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Abstract.  We consider an equation describing the dynamics of the 
phase of a beat signal at the output of a ring laser gyro in the pres-
ence of an alternating-sign frequency biasing in the form of a super-
position of two meanders with different amplitudes and periods. It 
is assumed that the amplitude of one of the meanders is much larger 
than that of the other as well as than the half-widths of the static 
lock-in and the measured difference of eigenfrequencies of a ring 
resonator. A method is proposed for approximately calculating the 
beat frequency as a function of the measured difference between the 
eigenrequencies of the resonator. The result of applying this method 
represents analytically a recursive algorithm. Its implementation 
on a computer has made it possible to construct a dynamic fre-
quency (output) response of a laser gyro with a biasing of given 
form.

Keywords: laser gyroscope, ring resonator, phase equation, eigen-
frequencies of a ring resonator, beat frequency, frequency response.

1. Introduction

Despite significant advances in laser gyroscopy, possible ways 
have been studied up till now to overcome one of the most 
characteristic (and fundamental) drawbacks of ring laser 
gyros (LGs) – the emergence of a dead zone in the measure-
ment of small angular velocities, i.e. at small differences of 
eigenfrequencies of a ring resonator (RR). In fact, all pro-
posed methods for decreasing this zone (without decreasing 
backscatter in some way) are reduced to the use of a frequency 
biasing, i.e. to a known (controlled) additional splitting of 
RR eigenfrequencies that can move the LG from the dead 
zone of the LG. Usually, use is made of a variable-sign peri-
odic frequency biasing [1, 2]. The form of the biasing on its 
period can vary from a simple harmonic to a frequency 
enriched curve (for example, a meander). As a rule, the ampli-
tude of such a biasing considerably exceeds the width of the 
dead zone of the LG in its absence (the width of a static dead 
band), and in theoretical investigations this fact is often used 
for approximate asymptotic calculations [3]. Known asymp-
totic approaches are always adapted to specific types of 
biases. In this work, we will also propose an asymptotic 
method, intended for the construction of a frequency response 

of the LG with a combined biasing, which represents a super-
position of two meanders with widely differing amplitudes 
Wr, Ws and periods Tr = 2p/nr, Ts = 2p/ns. In this case, the 
amplitude Wr of one of the meanders is much higher than all 
other parameters of the mathematical model with the fre-
quency dimension. A combined biasing can be created, for 
example, in a Zeeman LG with a magnetic field applied [1]. 
This combined biasing not only makes it reasonable to use the 
asymptotic approach, but also determines its basic features.

In this paper, the asymptotic method is developed theo-
retically and used to construct a dynamic frequency response 
of the LG with a combined biasing on a personal computer 
(PC).

2. Phase equation of an LG and an equivalent 
system of coupled equations with constant values 
of the bias

The dynamics of a single-mode (two-wave) LG with a gas 
mixture of special composition as an active medium is 
described by a system of three first-order differential equa-
tions (a system of truncated equations for slowly varying 
intensities and phase difference of counterpropagating waves 
[4]). These equations are coupled; however, under certain 
assumptions, in particular when a small amplitude modula-
tion of these intensities is neglected, it is permissible to con-
sider the phase equation to be independent. This assumption 
is introduced even when the alternating-sign biasing of the 
LG in question has a large amplitude. The possibility of using 
this approach is proved, for example, in [5] by integrating the 
coupled system of truncated equations on an analogue model. 
In this paper, the phase equation is also regarded as an inde-
pendent one.

