̂  has a form [16]

( g0 + Eac t)x=p (t) + g0x=o (t) + ax=(t) = 0.	 (26)

In the approximation | | 0a g /Eac >> 1 [17] this equation can 
be solved analytically:
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where x̂ 0 = {x0, y0} and q̂ 0 are the initial position and 
momentum of the electron, respectively.

The system of equations (17) – (19) describing the spin pre­
cession of a test particle in the cylindrical coordinate system 
attached to the electron’s initial position appear as [17]:
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spin s is normalised to its absolute value so that any spin pro­
jection may range from –1 to 1; and sr

2 + sf2 + sz
2 = 1. If the 

condition |x^0| | | 0a g  >> |q̂ 0| is fulfilled, the electron trajec­
tory can be considered virtually planar; therefore, dsf /dt << 1 
and the spin component sf is preserved. In this case, the 
expression following from (28) – (30) and describing a varia­
tion of the spin sz-component can be represented as

t
( ) .sin arctands s a F t s

s1 1
mz r

r

z
0
2

0

0

0
t g= - - + +f lc `m j; Ey 	(31)

By using a small parameter
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calculation of the integral in (31) provides an analytical for­
mula for the dynamics of the spin component sz(t) [17]
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In the case of the pre-defined constant accelerating and focus­
ing fields, condition (32) is fulfilled the better the greater are 
the values of g and g0. To evaluate analytically the precession 
at moderate g0 and g, when parameter (32) becomes of the 
order of unity, it is necessary to take into account the addi­
tional terms in the expansion of integral (31), which leads to 
the expression

( ( )) sins s r E1
4
3 ac

z 0
2

0

0 #g t
g

L= - -f ;

	 1
2 | |

,cos arctanE s
s0

5/4

0
0

0

ac r

z
g
g a

g g# - - +c ^c `m h m j; E E 	 (34)

where

L = – r0 (1 + am g)
| |

.sin E
2/

ac
3

2
0
1 4

0
g

a g a
g g-e ^o h; E

To test the numerical implementation of model (20) – (24), 
we have conducted relevant calculations for the accelerating field 
Eac = 0.47492 and the linear focusing force with a = –0.07544. 
The initial value of the electron position x̂ 0 = {0.15, 0.2} and 
its spin in the Cartesian coordinates {s0 = 0.27941, 0.33456, 
0.9} correspond to the value sr0 = 0.1 of the radial component 
of spin in the cylindrical coordinate system attached to the 
initial position of the electron. Figure 1 shows the results of 
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numerical solution of equations (20) – (24) for an electron with  
g0 = 2 ́  104 in comparison with the values obtained from for­
mulas (33) and (34) with the same parameters. It is seen that, 
for given initial conditions, the simulation results virtually 
coincide with the analytical values, which allows us to con­
clude that the numerical implementation of equations (20) – (24) 
is correct.

It should be noted that formula (34) transforms into (33) 
in the limit of large g0 (Fig.1). Figure 2 illustrates the differ­
ence between the values provided by these analytical formulas 
for an electron with g0 = 132. We may see that the simulation 
results with these parameters are in good agreement with the 
results of calculation by means of formula (34).

3.2. Results of self-consistent numerical simulation  
of electron spin precession in laser-plasma acceleration

We study the dynamics of the spin polarisation for an elec­
tron being accelerated in the wake-field wave generated by a 

laser pulse propagating along the z axis of a cylindrically 
symmetric plasma channel with a parabolic electron density 
profile in the plane xy perpendicular to the z axis [10]:
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where Rch is the typical radial dimension of the channel; and 
N0 = 1017 cm–3, which corresponds to the wave number kp0 = 
0.0595 mm–1 of the plasma wave. Use of the plasma channel 
allows preventing the diffraction broadening of the laser pulse 
and ensures its propagation at a distance being much greater 
than the Rayleigh length. The laser pulse evolution and wake-
field generation have been described by means of numerical 
solution of equations (8) and (10) with the LAPLAC code [8] 
for a channel with Rch = 305.1 mm (kp0Rch  –~ 18 > rm, where 
rm = 1/2(kp0 rL)2  –~ 14 is the channel radius correlated with the 
momentum in linear approximation) and a Gaussian pulse 
possessing at the channel entrance an envelope
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with a0 = 1.414, rL = 5.303, xL = 10 and xL0 = 7, which corre­
sponds to the following dimensional characteristics of the laser 
pulse: the focal spot radius of rL = rLk–1p0 = 89.13 mm, the length 
of tL = xLw–1p0 = 56 fs, the intensity of IL = 4.28 ́  1018 W cm–2, 
and the power of 534 TW at a laser wavelength of l = 0.8 mm.

