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Abstract.  Numerical simulations were made of the interaction of a 
relativistically intense laser pulse with a target consisting of nano-
metre fibres. Fast electrons were shown to execute forced betatron 
oscillations in the electrostatic fibre field and the laser field. The 
fibre diameter was determined whereby the amplitude of betatron 
electron oscillations is resonantly increased. The power of coherent 
X-ray betatron radiation of the electron bunch was calculated out-
side of the resonance domain and in the resonance case. We showed 
that the laser-to-X-ray betatron radiation conversion coefficient 
in the resonance case amounts to a few percent and the target made 
up of nanometre fibres may be regarded as an efficient laser-driven 
source of coherent X- and gamma-ray radiation.

Keywords: laser-driven electron acceleration, betatron radiation, 
nanofibres, laser-driven coherent X-ray source.

1. Introduction

The generation of relativistic electron beams (REBs) and 
hard X-ray photons in the interaction of laser radiation with 
different targets is being intensively studied today [1]. These 
investigations are aimed at increasing the intensity, degrees of 
monochromaticity and directivity of electron and radiation 
fluxes as well as at attaining the controllability of their param-
eters. The passage of substantial electron currents through 
laser targets is impossible without the generation of a ‘cold’ 
countercurrent, which compensates for the intrinsic magnetic 
field of the beam. In continuous targets, the presence of the 
countercurrent results in the instability and filamentation of 
the relativistic current and its transit to a turbulent regime [2]. 
In structured targets consisting, for instance, of parallel nano-
metre fibres, this process is hindered, because the filament 
parameters are defined by the fibre diameters. One would 
therefore expect the suppression of the instability, a significant 
lengthening of the REB free path, and efficient generation of 
quasimonochromatic hard radiation. 

Modern technologies permit making targets in the form 
of a bundle of fibres of nanometre diameter [3]; the prepulse 
radiation may leave these fibres intact due to a high contrast 
ratio of laser radiation. In the course of propagation along 
the fibre, relativistic electrons execute transverse (betatron) 
oscillations relative to the fibre axis and generate hard radia-
tion. A similar radiation is generated in the electron oscillations 
in the ion channel of a transparent plasma [4]. In particular, 
for a small amplitude of the electron oscillations relative to 
the channel axis, the characteristic radiation frequency wch = 
wp g3/2 2 , where g is the Lorentz factor of the relativistic 
electron beam and wp is the electron plasma frequency of the 
background plasma in the channel. In this case, the electron 
deviation angle from the channel axis when describing the tra-
jectory is smaller than the characteristic radiation divergence 
angle q » 1/g (the smallness condition of the oscillation ampli-
tude). When betatron oscillation amplitude rmax becomes 
substantial, i.e. the parameter K = 1.33 ́  10–10 n rmaxchg  > 1 
(nch is the fast electron density in the channel in units of cm–3, 
rmax is taken in mm), the generation of high-frequency har-
monics sets in. The characteristic radiation divergence angle 
increases up to q » K/g, the radiation spectrum becomes quasi-
continuous and resembles the synchrotron radiation spec-
trum. The characteristic energy (which defines the spectrum 
maximum) assumes a value c'w  » 5 ́  10–24 g2 nch rmax (nch is 
taken in units of cm–3, rmax in mm and c'w  in keV). The spec-
trum amplitude increases proportionally to w2/3 for frequencies 
w < w0, reaches its maximum at w » 0.3wc, and then decays 
exponentially. The electron synchrotron radiation spectrum in 
the plasma channel was experimentally observed in Ref. [5]. 
The coherent nature of the electron betatron radiation in the 
channel is borne out by the fact that the electron radiation 
power is proportional to the squared density of the back-
ground plasma in the channel. This fact was also confirmed 
experimentally in Ref. [5]. 

The mechanism of betatron radiation generation by elec-
trons travelling along the laser target fibres is similar to that 
in a plasma channel. In both cases, the radiation is generated 
by the transverse oscillations of relativistic electrons in the 
electrostatic field of the form of a potential well. However, 
the betatron fibre radiation offers several advantages over the 
betatron channel radiation. The first of them is the large 
number of radiating electrons. The characteristic fast electron 
density nch in the channel ranges up to ~1019 cm–3. Electrons 
are completely extracted from a fibre of radius R by a laser 
field intensity EL > 2eZniR, where e is the electron charge 
and Z is the average charge of plasma ions with a density ni. 
The dimensionless amplitude corresponding to this field aL = 
eEL/(me wLc) ³ neR/(ncr lL), where me is the electron mass, wL 
and lL are the central frequency and its corresponding wave-
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length of laser radiation, ne is the electron density and ncr is 
the critical electron density. For instance, with a field aL = 5 
(an intensity of 3.5 ́  1019 W cm–2) it is possible to completely 
extract electrons from a carbon fibre ~10 nm in diameter. 
A fibre of greater radius will retain a part of electrons and will 
acquire a charge r » ELR/2 per unit length under the action 
of the laser field. In this case, the electrons extracted from the 
fibre will not be able to move far away from the fibre (this 
would entail an increase in r and the attraction of electrons 
back to the fibre). The characteristic electron – fibre distance 
(the Debye radius rD) is equal to ~1 mm. In this case, the 
density of ‘hot’ electrons about the fibre nch = Zni(R/rD)2. For 
a carbon fibre 60 nm in diameter, it is equal to 3.2 ́  1020 cm–3, 
which is higher than the electron density in the plasma channel. 
For a spacing b » 2rD of the target fibres, the laser beam cross 
section will be filled with fast electrons with a density exceeding 
the channel electron density. 

