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Abstract.  The possibility of the effective use of metamaterials in 
acousto-optics is demonstrated. It is shown that photoelastic con-
stants that determine a change in the dielectric constant of a hetero-
geneous medium under the action of a sound wave can significantly 
exceed the corresponding constants for conventional crystals. We 
have analysed the mechanisms of the dielectric constant variation in 
a heterogeneous medium consisting of nanoparticles in the form of 
ellipsoids and have found explicitly the values of the photoelastic con-
stants. It is shown that the mechanism of the dielectric constant vari-
ation in a longitudinal sound wave is reduced to a change in the local 
concentration of nanoparticles in the bulk and in a transverse acous-
tic wave – to a local rotation of space-oriented nanoellipsoids. It is 
also shown that the use of metamedia with a nonuniform distribution 
of nanoparticles provides a unique opportunity for designing qualita-
tively new instruments and devices that cannot be produced on the 
basis of conventional crystals. It is noted that metamaterials open 
ample opportunities for creating devices of the IR region of the spec-
trum due to the absence of restrictions on the size of such media. 

Keywords: acousto-optics, metamaterials, ellipsoidal nanoparti-
cles, photoelastic constant. 

A prerequisite for the use of metamaterials for acousto-optics 
consists in the fact that under the influence of a sound wave 
the dielectric constant of a medium must change. After the 
inclusion of small metal (or any other) nanoparticles, an ini-
tially homogeneous medium having a low acousto-optical 
quality becomes a material with a high photoelastic constant.

The mechanism of this change in the dielectric constant 
under the influence of a sound wave is as follows. If a longitu-
dinal sound wave, which has regions of medium compression 
and expansion, propagates in a medium, the dielectric con-
stant and the refractive index of the medium will obviously 
change due to a local variation of the concentration of 
nanoparticles. This is a fairly common case, which is related 
to any inclusions as symmetric (e.g., nanospheres) and so 
asymmetric (e.g., ellipsoids). If a transverse sound wave 
accompanied by a shear deformation and not changing the 
volume density of nanoparticles propagates in a medium, the 
refractive index for randomly arranged nanoparticles will not 
change. However, for spatially asymmetric nanoparticles, for 
example ellipsoids, whose symmetry axes are spatially ori-

ented, the shear deformation will result in some rotation of 
the symmetry axes of ellipsoids, which eventually will cause 
changes in the dielectric constant and refractive index of the 
medium. 

In this paper, as a heterogeneous medium, we consider a 
medium formed by an optically transparent material with a 
dielectric constant em and embedded metal or dielectric inclu-
sions in the form of ellipsoids of revolution with a complex 
dielectric constant ep( l) = ep' ( l) + iep'' ( l) ( l is the wavelength 
of light). It is assumed that the size of the ellipsoids of revolu-
tion is substantially smaller than the wavelength of light and 
they are randomly distributed, but their main axes of rotation 
are oriented in the same direction. Within the framework of 
the Maxwell Garnett model, such a medium is described by 
the averaged dielectric constant e of the medium, which satis-
fies the relation [1 – 3] 
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where h is the volume fraction of inclusions, i.e. metal nano-
ellipsoids of revolution [h(r, t) = 3

4 pab2N(r, t)]; a is the polar 
axis of the spheroid; b is the small equatorial semi-axis of the 
ellipsoid of revolution (spheroid); N(r, t) is the local number 
of spheroids per unit volume of the medium; and L is the 
depolarisation factor, which can be expressed as the ratio of 
semi-axes x = a/b for different directions (parallel and per-
pendicular to the axis of rotation of the spheroid) of the 
external field: 
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The case x < 1 corresponds to a prolate ellipsoid of revolution, 
x > 1 –  to a flattened ellipsoid, and x = 1 – to a sphere (in this 
case, L|| = L^ = 1/3). Solving equation (1) with respect to e, we 
find the explicit form of the dielectric constant of the metame-
dium: 
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for the electric field along and across the polar axis of the 
ellipsoid of rotation, respectively. It follows from expressions 
(3) that the dielectric constant of the medium is a diagonal 
tensor with the components e11 = e22 = e^ and e33 = e||, other 
components being equal to zero. The condition of the appli-
cability of the Maxwell Garnett model suggests that the filling 
factor lies in the range 1/3 < h < 2/3 [4]. 
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Expressions (3) make it possible to find the change in the 
dielectric constant of the medium under the action of a sound 
wave. We consider the cases of longitudinal and transverse 
sound waves separately, because the mechanisms of the 
dielectric constant variation differ from one another. 