The depolarisation of the electron has been studied versus 
its initial energy e0, and the phase position x̂ 0 at the injection 
time moment. We consider two limiting cases: 1) e0 = eres, 
where eres = gphmc2 is the resonant energy at which the elec­
tron velocity at the time of injection coincides with the phase 
velocity Vph of the wake wave: gph = 1/ ph1 /V c2 2

-  –~ w/wp0 , 
and 2) e0 >> eres. The acceleration length Lac constitutes 
50.42 cm for all cases (Lac < Lph, where Lph = 2pg2phk–1p0  –~ 
184 cm is the length of electron dephasing relative to the wake 
wave). Figures 3a and 3b demonstrate the laser pulse enve­
lope, the potential F and the accelerating force Fz at the start 
(z = 0) and the end (z = 50.42 cm) of acceleration; the position 
of the electron with x0 = 3.2 at the injection time moment is 
schematically indicated. Figure 4 shows the contour lines of 
the focusing force Fr in the plane rx at the start and end of 
acceleration, which illustrates a change in the forces acting on 
the electron in the acceleration process. As can be seen from 
Figs 3 and 4, the forces acting on the accelerated electron are 
nonconstant as a consequence of both the nonlinear evolu­
tion of the laser pulse during its propagation in the plasma 
channel and the displacement of the electron relative to the 
wake wave.

We consider the effect of variability of the forces acting on 
the accelerated electron and its spin precession in the case of 
injection of an electron with the resonance energy g0 = gph = 
132 at point x0 = 3.2 at a distance of r0 = 0.25 from the z axis, 
with the values of x̂ 0 = {0.15, 0.2} and f0 = 0,927, which 
corresponds to the position of the electron at the initial spin 
orientation s = {0.27941, –33456, 0.9}. In this case we may 
compare the precession of the component sz specified by the 
analytical formula (34) for an average value of the forces 
acting on the particle during the acceleration process with the 
results of a full-scale simulation with allowance for the laser 
pulse dynamics and the generated wake field. Averaging of 
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Figure 1.  Precession dynamics of the sz-component of the spin of an 
electron moving under the action of forces (25) at Eac = 0.47492, a = 
–0.07544, g0 = 2 ́  104 vs. the electron gamma factor g –~ q1 z

2
+ : the 

results of numerical solution of equations (20) – (24) ( ) and calculation 
according to formulas (33) ( ) and (34) ( ) with the same parameters.
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Figure 2.  Same as in Fig. 1, but for g0 = 132: the results of numerical 
solution of the equations (20) – (24) ( 1 ) and calculation according to 
formulas (33) ( 2 ) and (34) ( 3 ).
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the forces acting on the electron having the coordinates r̂ e, ze 
has been performed throughout the acceleration length Lac = 
50.42 cm. For the accelerating force we have

( , ) ;dF L F r z z1av

ac
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z

L

0

ac
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=
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for the focusing force Fr
av = aavr̂ , where aav is the averaged 

a  obtained by means of linear approximation of the force 
Fr (r̂ , ze) near the channel axis. The data in Fig. 5 demon­
strate that the precession dynamics of the longitudinal com­
ponent of the electron spin in static fields [formula (34)] is 
significantly different from the spin precession evolution in 
the dynamic fields of a wake wave [equations (8) and (10), 
(15), (20) – (24)]; this points to a need for numerical calcula­
tions in the studies on depolarisation of electrons in the laser-
plasma acceleration.