The second advantage of the fibres is their higher electro-
static field. The field in the electron trajectory in the channel 
is equal to about 2ench rmax. In the case of a carbon fibre, the 
characteristic field in the electron orbit 2r/rD » ELR/rD » 
2eZni R2/rD, and for rmax » 2 mm it turns out to be approxi-
mately 16 times higher than the channel field. The higher field 
results in a stronger transverse electron acceleration and a 
higher betatron radiation intensity. In the electron motion in 
the field of two forces (the electromagnetic wave and the fibre 
field), a resonance may take place, whereby the electron oscil-
lation energy and the betatron radiation intensity become 
higher. We emphasise that both target versions are intended 
for the generation of coherent hard radiation in a preselected 
and relatively narrow photon energy interval. To efficiently 
generate hard radiation throughout the possible photon energy 
range, it is more expedient to direct the photon flux from the 
fibre target to a continuous solid domain (for instance, by 
placing the fibre target on a substrate) to obtain the Bethe – 
Heitler electron bremsstrahlung in the continuous medium. 
In this case, the spectral intensity depends slightly on the 
photon energy up to energies comparable to the radiating 
electron energy. We now turn to the investigation of betatron 
radiation from nanofibre targets. 

2. Numerical simulations

The interaction of laser radiation with nanofibre targets was 
investigated using two-dimensional particle-in-cell simulations 
of plasma particle motion. A modified code [6] was employed 
to simulate the interaction of laser radiation with targets 
consisting of parallel fibres. The laser radiation with a wave-
length lL=0.8 mm was incident on the fibre ends along the 
fibre surfaces. The laser beam diameter was dL = 4 mm, the 
Gaussian pulse duration was tL = 45 fs and the peak radiation 
intensity was IL = 3 ́  1019 W cm–2. The simulations were made 
in a box measuring 100 ́  100 mm with 25 ́  106 cells, the maxi-
mum number of quasiparticles in a cell was equal to 30. The 
targets consisted of carbon fibres of radius rw > 30 nm spaced 
at intervals b > 100 nm. Varying the diameter dw = 2rw and 
spacing b led to the following conclusion [7]. Optimal (in the 
number and energy of accelerated electrons) among parallel 
fibre targets are the targets with fibre diameter of the order of 
the skin layer thickness ls for a relativistically intense laser 
field (~40 nm for a С6+H1+ hydrocarbon fibre with an initial 
density of 4 ́  1022 cm–3) and an interfibre spacing of the order 
of the Debye radius for hot electrons (rD » 1 mm). These opti-
mal targets completely absorb the laser radiation over a dis-

tance of several micrometres from the input fibre ends and 
convert it to the directional electron flux motion along the 
fibres. The absorption length depends on the interfibre spac-
ing and may be increased to several hundred micrometres for 
a spacing exceeding 2 lL. Figure 1 shows the spatial distribu-
tion of fast (the longitudinal momentum pz > 1) electrons trav-
elling in the target with a fibre radius of 30 nm and an interfi-
bre spacing of 1200 nm. The angular and energy distributions 
of these electrons are depicted in Fig. 2. 

The physical reason that permits the fast electrons to 
travel along the fibres is the occurrence of the counterflow of 
cold electrons in the fibres: the fast electrons escape from the 
fibre to give rise to its positive charge, and this charge attracts 
cold electrons from remote parts of the fibre. That is why the 
number of fast electrons persists in the propagation through 
a  distance of several tens of micrometres. The counterflow 
density in the fibre exceeds the fast-electron current density in 
it (as this takes place, the total currents are approximately 
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Figure 1.  (colour online) Spatial distribution of hot electrons ( pz > 1) 
in carbon fibres 60 nm in diameter (points) at normal (a) and enlarged 
(b) scales. The vertical lines in Fig. 1a and the grey stripe in Fig. 1b show 
the ion core of the fibre. The black line in Fig. 1b indicates the electron 
trajectory derived from Eqns (1). The interfibre spacing is b = 1200 nm, 
the laser beam diameter is dL = 4 mm, the duration is tL = 45 fs and the 
intensity is IL = 3 ́  1019 W cm–2. 
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equal if account is taken of the fast-electron motion in the 
vacuum gap between the fibres). As a result, a magnetic field 
is induced about the fibre, whose polarity is opposite to that 
of the current of fast electrons themselves. The thus polarised 
magnetic field cancels the effect of fast-electron current cut-
off, which takes place in a continuous target. That is why a 
bunch of fast electrons is capable of propagating considerable 
distances along the fibre. In the propagation along the fibre, 
the main contribution to the electron energy loss and the 
formation of electron free path is made by the collective 
bunch-driven ionisation of the target material, which occurs 
due to the induced counterflow. As shown in Ref. [7], the 
electron bunch free path along the parallel target fibres 
amounts to ~1.5 mm, individual fast electrons propagating 
centimetre-long distances through the now-‘neutral’ fibre 
material [8]. 