In using any periodic frequency biasing, the phase equa-
tion is a first-order nonlinear equation, the right-hand side of 
which is periodic both in time and with respect to the unknown 
function Y:

( ) .cos
d
d

t
td L

Y W W W Y= + + 	 (1)

Here Y (t) is the difference between the counterpropagating 
waves (beat signal phase); in a particular case of a combined 
biasing, its change is given by the expression Wd(t) = 
Wr sign[sin(nrt)] + Ws sign[sin(nst)]; WL is the half-width of the 
static locking band; and W is the difference between the RR 
eigenfrequencies (proportional to the measured angular 
velocity). The values of Wr, Ws, nr, ns and WL are the parame-
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ters defining a specific variant of a dynamic frequency 
response, and W is an independent variable for any variant of 
the response. By the frequency response (curve of measure-
ment conversion) we understand by definition the function of 
the variable W

Y
( )

( )
T

T
beat

s

s 0W W
Y

=
- ,	 (2)

where Y0 = Y(0) is the phase of the beat signal at the begin-
ning of the biasing period 0 £ t £ Ts, and Y (Ts) is the phase 
at the end of the mentioned interval (its dependence on W is 
obvious).

We assume that Kr = Ts /Tr is a large integer. Then, Ts is 
the overall period of the combined biasing. In addition, the 
inequalities Ws/Wr, W/Wr, WL/Wr << 1 are fulfilled. These rela-
tions determine the possibility of using the asymptotic 
approach to the construction of the frequency response. It 
follows from (2) that for the frequency response to be calcu-
lated it is sufficient to solve the Cauchy problem for equation 
(1) in the interval 0 £ t £ Ts. A direct application of a PC for 
this purpose is ineffective, at least when using the MathCad 
15 environment. Therefore, the most fundamental part of the 
work should be first made analytically.

Note that within a biasing period 0 £ t £ Ts   there are 
intervals of duration Tr /2, on which the biasing takes one of 
the four fixed values: Wd p q = (– 1) p – 1Wr + (– 1) q – 1Ws, where p, 
 = 1, 2. In the first half-period of the biasing (at k = 1, . . ., Kr /2) 
we allocate odd intervals (2k – 2)Tr /2 £ t £  (2k  – 1)Tr /2, 
where Wd 1 1 = Wr + Ws, and even intervals (2k – 1)Tr /2 £ t £ 
2k(Tr /2), where Wd 2 1 = – Wr + Ws. When k = (Kr /2 + 1), . . ., Kr 
(i.e. on the second half-period of the biasing), we have Wd 1 2 = 
Wr – Ws and Wd 2 2 = – Wr – Ws on odd and even intervals, 
respectively. Therefore, on each of the following half-periods 
the phase equation (1) has a time constant in the right-hand 
side and can be written in the form

p cosd
dt 1

d LqY W W W Y=
+ +

.	 (3)

Equation (3) is integrated at an initial condition t(Y0) = 0. 
It is obvious that each of the mentioned half-periods on the 
time axis should have a corresponding pair of boundary val-
ues on the Y axis. Let us explain the meaning of this state-
ment by the example of the first three half-periods of time. On 
the first (odd) interval 0 £ t £ Tr /2, the phase equation (3) has 
the form

cosd
dt 1

r s LY W W W W Y=
+ + +

,

and its solution can be expressed as:

cos
dT

2
r

r s L0

1

W W W W Y
Y

=
+ + +Y

Yy ,

where Y0 is an arbitrarily specified initial phase and Y1 is an 
unknown phase. On the second (even) interval Tr /2 £ t £ 
2(Tr /2), the phase equation has the form

cosd
dt 1

r s LY W W W W Y=
- + + +

,

and its solution can be expressed as:

cos
dT

2
r

r s L1

2

W W W W Y
Y

=
- + + +Y

Yy ,

where the boundary phases Y1 and Y2 are unknown. On the 
third (odd) interval 2(Tr /2) £ t £ 3(Tr /2), the phase equation 
again has the form

cosd
dt 1

r s LY W W W W Y=
+ + +

,

and its solution can be expressed as:

cos
dT

2
r
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3
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where the boundary phases Y2 and Y3 are unknown.
At k = 1, . . ., Kr /2 we extend these formulas to other odd 

and even intervals of general form within the first half-period 
of the biasing having a duration Ts /2 (the total number of 
intervals is equal to Kr). On odd intervals  (2k – 2)Tr /2 £ t £ 
(2k – 1)Tr /2, the phase equation has the form

