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Abstract.  A numerical simulation of the parametric generation of 
electromagnetic radiation in a cavity with periodically oscillating 
mirrors and Lorentz-type frequency dispersion has been performed. 
It is shown that initially weak seed radiation can be transformed 
into intense short pulses, the shape of which under steady-state con-
ditions changes periodically when reflecting from mirrors and, 
depending on the dispersion characteristics, corresponds to uni- or 
bipolar pulses.

Keywords: dynamic cavity, frequency dispersion, parametric oscil-
lator.

The dynamic Casimir effect (generation of photons in a cavity 
with oscillating mirrors) was predicted in 1970 [1], and then 
its quantum theory has been developed in many studies (see 
review [2]). The existence of this effect was experimentally 
confirmed in only one study [3] for superconducting quantum 
interference devices. However, the possibility of parametric 
generation of electromagnetic radiation in a cavity with oscil-
lating mirrors was shown even earlier in [4] using classical 
Maxwell equations. The field energy is increased due to the 
transfer of the kinetic energy of the mirrors to the field, and 
the physics of this effect is close to that of the parametric 
Mandel’shtam – Papaleksi oscillator [5] – an electric circuit 
with periodically (mechanically) varying inductance or capac-
itance, in which initial current fluctuations may be signifi-
cantly accelerated. Therefore, the dynamic Casimir effect has 
an important classical component. Although its classical the-
ory has not been developed so intensively as the quantum 
theory and is qualitative to a greater extent (see also [6]), one 
can reveal a number of important aspects within the classical 
approach, which are difficult to take into account in the 
quantum theory. The purpose of our study was to perform a 
numerical analysis (in terms of classical electrodynamics) of 

the influence of the form of cavity frequency dispersion on the 
parametric generation of radiation, which is necessary for 
implementing new, more efficient schemes of this type.

The model is a cavity with two plane-parallel mirrors (a 
dynamic cavity with spherical mirrors was considered in [7]) 
located on the z axis (Fig. 1a). Radiation (plane waves) prop-
agates along the z axis and is linearly polarised. The right mir-
ror, positioned at z = L(t) (t is the time) is assumed to be ideal. 
At small accelerations, the following boundary condition is 
imposed on this mirror: the tangential component of the wave 
electric field must turn to zero (a conventional condition) in 
the coordinate system moving jointly with the mirror. In the 
laboratory frame of reference, this equality has the form
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Figure 1.  (a) Schematic of the dynamic cavity, (b) the dependence of the 
reflection coefficient of the right mirror on its instantaneous speed and 
(c) the frequency dependences of the reflection coefficient of the disper-
sive mirror at w0/g = 0 (solid line) and 0.628 (dashed line).
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where E and H are, respectively, the electric and magnetic 
field strengths; u = dL/dt is the instantaneous mirror velocity; 
and c is the speed of light in vacuum. Thus, we neglect the 
effects of charge carrier inertia (which depend on the mirror 
microstructure) of the Tolman – Stewart effect type [8], which 
is justified at small accelerations. The amplitude reflection 
coefficient of radiation from this mirror is rright = – (1 – u/c) ´ 
(1 + u/c)–1 [9, 10] (Fig. 1b). A wave can be amplified when 
reflecting from a mirror moving towards the incident wave 
(u < 0). The left mirror is assumed to be immobile (located at 
z = 0) and characterised by frequency dispersion of the reflec-
tion coefficient. Correspondingly, the amplitudes of the elec-
tric fields incident on this mirror (Ei) and reflected from it (Er) 
are related by the expression 
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We assume that K(t) = K0exp(– gt)cos(w0t). Then, for mono-
chromatic incident radiation with a frequency w, we obtain 
the mirror reflection coefficient in the form
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Expression (2) describes a Lorentzian spectral profile; for an 
ideally reflecting mirror (without dispersion),   g = ¥. At 
w0 /g < a = ( 5 – 2)1/2 = 0.486, the reflection coefficient (2) 
reaches a maximum at w = 0 and monotonically decreases 
with an increase in w. At w0 /g > a, frequency w = 0 corre-
sponds to a local minimum of the reflection coefficient, while 
the position of the maximum shifts, gradually approaching 
the value w = w0 (Fig. 1c).

The propagation of radiation in the vacuum gap between 
the mirrors is described by the one-dimensional Maxwell 
equations:
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The d’Alembert solution is a superposition of two counter-
propagating waves:
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Relations (4), jointly with the aforementioned boundary 
conditions imposed on the mirrors, allow one to trace the evo-
lution of the initial field distribution with time. Below we 
present the results of numerical calculations for the case 
where the motion of the right mirror is set in the form L(t) = 
L0[1 + mcos(Wt + j)], where m << 1 and W are, respectively, the 
modulation depth and frequency. In order to make the 
description of the effects more illustrative, we use below fixed 
values of parameters: m = 0.03 and rmax = 0.99. To make the 
parameters dimensionless, we normalise the coordinate z to 
the average cavity length L0 and the time t to the average light 
transit time through the cavity: L0/c. Correspondingly, the 
dimensionless frequency of the low-order mode of static cav-
ity (at m = 0) is ws = p.