An analysis of the fast-electron energy distribution in 
Fig.  2b suggests that its maximum falls on angles of ~10°. 
Consequently, in the propagation of electrons along the fibre 
at nearly the velocity of light there occur their transverse 
oscillations (a three-dimensional helical motion) in the elec-
trostatic fibre field and a travelling-bunch Debye ‘coat’ is 
formed about the fibre. One can also see in Fig. 2b that the 
characteristic electron propagation angle (J = 10° – 15°) sets 
in after the cessation of the laser pulse [curve ( 2 )]. During 
the  course of the pulse, the angle of propagation J » 30° 
[curve ( 1 )]. Therefore, the form of transverse electron oscilla-

tions in the fibre vicinity changes upon cessation of the action 
of the laser field. Figure 1 shows the electron ‘coat’ (points) 
surrounding every fibre. An individual fibre with electrons 
oscillating about it is shown on an enlarged scale in Fig. 1b. 

The betatron electron oscillations in the fibre vicinity 
shown in Fig. 1 generate hard radiation, whose intensity is 
determined in Section 3. As is evident from Fig. 2a, the char-
acteristic Lorentz factor of electrons ágñ » 20 (an energy of 
~10 MeV), and in Fig. 2b the electron deviation angle at the 
peak of distribution J » 15°, or 0.25 rad. The corresponding 
divergence angle q » 1/ágñ of relativistic electron radiation is 
smaller than the characteristic deviation angle of the trajec-
tory (in this case, K > 1), and the betatron radiation in its 
parameters is close to synchrotron radiation for the corre-
sponding radius of curvature of electron trajectory. 

3. Analytical model of betatron oscillation 
generation

3.1. Excitation of transverse electron in-fibre oscillations 
by external laser field

The electron oscillation amplitude and the fibre charge den-
sity are formed during the action of the laser field due to 
electron extraction to the vacuum gaps between the fibres. At 
first we consider the electron motion in a fibre portion where 
the incident laser pulse is slightly distorted (the lower rectangle 
in Fig. 3a). These are the first 5 mm (this fibre portion depends 
on the interfibre spacing and may be lengthened) for the 
PIC simulation performed here. Further along the target (the 
upper rectangle in Fig. 3a and the rectangle in Fig. 3b) there 
occurs scattering and absorption of the initial field. In this 
domain, the field is even higher, but now it is described by the 
self-consistent solution of the Maxwell equations with the 
inclusion of electron current. This domain is considered in 
the subsequent Sections. In the domain that lies even higher 
the electron motion proceeds only in the electrostatic field of 
the fibres, and the laser radiation is absent. In this case, the 
fibre charge is formed self-consistently and depends on the 
number of fast electrons and, consequently, on the intensity 
and duration of the laser pulse. In the model of electron 
motion in the fibre field described below, the fibre charge is a 
free parameter estimated proceeding from the condition that 
the model and numerical data must coincide. This approach 
permits considering the electron motion in a one-particle 
approximation and calculating the betatron radiation inten-
sity from the calculated trajectory of electron motion. 

The equations of electron motion in the vacuum laser 
field and electrostatic potential of charged fibres (the lower 
rectangle in Fig. 3a) in a cylindrical system of coordinates are 
of the form: 
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Figure 2.  Electron distribution function dN/dE in the fibres for t = 128 fs 
(a) and fast-electron angular distribution for t = 85 ( 1 ) and 128 fs ( 2 ) (b). 
The pulse and target parameters are given in the caption to Fig. 1.
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Here, we introduced the following dimensionless quantities: 
coordinates   ru  = wLr/c, zu  = wLz/c, x = wL(t – z/c), t = wLt; 
momenta pr,z (in units of mec); angular momentum Mz

u  (in 
units of mec2/wL), and potential Uu  = U/(mec2). The laser field 
aL is linearly polarised along the x axis (in the plane j = 0), 
j  is the azimuthal angle. The potential Uu(r) of N charged 
fibres (the fibres are located in the xz plane and aligned with 
the z axis) is defined by the formula 
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Since the PIC numerical simulation was performed in the 
planar two-dimensional (2D) approximation, a comparison 
of the solutions of system (1) with the data of numerical cal-
culations is correct when the electron trajectory is planar. 
Accordingly, to compare with the PIC simulation data, 
Eqns (1) will be solved numerically in the xz plane, assuming 
that the electron angular momentum  Mz

u  = 0 and the angle 
j = 0 in the course of electron motion. This limiting case is 
correct when the laser wave is linearly polarised. The main 
forces act on an electron in the polarisation plane xz of the 
electromagnetic wave, while the motion in the y axis is due to 
the initial conditions and proceeds at nonrelativistic velocities. 
We also note that the fibres potential (2) corresponds to the 
real three-dimensional (3D) geometry, and that to compare 
with the data of numerical simulations in the 2D limit it would 
be well to use the potential of planes in lieu of the potential of 
the fibres (a linear function in lieu of a logarithmic one). 
Numerical integration of expression (2) with logarithmic and 
linear potentials (with the same depth and width of the poten-
tial well for the electron) showed that the main characteristics 
of electron motion for these potentials coincide to within a 
factor of the order of unity. That is why, below, the potential 
(2) will also be used in the comparison of the results of model 
and numerical calculations. 