An approximate analytical formula describing the change 
Ds(t) = s(t) – s0 in depolarisation of an electron moving under 
the action of constant forces (25) can be obtained from (33) 
with taking into account the equality sz

2 + sf2 + sr
2 = 1. Since 

the variable W(t) is much less than unity at a2 g0 g << 1012, the 
expression for longitudinal component of the spin sz can be 
represented in the form of an expansion in the powers of W(t). 
For example, to the accuracy of W2 order terms, we obtain
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This relation results in the following expression for the 
depolarisation envelope depending on g(t) = g0 + Eac t:
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1 4T t a g g t= - +f 	 (38)

This equation shows that the depolarisation amplitude is 
directly proportional to the initial radial displacement r0 of 
the electron, and, at the end of acceleration when t >> g0 /Eac, 
the depolarisation of electrons with equal g0 and r0 becomes the 
smaller the lesser is the parameter a2Eac.
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Figure 3.  Dimensionless distributions of the laser pulse envelope a ( 1 ), 
wake-wave potential F ( 2 ) and accelerating force Fz ( 3 ) on the plasma 
channel axis vs. the x value at the start (z = 0) (a) and end (z = 50.42 cm) 
(b) of the electron acceleration. Black dot corresponds to the position of 
the electron with x0 = 3.2.
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Figure 4.  2D distribution of the dimensionless focusing force Fr ( r, x) at 
the start (a) and end (b) of the electron acceleration.
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Figure 5.  Evolution of the longitudinal spin component of an electron 
with g0 = gph = 132 injected at the point x0 = 3.2 vs. the electron energy 
e = g(t) mc2: the results of numerical calculation for the fields in Figs 3 
and 4 ( 1 ), and calculation according to formula (34) for the average values 
of the fields acting on the particle during the acceleration process ( 2 ).
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A series of calculations has been performed for two values 
of the electron injection energy. Figure 6 displays the depo­
larisation envelopes for an electron with the initial energy of 
67.5 MeV, which corresponds to g0 = gph = 132, for its dif­
ferent starting positions r0 and phases x0, while Fig. 7 shows 
the depolarisation envelopes for an electron with the initial 
energy of 10.2 GeV at the same phases and radial positions of 
the injected electron. The increase in the depolarisation of the 
electron as a function of its initial offset r0 with respect to the 
acceleration channel axis, which is clearly visible when com­
paring curves ( 1 ) and ( 5 ) in Figs 6 and 7, confirms the validity 
of the approximate analytical relation (38) for the average forces 
acting throughout the entire length of electron acceleration.

Of particular interest is the ultimate value of the electron 
depolarisation with different injection phases x0. The data in 
Figs 3 and 4 indicate that the maximal accelerating force acts 
on the electron with x0 = 3.0, and the maximal focusing force 
acts on the electron with x0 = 3.4. As a consequence, the 
minimal depolarisation value (at the same initial radial offset 
r0) is ultimately attained for an electron with x0 = 3.2, which 

is confirmed by the simulation results represented in Figs 6 
and 7 [see the curves ( 2 – 4 )].

4. Conclusions

A model that has been developed and tested in the frame of 
this work has allowed us to study the spin precession dynamics 
of an electron accelerated by a wake-field wave, generated in 
the plasma channel by a high-power femtosecond laser pulse, 
as function of the electron’s initial energy and injection phase. 
It is shown that the electron depolarisation value is directly 
proportional to the distance between its position in the course 
of injection and the plasma channel axis; the minimal depo­
larisation is attained when electrons are injected in the vicinity 
of the accelerating force’s maximum, with a velocity equal to the 
phase velocity of the wake wave. This model can also be used 
to study the polarisation dynamics of electron bunches pro­
vided that the number Ne of the bunch particles is relatively 
small: Ne << N0 (c/wp0)3 [8, 14, 18]. Under this condition, the 
field of the accelerated electron bunch weakly affects the 
structure of the wake wave generated by a laser pulse (this 
limitation on the number of accelerated electrons amounts to 
Ne << 5 ́  108 for the electron plasma density of N0 = 1017 cm–3 
discussed in this work). 
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Figure 6.  Envelope of the electron depolarisation at the initial energy 
e0 = 67.5 MeV vs. the electron energy e = g(t) mc2 with r0 = 0.125, x0 = 
3.2 ( 1 ), r0 = 0.25, x0 = 3.0 ( 2 ), r0 = 0.25, x0 = 3.2 ( 3 ), r0 = 0.25, x0 = 3.4 
( 4 ) and r0 = 0.5, x0 = 3.2 ( 5 ). Curves ( 1' ) and ( 5' ) are the calculation 
according to formula (38) for the parameters corresponding to curves 
( 1 ) and ( 5 ), respectively.

10 11 12 13 14 15 16 e/GeV

0
|Ds|env/10–2

–0.5

–1.0

–1.5

–2.0

1

2

3
4

5

1'

5'

Figure 7.  Same as in Fig. 6, but for e0 = 10.2 GeV.