Figures 2a and 2b show the result of reflection of a 
Gaussian video pulse from the right mirror vibrating with a 
frequency W = ws. The initial conditions at t = 0 have the form

f1 = E0exp[– (z – 0.5)2/v2],   f2 = 0,   v = 0.2.	 (5)

It can be seen that, at a fixed initial position of pulse, the 
result depends strongly on the initial phase of mirror vibra-
tions. The largest amplification is obtained for a short inci-
dent pulse at the instant of its passage through the middle 
position with a negative and maximum (in modulus) velocity 
u = – mL0 w [at Wt = p(2n + 1/2)].

The reflection of a Gaussian video pulse from the left mir-
ror is illustrated in Fig. 2c. In this case, the initial conditions 
at t = 0 have the form

f1 = 0,    f2 = E0exp[– (z – 0.5)2/v2],   v = 0.2.	 (6)

The radiation energy in vacuum is constant when the pulse is 
far from the mirror. The energy dip is caused by temporal 
energy transfer to the dispersive mirror. The dip is absent for 
an ideal mirror (g = ¥); the smaller the g value, the more pro-
nounced the dip is.

When a pulse multiply passes through a cavity, its shape 
and energy change at each reflection from mirrors and are 
stabilised far from them. A parametric increase in the pulse 
energy may occur if the mirror vibration frequency is approx-
imately multiple of the fundamental mode frequency: W » 
Nws, where N is an integer.
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Figure 2.  Reflection of a Gaussian video pulse from (a, b) vibrating and 
(c) immobile dispersive mirrors: (a, c) the time dependence of field en-
ergy W in the cavity and (b) the profile of the electric field strength in 
reflected pulse at t = 1 and W = ws for the initial vibration phase j = 0 
(solid line), p/2 (dotted line), and p (dash – dotted line); the initial profile 
is shown by a dashed line, the arrows indicate (hereinafter) the pulse 
motion direction.
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Figure 3a shows the temporal change in radiation energy 
in the vacuum gap of the cavity in the case of fundamental 
resonance W = ws and w0 = 0, where the radiation loss is 
smaller at low frequencies. Here, the initial condition (5) is 
used. With the accepted parameters, the amplification on the 
vibrating mirror compensates for the loss on the left mirror; 
hence, the field energy in the cavity increases on the whole. 
The quasi-periodic increases in energy correspond to the 
pulse reflection from the moving mirror, the drops are related 
to the reflection from the immobile dispersive mirror, and the 
plateau regions corresponds to the motion far from the mir-
rors. In the absence of dispersion (g = ¥), the increase in 
energy (on the whole) continues unlimitedly with a simultane-
ous unlimited decrease in the pulse duration. With allowance 
for the dispersion, the smaller the g value, the earlier the sys-
tematic rise in energy stops, because losses increase for high 
frequencies (the contribution of which increases with a 
decrease in the pulse width). A unipolar pulse is set at long 
times; its shape is independent of the initial field profile [6]. 
However, with an increase in w0, the initial video pulse (5) is 
transformed into a bipolar pulse with time. This can be seen 
in Figs 3b and 3c, which present the change in the pulse shape 
after complete passage through the cavity in the steady mode.

Finally, Nth-order resonances lead to the occurrence of 
not one but N pulses in the cavity; each pulse arrives at the 
vibrating mirror at the instant corresponding to the largest 
instantaneous reflection coefficient. This is shown in Fig. 4 at 

g =100 (dispersion-free mirror) and the initial condition f1 = f2 
= E0sin(pz) at t = 0. Since this problem is linear, the ratio of 
the energies of these pulses may be arbitrary (determined by 
the initial conditions).

Thus, a consideration within classical electrodynamics 
allows parametric generation of electromagnetic radiation in 
a dynamic cavity; at long times, the field characteristics 
depend strongly on the form of the cavity frequency disper-
sion. The radiation generated in the case of amplification of 
small fluctuations or regular seed pulses is presented by not 
only unipolar (video) pulses but also bipolar pulses; note that 
the degree of bipolarity increases when the dispersion dis-
crimination of higher frequencies weakens. In the steady 
mode, pulses periodically change shape when reflect off from 
mirrors and are stabilised at a large distance from the mirrors; 
under these conditions, the shapes of the pulses moving both 
along the cavity axis and in the opposite direction are differ-
ent in view of the asymmetry of the scheme. This effect can be 
implemented experimentally using nanomechanics schemes 
[11] or ‘plasma mirrors’, the formation and motion of which 
are provided by intense laser beams [12].
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Figure 3.  (a) Time dependencs of the field energy in cavity at (dash – dot-
ted line) g = 100, w0 = 0; (solid line) g = 22, w0 = 4ws; and (dotted line) 
g = 25, w0 = 0; (b) electric field strength profiles at t = (dashed line) 30, 
(solid line) 30.6, (dotted line) 30.65 and (dash – dotted line) 31; (c) the 
same at t = (dashed line) 31, (solid line) 31.6, (dotted line) 31.7 and 
(dash – dotted line) 32; g = 25, w0 = 4ws (b, c); W = ws, j = 0.

Figure 4.  Electric field strength profiles at g = 100, w0 = 16ws, j = 0, and 
t = 20 for W = (solid line) ws, (dotted line) 2ws and (dashed line) 3ws; the 
initial profile is shown by a long-dash line.