1. Let the longitudinal sound wave propagate along any 
axis of symmetry, such as the x axis: u(x, t) = 2

1 u0exp(iWt – iqx) 
+ c.c., where u(x, t) is the amplitude of the medium displace-
ment in the acoustic wave; W is the frequency; and q is the 
wave vector of the sound wave. In the longitudinal sound 
wave the directions of the displacement vector u(x, t) and the 
wave vector q coincide. The acoustic properties of the medium 
are considered to be isotropic. The latter means that the mod-
uli of elasticity of asymmetric inclusions in question, unlike 
the moduli of a matrix medium, are such that under the action 
of the elastic wave they are not deformed. In the longitudinal 
sound wave, the medium is compressed (stretched), and there-
fore the local concentration of nanoparticles (spheres) 
changes according to the law 
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Here, N~(x, t) is the change in the concentration under the 
action of a sound wave; and N0, h0 are the volume-averaged 
values. From the equation of continuity, for a matrix medium 
we can obtain 
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where us = W/q is the phase velocity of the sound wave in a 
metamedium. Possible dispersion properties of the elastic 
medium, associated with different elastic properties of the 
matrix and nanoinclusions, are not considered here. We 
assume that because the size of the nanoparticles is much 
smaller than the wavelength of sound, they cannot lead to a 
significant dispersion. The corresponding additions to the 
components of the dielectric constant tensor of a metame-
dium, conditioned by the longitudinal sound wave, have the 
form 
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In the chosen coordinate system, the z axis coincides with the 
direction of the main (polar) axis of the spheroid, and the x 
and y axes lie in a perpendicular plane. Using the generally 
accepted definition of photoelastic constants [5] as additions 
to the impermeability tensor of the medium, it is possible to 
find their explicit form for the longitudinal sound wave for a 
given direction of propagation of light and sound: 
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Here, p16 = p61 is the photoelastic constant for the longitudi-
nal sound wave propagating along the minor optical axis of 
the ellipsoid of revolution when the light wave propagates in 
the same direction with the polarisation along the z axis. 
Similarly, from (7) we can obtain the photoelastic constant 
p16 by a formal replacement L|| ® L^. The metamedium under 
consideration is equivalent to a uniaxial crystal, and therefore 
there are only two independent components of the matrix of 
photoelastic constants. (Notations p16, p26 correspond to 
standard six-dimensional representations.) 

Equation (7) shows that the inclusion of nanoparticles 
with other dielectric constants into the matrix medium 
changes both optical and acousto-optical properties of the 
medium. It is seen that they will change most of all with the 
introduction of nanoparticles having a negative dielectric 
constant, such as metals. Since the resonance conditions for 
the dielectric constant and for photoelastic constants coin-
cide, the results of the study of optical resonance properties of 
heterogeneous media can be fully utilised in relation to photo-
elasticity properties [1, 2, 6]. However, resonances for photo-
elastic constants turn to be sharper because of the square in 
the denominator. 

2. Consider now the case of a transverse acoustic wave in 
which the amplitude of the  displacement vector  u(x, t) =  

2
1 u0exp(iWt – iqx) + c.c. is perpendicular to the wave propaga-
tion direction. The sound wave still propagates along the x 
axis so that the shear deformations are directed along the y 
axis. It is easy to see that these deformations lead to a slight 
rotation of the ellipsoids around the direction perpendicular 
to the displacement vector. This small change in the angle of 
rotation da can be expressed in terms of the strain tensor 
component: da » ¶uy /¶x. To determine the photoelasticity 
constants it is necessary to perform a series of operations with 
the initial tensor of the dielectric constant of a composite 
medium. One should carry out the rotation by a certain angle 
a around the x axis (the choice of the x axis is dictated by the 
given direction of propagation of the transverse sound wave 
and its polarisation along the y axis). The rotation of the 
tensor is produced by a known transformation (see Ref. [7], 
Ch. 7). A preliminary rotation by some angle is needed to pre-
serve the possibility of choosing the optimal direction of 
propagation of the light wave, for which the photoelastic 
interaction constants would be the greatest. 