cosd
dt 1

r s LY W W W W Y=
+ + +

,

and its solution can be expressed as:
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where the boundary phases Y2k – 2 and Y2k – 1 are unknown. 
Only the initial phase Y0 is specified. On even intervals (2k – 
1)Tr /2 £ t £ 2k(Tr /2), the phase equation has the form

cosd
dt 1

r s LY W W W W Y=
- + + +

,

and its solution can be expressed as:
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where the boundary phases Y2k – 1 and Y2k  are unknown.
Similarly, we consider odd and even half-intervals on the 

second half-period of the biasing Ts /2 £ t £ 2(Ts /2) at k = 
(Kr /2 + 1), . . ., Kr. On odd half-intervals (2k – 2)Tr /2 £ t £ 
(2k– 1)Tr /2, the phase equation has a solution
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where the boundary phases Y2k – 2 and Y2k – 1 are unknown, 
but the phase KrY  has already been found (known). On even 
half-intervals (2k – 1)Tr /2 £ t £ 2k(Tr /2), the phase equation 
has a solution

cos
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where the boundary phases Y2k – 1 and Y2k  are unknown.
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3. Recurrence relations between the boundaries 
of the intervals on the phase axis

The phase equation (1) yields the expression
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The problem is to find the last phase K2 rY  in the coupled phase 
sequence

, ,..., , ,..., , .K K K K0 1 1 2 1 2r r r rY Y Y Y Y Y+ - 	 (9)

To solve this problem, first we use the asymptotic trans-
formation of integrals in (4), for example as follows:
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In the zero approximation in W L/W r we obtain from (10)
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In the first approximation in the W L/W r it follows from (10) that 
the boundary phases are related by the recurrence expression
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We use the asymptotic transformation of integrals in (5):
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In the zero approximation in W L/W r we obtain from (12)
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In the first approximation in W L/W r it follows from (12) that 
the boundary phases are related by the recurrence expression
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Next, we use the asymptotic transformation of integrals in 
(6):
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In the zero approximation in W L/W r we obtain from (14)
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In the first approximation in W L/W r it follows from (14) that 
the boundary phases are related by the recurrence expression
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We use the asymptotic transformation of integrals in (7)
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In the zero approximation in W L/W r we obtain from (16)
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In the first approximation in W L/W r it follows from (16) that 
the boundary phases are related by the recurrence expression
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4. Construction of a dynamic frequency response

As follows from expressions (11), (13), (15), (17), one can find 
all boundary phases in sequence (9), starting from a given Y0 
and ending with a desired K2 rY Y= W . The dependence of the 
last phase YW of the iterative process on W is evident from the 
above recurrence relations. Next, we determine the beat fre-
quency W beat(W ) = (YW – Y0)/Ts as a function of the variable 
W (RR frequency difference), i.e., the frequency response by 
definition.
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In the method under consideration, we used only the 
first-order approximation in W L/W r, i.e. the accuracy of the 
method is limited. However, when the conditions Wr /W, 
Wr /Ws, Wr /W L  >>  1, sufficient for the application of the 
asymptotic method, are fulfilled, the accuracy of determining 
the dynamic frequency response is quite satisfactory. The 
speed of the algorithm implementation on the PC is extremely 
high.

Here is an example of calculating the dynamic frequency 
response W beat(W )  in the range 0 £ W £ 3ns with the follow-
ing parameters: Ws = 2p×154, Wr = 2p×60 ´ 103, ns = 2p×4, Kr = 
126, nr = Krns, WL = 2p×600. The ideal frequency response cor-
responds to W beat(W ) = W. As can be seen from Fig. 1, the 
calculated frequency response (because of the presence of a 
component with a large amplitude in the alternating-sign 
biasing) is virtually identical to the ideal one because the dis-
tortions of the calculated frequency response are extremely 
small. To illustrate the nature and magnitude of distortions, 
Fig. 2 shows the dependence of deviation of the calculated 
frequency response from the ideal one.