The radiation power of the electron travelling in the xz 
plane is calculated from the solution of the system (1): 
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We note that the main contribution for the thin fibres under 
consideration is made by the upper term in expression (1), 
while in plasma channels, by contrast, the lower term is sig-
nificant. 

The system of equations (1) can be solved only numeri-
cally. It is convenient to introduce the dimensionless fibre 
charge density b = 2er/(mec2) and plot the time dependences 
of the Lorentz factor g and the Lorentz factor gz of longitu
dinal electron motion for different b (Fig. 4). The electron 
trajectory calculated using Eqns (1) (the black line in Fig. 1b) 
coincides with the trajectory obtained by PIC simulations (the 
crowdings of points in Fig. 1b) for parameter b = 0.23, which 
corresponds to the extraction of 8 % of the electron charge 
from the fibre. 

As is clear from Fig. 4b, a substantial increase in the elec-
tron oscillation energy and betatron radiation intensity are 
possible for a fixed laser pulse intensity and a variation of the 
fibre charge density (for b = 0.19). This case calls for a fine 
adjustment of fibre and laser pulse parameters will be dis-
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Figure 3.  (colour online) Laser field inside the fibre target for t = 64 (a) 
and 85 fs (b). The pulse and target parameters are indicated in the cap-
tion to Fig. 1. 
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cussed in Section 5 of the present paper, and in Section 3.2 
we  determine the betatron radiation intensity outside the 
resonance domain. 

3.2. Intensity of the betatron radiation of electrons in their 
propagation along the fibre

Formula (3) permits determining numerically the intensity of 
betatron radiation for a single electron by numerical solution 
of equations of motion (1) as well. Obtaining analytical results 
calls, first of all, for simplifying the system of the equations 
of motion. The data of PIC simulation presented in Fig. 3 
suggest that the weakly distorted ‘vacuum’ transverse laser 
field occupies the first ~5 mm of the fibre, the next ~5 mm are 
occupied by the transition domain, where the transverse field 
is strongly distorted and lower in amplitude. Further (after 
the first ~10 mm) electrons travel along the fibre in its ambi-
polar field without the effect of transverse fields on electron 
dynamics. The angular and energy electron distributions formed 
by that time are depicted in Fig. 2 [curves ( 2 )]. The angular 
electron distribution upon cessation of the action of the laser 
field [Fig. 2b, curve ( 2 )] peaks at a smaller angle than in the 
case when the electron was travelling in the wave field and 
the fibre field [Fig. 2b, curve ( 1 )]. Therefore, on exiting the 
domain of laser pulse action (on its cessation), the transverse 
electron oscillations relax partly because one of the forces dis-
appears. We consider analytically the radiation generation in 

the domain where the transverse field is nonexistent and the 
electrons oscillate only in the potential fibre field. In Fig. 1, 
this corresponds to distances of ~10 mm and further from the 
fibre front end. The angular and energy electron distribution 
function fe is assumed to be known from numerical simula-
tions (see Fig. 2). 

To analytically calculate the radiation power of an electron 
bunch with a known distribution function (Fig. 2) travelling 
along the fibre beyond the domain of laser field penetration, 
use is made of formula [9] 
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Formula (5) gives the radiation power (3) of a single electron 
averaged over the electron distribution. Performing calcula-
tions by formula (5) necessitates the trajectory of motion of 
an individual electron for given initial conditions r(t, r0, p0). 
The trajectory of motion follows from system (1), in which 
the laser field is absent and the fibre potential (2) remains the 
same. The fibre charge beyond the domain of the laser field 
action is defined by formula (2) as before, because the number 
of fast electrons persists in the bunch propagating through a 
distance of several tens of micrometres. As shown in Ref. [10], 
the fibre charge induced due to the redistribution of cold elec-
trons is equal to the charge of hot electrons travelling above 
the fibre surface. In the absence of the laser field, system (1) is 
solved analytically. Conserved in the field of every fibre are 
the momentum pz, angular momentum Mz

u , and the total 
energy of an individual electron oscillating in this field with a 
dimensionless amplitude rmaxu : 
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From expressions (6) we obtain the analytical description 
of  transverse electron oscillations and longitudinal electron 
motion:
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The radial oscillation period T follows from expressions (7) 
and is described by the expression 

( , )
2

( ) ( )
,

ln

ln
dr x

x x

x

1 1 1

1
( , )max x 2 2 2

1

1

m e

m e

m
=

- - - -

-j

jm e -
j

cT

u u
y 	

(8)

, ,r
M
maxz z

zm g
b

e g= =j

u

ágñ, ágzñ áP1eñ

80

g, gz

1000

500

0 2 4 6 t (104)