As a result of rotation around the x axis the dielectric con-
stant tensor will change and there will appear off-diagonal 
components responsible for the interaction of the light waves 
propagating along the x axis, polarisation vectors of which 
are directed along the z and y axes. After a formal substitu-
tion a ® a + ¶uy (x, t)/¶x, we obtain additions to the dielectric 
constant tensor, proportional to the deformation. For the 
explicit definition of the components of the photoelasticity 
tensor it is necessary to find the inverse dielectric constant 
tensor of the medium and separate out the components that 
are proportional to the strain tensor, which, by definition, 
will be the components of the tensor of the photoelastic con-
stants of the metamedium. As a result, for the transverse 
sound wave we obtain: 
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For the transverse acoustic wave polarised along the z 
axis, nonzero will be the following photoelastic constants: 
p64 = p46, p62 = p26 and p63 = p36. The resulting expressions for 
the photoelastic constants depend on the concentration of 
nanoparticles (in this case, ellipsoids of revolution), on their 
geometry and dielectric properties of the material of which 
they are made. It is also seen that formula (8) makes it possi-
ble to find such an angle a for which the constant will have the 
greatest value. For example, for p46 a = [(2k + 1)/4 – 1/8]p, 
k = 0, ±1, ±2, . . . For metal nanoparticles, the dielectric con-
stant e^ is a complex quantity, and therefore the photoelastic-
ity constant is also a complex quantity and, as the dielectric 
constant of a composite medium, allows the resonances to 
appear at certain wavelengths of light [1]. (It is advisable to 
investigate this practically important problem for a particular 
composite medium.) 

In the theory of diffraction of light by sound waves the 
photoelasticity constant complexity does not introduce sig-
nificant changes because the intensity of the diffracted light 
always includes the squared modulus of this constant [6, 7]. 
Note also that for conventional crystalline media the photo-
elasticity constants obtained in experiments are always con-
sidered to be purely real quantities. It follows from expression 
(8) that for symmetric nanoparticles, such as nanospheres, 
this constant is identically zero, and therefore the diffraction 
on the transverse acoustic waves is impossible. 

3. Consider the case of a longitudinal sound wave in the 
case of the inclined position of the ellipsoids of revolution. 
We rotate tensor (3) around the y and z axes by the angle b 
and g, respectively (note that the operation of rotation does 
not have the properties of commutativity and therefore 
sequence of their implementation is important). Then, we find 
the inverse value of the resulting dielectric constant tensor of 
the medium. These components of impermeability tensor 
have the form 
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where x, y, z is the new, rotated coordinate system. Using 
expressions (9), it is easy to find the explicit form of the pho-
toelasticity tensor components for this spatial orientation of 
the metamedium. We will present only the most important 
photoelasticity component, responsible for the coupling of 
the light waves propagating in the same direction, i.e., the 
component that provides collinear diffraction: 
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Next, the optimum conditions can be found under which the 
interaction of collinear light waves is the strongest. 

4. Note peculiarities of diffraction of light waves by sound 
in apodized composite structures. Anisotropic composite 
structures, in contrast to conventional crystals, allow any spa-
tial distribution of the nanoparticles. This opens up new pos-
sibilities for the implementation of specific regimes of diffrac-
tion, which are prohibited in crystals with uniform properties. 
An analysis of the phenomenon of diffraction by an inhomo-
geneous sound wave shows that in certain cases it is possible 
to create conditions when the intensities of side diffraction 
maxima are significantly attenuated or absent. It is known 
that the reason for the appearance of side maxima, such as in 
the collinear diffraction of light by sound waves, consists in 
the presence of boundaries during the propagation of light, 
or, in other words, in the finiteness of the sound beam along 
the propagation direction of light. 

Analysis of the diffraction conditions on a nonuniform 
sound wave, carried out in [8 – 11], showed that a suitable 
apodization of the sound beam can result in a significant sup-
pression of side diffraction maxima. The condition for the 
required apodization is to reduced to the fact that the ampli-
tude of the sound wave and its derivatives at the boundaries 
of the interaction region should be small or zero (see papers 
[8, 11]). To ensure these conditions with the help of sound 
waves introduced from the outside is quite difficult; therefore, 
this diffraction regime has not been implemented in practice. 