5. Calculation of the dynamic frequency  
response of the LG with a biasing in the form  
of a meander by the asymptotic method  
and according to the Floquet theory

As we know nothing about the published results of calcula-
tions of the dynamic frequency response of the LG with a 
combined biasing, it is impossible to check the results, 

obtained here by the asymptotic method, by comparing them 
with the results obtained by other methods. However, the 
accuracy of the asymptotic method can be estimated by com-
paring the results of the calculation of the dynamic frequency 
response of the LG with a biasing in the form of a meander by 
this method and by the Floquet theory [6].

In some works, the influence of a biasing in the form of a 
meander with an amplitude Wr and a frequency n on the for-
mation of a dynamic frequency response was investigated in 
detail. For example, Birman et al. [6] used the Floquet theory 
to construct a frequency response in the entire range of W 
variation (constant component of the frequency biasing), i.e., 
both within the locking bands (lower orders) as well as 
between these bands. Birman et al. [6] noted that the results 
obtained are confirmed by comparing them with similar 
results from [7 – 9], in which the frequency response was inves-
tigated only for local regions of W variation near the locking 
bands and between the bands but far from their boundaries. 
Therefore, we will use the results of Ref. [6], as the most com-
mon and reliable source of information about the dynamic 
frequency response in the case of a biasing in the form of a 
meander. In this paper, we have obtained a theoretical fre-
quency response for the case when Wr >> WL >> n (Fig. 3). 
According to [6], the locking bands within the boundaries Wn 
± Sn/2 (n = 1, 2, . . .) have centres at

2
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L
n 2 2 2n

n
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The widths of these bands are

( ) .S n2 2 1
L

n

2n
W= - 	 (19)

From (18) it follows that the centres of the locking bands 
are located nonequidistantly and are always shifted to the left 
with respect to frequencies nn (the shift increases with increas-
ing WL). One can see from Fig. 3 that it is manifested in the 
fact that the centres of the locking bands lie on a quasi-static 
frequency response (conventionally straight line) rather than 
on an ideal frequency response. According to [6], the widths 
of the bands have an oscillatory dependence on their number 
n, and the oscillation amplitudes increase, with approaching 

0

1

1

2

2

Wbeat/ns

W/ns

Figure 1.  Calculated dynamic frequency response of the LG with a 
combined biasing (dashed line) and ideal frequency response (solid 
line). The parameters used in the calculation are given in the text.
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Figure 2.  Deviation of the calculated dynamic frequency response of 
the LG with a combined biasing from the ideal one at the same param-
eters as those in Fig. 1.
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Figure 3.  ( 1 ) Dynamic, ( 2 ) quasi-static and ( 3 ) ideal frequency re-
sponse of the LG at low rotation velocities [6].
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the region of strong linear distortions (W » Wr), up to a value 
comparable to n. Expression (19) is only an approximation 
for the widths of the lower order bands and does not reflect 
this peculiarity.

Let us use the asymptotic method to calculate the dynamic 
frequency response of the LG with a biasing in the form of a 
meander. The calculation results are presented in Fig. 4. The 
comparison of the dependences in Figs 3 and 4 shows that the 
asymptotic calculation method yields the same result as the 
method (Floquet theory) used in [6]. In view of the above 
remark, the accuracy of the results obtained by the asymp-
totic method is also confirmed by the results of calculations 
[7 – 9].

Dependences in Figs 1, 2 and 4 lead to the following con-
clusion: Compared with a biasing in the form of a meander, a 
combined biasing largely ‘straightens’ the dynamic frequency 
response by reducing the widths of the locking bands (brings 
it to an ideal frequency response).

6. Conclusions

The proposed method of calculation of a dynamic frequency 
response of the LG has allowed us to construct it on a PC 
using a MathCad 15 environment. A specific feature of the 
method is the possibility (under the condition WL /Wr, Ws /Wr 
<< 1) of presenting the solution of the phase equation in the 
form of recurrence sequences processed on a PC. The algo-
rithm for the PC using this method makes it possible to con-
struct a frequency response within a few seconds, i.e. can be 
used in the development or testing of the device in real time. 
This proves the possibility of an on-line comparative analysis 
of various frequency response variants.
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