60

40

20

0 0.1 0.2 0.3 b

~

500

1000

1500

2000

0

1

2

a

b

Figure 4.  (colour online) Time dependences of the Lorentz factor g ( 1 ) 
and the longitudinal Lorentz factor gz ( 2 ) for an electron in fibre of 
radius 30 nm for aL = 5 and b = 0.19 (a) as well as time-averaged values 
of ágñ ( ), ágzñ ( ), and the dimensionless radiation power áP e1

u ñ ( ) as 
functions of the dimensionless fibre charge density b (b). The value t = 
2 ́  104 corresponds to a dimensional time of 8.5 ps. 
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where /x x cLw=u  and the turning point x1u  is defined by the 
equation ( ) ( )lnx x1 1 11

2 2
1
2m e- - - =j

-u u . The dimensionless 
parameter m is the ratio between the characteristic potential 
energy to the kinetic energy of motion along the fibre and 
determines the deviation angle of the electron trajectory. The 
parameter ej is related to the azimuthal motion and is the 
dimensionless (ej = uj /c) velocity of azimuthal rotation. As 
mentioned above, in the case of a linearly polarised laser pulse 
uj << c and the parameter ej is small. 

Calculations show that the period is sufficiently accu-
rately described by the expression 

( , )
rmax

m ejcT
 » 1.5 .2

m+ 	 (9)

The characteristic radiation frequency w* (which defines the 
spectral power peak) of a relativistic electron executing radial 
oscillations of significant amplitude (in Fig. 2b, the electron 
deviation angle J exceeds the characteristic radiation diver-
gence angle q) coincides with the characteristic synchrotron 
radiation frequency [9], provided that in its expression the 
electron in-fibre oscillation period (9) is substituted for the 
electron rotation period in the magnetic field:

w* = gz
3 2p/T » gz

3 4pc/(7rmax).	 (10)

In expression (9) the parameter m » 1, because the electron 
deviation angle in Fig. 2b is sufficiently large. The explicit 
form of the frequency dependence of the spectral power is 
given by formula (19) below. The individual electron radia-
tion power [the integrand in expression (5)] is obtained on 
substitution of the electron acceleration (4) in expression (5). 
As a result, the power of radiation by an individual electron is 
expressed in terms of its transverse coordinate:
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The time dependence of the power is obtained by substi-
tuting in formula (11) the radial motion law r(t), which is 
defined by the first expression in formulas (7). The emergence 
of r–2 in formula (11) is readily explainable: since the fibre 
field is µ 1/r, the acceleration is also µ 1/r, and the power is 
proportional to the square of the acceleration, i.e. to 1/r2. For 
r = 0, the fibre field, the acceleration, and the power formally 
turn to infinity. That is why in the absence of the angular 
momentum ej the radius r [and the lower limit of integration 
in expression (7)] should be limited by the fibre radius rw. 
When the angular momentum is nonzero, the electron cannot 
fall at point r = 0 and formula (11) always gives a finite power 
value.

The expression for the radiation power of an individual 
electron averaged over the oscillation period is obtained by the 
time averaging formula (11), and after a change of integration 
variable takes on the form 
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It is plotted in Fig. 5 for different ej. Unlike the oscillation 
period, the dependence of the time-averaged radiation power 
on the parameter ej is strong. The growth of the power with 
a decrease in the electron angular momentum is explained as 
follows: for small momenta, electrons approach the fibre 
closer, where the field is stronger, the acceleration is greater 
and, accordingly, the radiation power is higher. Interestingly, 
in the electron propagation through an ion channel [see the 
potential in the lower line in expression (2)], which was con-
sidered in Refs [4, 11], the radiation power is defined by the 
formula similar to formula (11):
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where rch and rch are the channel charge per unit length and 
the channel radius. By comparing expressions (11) and (14), 
one can see that the ratio between the radiation powers in the 
channel and the fibre is defined by the ratio between rch/rch 
and r/rw, or between nichrch and ni rw. For a channel of radius 
3 mm (equal to the radius of the laser beam) in the plasma with 
a density of 1019 cm–3 and for a fibre of radius 30 nm with 
an  ion density of 6 ́  1022 cm–3, the radiation power of one 
electron in the fibre exceeds that in the channel by a factor 
of ~50.

Formula (12) defines the radiation power of an individual 
electron. The electron radiation power for all fibres is obtained, 
according to expression (5), by averaging formula (12) over 
the distribution function (Fig. 2). The electron angular and 
energy distributions (tan2J = m, gz) for all target fibres are 
depicted in Fig. 2. The radiation power averaged over the 
electron distribution fe( m, gz) is defined by the expression
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Figure 5.  Dependences g( m) for ej = 0.05 ( 1 ), 0.1 ( 2 ), 0.2 ( 3 ), and 
0.3 ( 4 ).
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Numerical calculation by formula (15) for a small dimension-
less value (ej = 0.1) of the electron angular momentum gives 
áPñ = 2.7 ́  1012 erg s–1 (ej = 0.1 corresponds to the approxi-
mate equality between the azimuthal and characteristic radial 
velocities). For an intensity IL = 3 ́  1019 W cm–2 and dL = 4 mm, 
the laser power PL is equal to 5 ́  1019 erg s–1. The power con-
version coefficient eP = 0.8 ́  10–6. For a channel with an elec-
tron density of 1019 cm–3, the coefficient eP is approximately 
200 times lower. Therefore, outside the domain of the laser 
field action the conversion coefficient is low (lower than, for 
instance, the coefficient of conversion to the characteristic 
radiation of target ions), and this case is nonoptimal for the 
efficient generation of coherent hard radiation. 