A completely different situation is possible in composite 
media, when, by changing the spatial distribution of the 
embedded nanoparticles, one can obtain any prescribed dis-
tribution of the photoelasticity constant responsible for the 
interaction of light with the sound wave. As an example, we 
consider the reflection of light from an isotropic heteroge-
neous composite medium when the addition to the dielectric 
constant tensor (3) can be represented in its simplest form: 
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(l is the size or length of the composite region along the prop-
agation direction of the light wave). The above-described spa-
tial distribution can be realised with the help of a travelling 
sound wave only for a very short time when the apodized 
sound wave fills a part of the volume of the crystal, in which 
light interacts with sound, and so the diffraction without side 
maxima can exist for a relatively short time. A completely dif-
ferent situation occurs in a metamaterial, when such a non-
uniform distribution can be realised due to  an appropriate 
distribution of the nanoparticles. For example, if the exact 
phase-matching condition is fulfilled, the medium with the 
above distribution becomes fully transparent [11]. This result, 
of course, refers to the waves satisfying the exact phase-
matching conditions. The nonuniform distribution of the 
nanoparticles finally leads to some violation of the phase-
matching conditions, and therefore, such a structure will not 
be entirely transparent. However, by selecting the appropri-
ate distribution of the nanoparticles and the value of De(x), 
the transparency of such a medium can be controllably high. 
It should be noted that this result relates to the media without 
absorption, i.e. when Imem = Imep = 0. 

Introduction of nanoparticles whose density exceeds the 
density of the metamedium obviously changes the speed of 
acoustic waves. If the distribution of the nanoparticles is not 
uniform, the phase-matching condition for diffraction of the 
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light waves will depend on the coordinates and, therefore, will 
be fulfilled for a frequency-modulated light pulse in accor-
dance with the spatial phase-matching condition. 

Expression (3) derived for the dielectric constant tensor 
refers only to one kind of the nanoparticles, such as spheroids 
or spheres, but it is clear that the Maxwell Garnett model 
allows generalisation to the case of two or more different 
inclusions. To do this, by a matrix medium in formula (1) is 
meant the dielectric constant defined by expression (3), and 
by ep – the dielectric constant of a new kinds of the particles, 
whose concentration per unit volume will be h1 (h is the previ-
ous concentration of the particles). Of course, it is now needed 
to satisfy the condition h + h1 << 1. 

The inclusion of the nanoparticles into the medium results 
in an increase of the absorption and scattering of the incident 
radiation, i.e. to extinction in such a heterogeneous medium. 
However, if the condition on the size of the nanoparticles is 
met: alim << l/ | |||e , alim << l/ | |e= , where alim is the character-
istic size of the nanoparticles (e.g., its diameter), extinction is 
very small (see paper [12], which gives the scattering, absorp-
tion and extinction cross sections for gold particles of various 
size, as in [1]). It can be seen that at a ~ 2 – 50 nm the absorp-
tion and scattering cross sections of light at a wavelength of  
~800 nm on one particle will not exceed 0.01pa2lin and will 
decrease with increasing wavelength. Of course, the given 
restriction imposes certain conditions on the concentration of 
the particles per unit volume of the medium; however, with 
increasing wavelength, i.e. for IR and THz wavelength ranges, 
these restrictions are sharply reduced. 

We have considered above metamedia with inclusions, in 
which the permeability is equal to unity. Nevertheless, it is 
clear that the situation is completely analogous to the case of 
magnetic inclusions and inclusions of more complex geomet-
ric shapes. The use of the inclusions of the nanoparticles hav-
ing complex shape (for example, different spirals [12]) and 
special magnetic, dielectric and conductive properties will 
allow one to produce qualitatively new acousto-optical 
devices with unique properties. Unlike conventional crystals, 
for metamedia there are no size restrictions, which make it 
possible to design devices for the IR region of the spectrum; 
as is known, in using conventional crystals it causes certain 
difficulties.

An explicit determination of the photoelastic constants 
for metamaterials is apparently an only example, when the 
values of photoelasticity can be found theoretically, since, as 
a rule, they are found experimentally.
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