4. Resonance betatron oscillations

In the electron motion through a fibre target, a resonance 
may occur between the electron oscillations in the field of the 
laser wave and in the electrostatic fibre field. The resonance 
was observed for b = 0.19 in the analytical model above 
(Fig.  4b). The amplitude (energy) of betatron oscillations 
increases under resonance conditions (see Fig. 4b), and it is 
precisely the resonance case that holds the greatest interest for 
research and is optimal for increasing the power of secondary 
radiation. The betatron electron oscillations under the condi-
tions being considered are characterised by a strong non
linearity (the amplitude dependence of the frequency), and 
therefore a numerical search for the resonance parameters of 
the target and the laser pulse calls for the variation over wide 
limits of at least of one of these parameters.

To find the resonance conditions, we modelled the inter-
action of the laser pulse (its parameters are given above) with 
one fibre of varying diameter, dw = 5 – 100 nm, over a distance 
of 75 mm. On reaching dw = 13 nm (at a point z = 35 mm) there 
occurred a substantial (approximately four-fold) increase in 
transverse electron momentum and electron energy. To verify 
the resonance diameter value, simulations were made of targets 
with fibre diameters of 7 and 13 nm and an interfibre spacing 
of 1200 nm. The laser pulse parameters are the same as in 

Fig. 1. Figure 6 shows the dependence of the highest electron 
g factor on the dimensionless fibre charge density b. The fibre 
charge density was determined from the difference of average 
electron and ion densities inside the fibre and was equal to 
0.06 and 0.08 for dw = 7 and 13 nm, respectively. Given addi-
tionally in Fig. 6 are the above simulation data for dw = 60 nm 
( b = 0.23) and the maximal electron Lorentz factor in the field 
of a laser wave of intensity 3 ́  1019 W cm–2 in the absence 
of  fibres. A comparison of numerical data (Fig. 6) with the 
analytical model (Fig. 4b) suggests that a clearly pronounced 
resonance is observed in the numerical simulation, like in the 
model, however for b » 0.08. The discrepancy (by about a 
factor of two) between the resonance charge value obtained in 
the analytical model and numerical simulation data is due to 
the approximations assumed: in the mode, b is an indepen-
dent parameter, while in the simulations it is settled in a self-
consistent way and is determined by the pulse and target 
parameters. 

The resonance value b = 0.19 of the analytical model 
corresponds to complete extraction of electrons from a fibre 
~3 nm in diameter (or, for a fibre of larger diameter, to a 
partial extraction proportionally to the area ratio). In the 
numerical simulation, the resonance diameter was equal to 
13 nm and the extraction of electrons was partial. In the ana-
lytical model, the average electron energy at resonance is 
approximately two times higher (like in the numerical simula-
tion) and the average radiation intensity is approximately 
four times higher in comparison with the non-resonance case 
( b = 0.23). Unlike the electron motion in the wave field (with-
out a fibre, b = 0) there occurs a more significant increase in 
radiation energy (eight-fold) and power (60-fold). 

The analytical model permits studying the properties of 
resonance with fibre diameter variation (see Fig. 4). In the 
model calculations, the resonance is inherently ‘sharp’: for 
instance, the values b = 0.18, 0.19, and 0.2 result in several-
fold different electron energies and radiation intensities. In a 
real experiment and in the numerical simulation, the values of 
rw and aL determine the charge density, because it is formed 
in a self-consistent way. Accordingly, in the model the param-
eter b may not be arbitrarily selected. We estimate it from the 
condition that the electrostatic fibre field, which appears 
due to the extraction of electrons by the laser field, has to be 
comparable to the laser field: 2er/rw = 2e(ni – ne)rw » EL. 
From this relationship it follows that b » aLrw wL/c. For rw = 
30 nm and aL = 5, the model value b » 1.2, which is greater 
than the simulation resonance value b = 0.19, because the 
model does not permit determining the corresponding param-
eter exactly for a partial electron extraction from the fibre. 
However, it permits determining the interval for the search of 
the resonance fibre diameter for given laser parameters. The 
resonance is sensitive to the temporal profile of the laser 
pulse. Replacing a rectangular pulse envelope (Fig. 4) with 
a Gaussian profile for b = 0.19 results in a lowering of the 
resonance values in Fig. 4b by about a factor of two. However, 
the resonance itself persists for a smooth profile as well. 

Interestingly, in the variation of laser target thickness the 
energy of fast electrons shows a maximum for a certain value 
of the thickness [12]. However, for a fibre target this maxi-
mum is sharper and is interpreted as a consequence of the 
resonance in electron oscillations.

The resonance condition is analytically written as the 
resonance condition between the laser pump and the oscilla-
tions in the fibre field: wL = 2p/T. The resonance condition 
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Figure 6.  Dependence of the maximal electron g factor on the dimen-
sionless fibre charge density b, which was obtained from 2D PIC simu-
lation data. The laser pulse parameters are the same as in Fig. 1.
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corresponds to the presence of two independent forces in 
the  equation of radial motion and the absence of coupling 
between the longitudinal and transverse motions. This case is 
realised for the system (1) in the limit py,z << 1, g » gz » 1, 
a(x) << 1, i.e. for low amplitudes of the laser field. In this 
case, the equation of radial motion assumes the form 

¶
¶

¶
¶( ) ( )

.r
a

r
U r

x
x

= +up
u

u u
	 (16)

For small electron deviations from the fibre axis [see the 
potential in the lower line of expression (2)] its motion 
becomes harmonic: 

.cosr r aw L
2b x+ =-rup u u 	 (17)

The resonance condition for Eqn (17) is of the form b = 2
wru  = 

(2prw /lL)2 << 1. With an increase in oscillation amplitude 
and electron escape from the fibre, the oscillations in the 
potential well, which are described by expression (16), become 
nonlinear: the period T depends on the amplitude rmax, 

r
cT
max

 » 1.5 + 2
b
.	 (18)

In this case, the resonance condition takes on the form 
rmaxu (1.5 + 2b–1/2) » 2p. We emphasise that the resonance in 
nonlinear oscillations is different in properties from the reso-
nance in the linear equation (17): as the amplitude increases, 
the frequency changes and the system goes out of resonance. 
As this takes place, the amplitude begins to decrease, the fre-
quency returns to the resonance value, and the amplitude 
begins to grow again. As a result, there occur aperiodic varia-
tions of the amplitude and energy of electron oscillations, 
which can be seen, for instance, in the time dependence of g 
in Fig. 4a. In this case, the oscillation amplitude varies aperi-
odically and remains finite even in the absence of dissipation 
forces.

For a relativistic amplitude of the laser field (a(x) > 1), the 
transverse electron motion mixes with the longitudinal one, 
and in the complete system (1) it is impossible to single out 
two separate transverse forces with separate drive frequencies 
and write the resonance condition in an analytical form. The 
system (1) permits determining only the trends in the varia-
tion of the resonance condition. Specifically, the smallness 
of  the characteristic angle of electron propagation (Fig. 2b) 
permits putting gz = const in the zero approximation, and 
then the influence of longitudinal motion on the transverse 
one comes to an increase in effective electron mass and the 
period of transverse oscillations becomes longer. According 
to formula (9), the period lengthens with increasing gz. As a 
result, the dimensionless quantity TwL also increases: in the 
calculation performed by the analytical model, for instance, 
for resonance parameters rmaxu  » 20, á gzñ » 10.6, and b = 0.19 
we obtain TwL » rmaxu (1.5 + 2 /zg b ) » 312 >> 2p. In the 
plasma channel [4, 11] the situation is similar: at resonance 
the ratio wpch/wL of the oscillation frequency in the channel to 
the laser frequency is equal to ~0.12. 

The fibre charge density b* optimal for maximising the 
amplitude ( )r tu  is numerically related to aL as b*(aL) » 0.02aL

1.3, 

which is true in the interval 2 < aL < 30 provided that the 
interfibre spacing b > 2 ( )r tu , "t. The resonance parameter in 
the system (1) depends only slightly on the fibre radius in the 
range rw = 10 – 200 nm. 

Since b is not an arbitrary parameter in reality but is deter-
mined by laser pulse and target parameters, we performed 
calculations for intensities of 1020 and 1021 W cm–2 to find 
the optimal fibre diameter as a function of laser intensity. The 
remaining parameters were the same as in the simulations 
(see Fig. 1). For each of these two intensities we performed 
enumeration of the fibre diameters in the 20 – 200 nm range 
at 20-nm increments. We selected the diameter for which the 
electron energy was highest. The results of these calculations 
are given in Fig. 7 (points). One can see that the dependence 
of the optimal diameter on the field amplitude is close to the 
linear one, i.e. dw µ IL . Figure 7 shows the values of fibre 
charge density b for each of the three optimal diameters for 
comparing the data of numerical simulations with the opti-
mal dimensionless charge density b*(aL) which follows from 
Eqns (1). The dotted curve shows the dependence b*(aL). One 
can see that the scaling formula for the optimal charge density 
is consistent with the data of numerical 2D PIC simulations.

In the resonance case, the coefficient of laser radiation 
conversion to coherent X-rays may be substantially improved. 
To this end, the target fibres must be optimised in diameter 
and their spacing must be increased to b ³ 2 lL for lengthen-
ing the laser-pulse penetration depth in the fibre target and 
effecting the joint propagation of electrons and the laser pulse 
along the fibres. In Fig. 3a, this corresponds to a larger height 
of the lower rectangle and the absence of other domains. 
Analytical formula (15) for the betatron radiation power is 
invalid in this case (a transverse field is present) and an esti-
mate is made numerically from formulas (1), (3) directly. 
Since the radiation power rises with increase in aL, we take the 
greatest possible experimental value aL = 30 to determine 
the maximal conversion coefficient. Then, calculations by the 
formulas of system (1) give the optimal value b* = 1.7 for 
rw =  150 nm. The energy and power of individual electron 
radiation obtained by formula (3) are as follows: ágñ = 14500, 
P1eu  = 3 ́  1010, ágzñ = 530 (rmaxu  = 120). 
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Figure 7.  Optimal fibre diameter dw ( ) as well as dimensionless fibre 
charge densities b ( ) and b* (the curve) as functions of the dimension-
less amplitude aL of the laser field. The duration of laser pulses is equal 
to 45 fs, the beam diameter is equal to 4 mm, and the target interfibre 
spacing to 1200 nm.
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The resonance value of b defines the number of fast elec-
trons, because r = ench /(ctL) = bmec2/(2e). For an estimate, 
instead of averaging over the distribution function we multiply 
the intensity of radiation by an individual electron by nch. 
The conversion coefficient eP is calculated assuming that the 
fibre ‘intercepts’ laser radiation over an effective area pr2max. 
Then
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and for tL = 30 fs, aL = 30 we obtain eP » 0.02.
The maximum of spectral power of the radiation falls 

on  an energy c'w  » ( / ) [ . ( ) ]r 1 5 2 /
maxL z z

3 1 2' pw g b g+ -/u , which 
amounts to ~2.45 MeV for our parameters. The peak width 
is equal to about 1.5 MeV. The form of the spectrum corre-
sponds to the spectrum of synchrotron radiation. We empha-
sise that the fibre target which corresponds to the resonance 
condition has a ratio of fibre diameter to the interfibre spacing 
dw /b = 0.02. As shown in Ref. [7], the highest absorption (the 
highest total energy of hot electrons) is realised for dw /b » 
0.05. In this case, the absorption length amounts to a few 
micrometres. Therefore, maximising the conversion to beta-
tron radiation requires a more ‘rarefied’ fibre target, in which 
the laser pulse propagates a distance of several tens of micro
metres to give rise to the resonance of electron oscillations in 
the transverse field and in the potential fibre field.

5. Comparison of the powers of betatron  
radiation and bremsstrahlung 

In the electron motion through a medium, the bremsstrahlung 
power is defined by the expression
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For an intensity of 1021 W cm–2, rmax » 1 mm, m » 1, gz » 6, 
g » 36, ni » 6 ́  1022 cm–3, and Z = 6 we obtain áPñ/PBG = 0.03. 
Therefore, from the standpoint of maximising the number of 
hard photons it is more advantageous to direct fast electrons 
into a continuous medium. We note that in the fibre case the 
main part of the electron trajectory passes outside of the fibre. 
That is why the power of bremsstrahlung is lower by about 
a  factor rmax /rw (actually even lower, because large impact 
parameters also contribute to the bremsstrahlung). For rmax » 
1 mm and rw » 50 nm it is approximately 20 times lower. 
Then,    in the fibre case the bremsstrahlung power is of the 
order of the betatron radiation power but is lower than the 
radiation power of the same number of electrons in a conti
nuous medium. After the generation of electrons in the fibre, 
to maximise the hard radiation yield it is advantageous to 
direct them into the continuous medium rather than let them 
travel along the fibre.

The spectral power of betatron radiation is defined by the 
formula, which is similar to that for synchrotron radiation:

3
(1.5 2 )

,
d
dP

r
e

F
c

r
2
3

3
0

1/2
e z

z

1

0

2
2

pw
g

m
pg

w m
=

+ -

e o 	 (19)
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The peak of expression (19) falls on the frequency wcw » 
(gz
3pc/r0)(1.5 + 2m–1/2). Integrating expression (19) over all 

frequencies gives the total radiation power (12).
The spectral power of Bethe – Heitler radiation 
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which amounts to ~400 for a fibre 30 nm in diameter with an 
ion density of 6 ́  1022 cm–3. Therefore, the peak of betatron 
radiation towers above the bremsstrahlung background even 
in the case of a continuous medium. For fibres, the brems-
strahlung background power is lower by rmax /rw times at the 
most. And so the amplitude of the peak should exceed the 
bremsstrahlung background by approximately three orders 
of magnitude. 

The betatron radiation of electrons is incoherent over 
their ensemble, and therefore the passage from the power of 
individual electron radiation to the power of bunch radiation 
comes to the averaging over the electron bunch distribution 
function. 

6. Conclusions

A laser target of thin fibres is a source of coherent X-ray beta-
tron radiation similarly to a plasma channel in an optically 
transparent plasma. For optimal fibre diameters and inter
fibre spacing, the power of X-ray radiation from the fibre 
target is two orders of magnitude higher than the power from 
a plasma channel for the same parameters of the laser pulse. 
The betatron radiation under consideration is characterised 
by a high photon energy corresponding to the peak of spectral 
radiation intensity, coherence in the number of ions per unit 
fibre length, and the absence of coherence in the number of 
radiating fast electrons. The existence of resonance in laser 
intensity and fibre diameter permits attaining an energy effi-
ciency of ~1 % in laser-to-coherent X-ray photon conversion 
at intensities of ~1021 W cm–2. The betatron radiation has a 
small divergence aligned with the fibres and a spectrum coin-
ciding in shape with the spectrum of synchrotron radiation. 
Therefore, a target in the form of a bundle of thin fibres may 
be considered as an efficient laser-driven source of coherent 
X-rays.
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