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Abstract.  We analyse the evolution of the spectra of an approxi-
mate solution of the adiabatic interaction problem of two waves 
with orthogonal circular polarisations in an isotropic gyrotropic 
nonlinear medium with the second-order group velocity dispersion. 
It is shown that a gradual ‘chaotisation’ of the approximate solu-
tion for the amplitude of a rapidly changing wave is associated with 
its non-equidistant frequency spectrum.

Keywords: cubic nonlinearity, gyrotropy, cnoidal waves, adiabatic 
interaction, spectrum.

1. Introduction 

In our papers [1 – 5], the nonintegrable problem of interaction 
of a rapidly changing, plane, circularly polarised cnoidal 
wave (‘information’ signal) with a slowly varying orthogo-
nally polarised ‘control’ signal in the form of a cnoidal wave 
[1, 4] or a soliton [2, 3, 5] (we considered an isotropic gyro-
tropic medium with Kerr nonlinearity and second-order 
group velocity dispersion) was solved analytically with the 
help of the adiabatic approximation [6 – 8], which is widely 
used both in the quantum and classical (semi-classical) 
description of nonlinear dynamics of various systems [9, 10]. 
The solution to this problem, found in the approximation of 
a small range of times t1 = t – z/u in the coordinate system 
running along the z axis with the group velocity u, gave rea-
son to assert that the information signal is subjected to ampli-
tude and frequency modulation by the control signal. Thus, in 
the case of the control signal in the form of a cnoidal wave, 
with increasing time we observed a distortion of the ‘fast’ 
component of the electric field during its propagation, mani-
fested in the ‘chaotisation’ of the latter. For the control signal 
in the form of a soliton, the information signal was not chao-
tised due to the fact that the time of the effective interaction 
of orthogonal field components was limited by the soliton 
duration. Cascade processes ensured that on the cubic nonlin-
earity not only a nonlinear shift of the resonance frequency of 
the fast subsystem can occur, but also effective attenuation, 
making the solution spectrum continuous, can appear. This 
occurs, for example, with a nonlinear response of a fast elec-
tronic subsystem in the case of its strong coupling with a slow 

phonon subsystem in complex molecules [11 – 15]. To analyse 
the reasons of the above-mentioned ‘chaotisation’, in the 
present work we consider the interaction of two plane cnoidal 
waves (‘fast’ information and ‘slow’ control signals) with 
orthogonal circular polarisations in an isotropic gyrotropic 
nonlinear medium with the second-order group velocity dis-
persion. It is shown that a gradually chaotisation of the 
approximate solution is determined by the non-equidistant 
spectrum of the amplitude of a rapidly changing wave. To 
correctly calculate the spectrum of the approximate solution 
and to perform its subsequent analysis, the adiabatic approx-
imation is generalised in this paper to the case of large t1. 

2. Approximate solution for large times 

The nonintegrable system of differential equations in partial 
derivatives for the slowly varying amplitudes A±(z, t1) of cir-
cularly polarised components of the electric field E± (z, t) = 
A±(z, t – z/u) exp[i(wt – kz)]  of an elliptically polarised wave 
propagating along the z axis in a nonlinear isotropic gyro-
tropic medium with the second-order group velocity disper-
sion is taken from [1]: 
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Here, k2 = ∂2k/∂2w ¹ 0, s1 = 4pw2cxyxy /(kc2) and s2 = 2pw2cxxyy 
´  (kc2)–1 are associated with the independent components of 
the tensor of the local cubic nonlinearity ( ; , , );( )3c w w w w-t

and r0,1 = 2pw2 g0,1 /c2 are defined through the pseudoscalar 
constants g0,1 of linear and nonlinear gyration. Substituting 
A±(z, t1) = r±(t1)exp(ik± z) into (1) and implementing a stan-
dard procedure of separation of variables, we obtain a system 
of ordinary differential equations [1]: 
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Here, 0"k k rD =! ! ; and k!  are the free parameters of the 
problem (separation constants). The value of the latter is lim-
ited only by the condition of applicability of the adiabatic 
approximation. By implementing it, we find an approximate 
solution r±(t1) of system (2), which is valid not only for large 
but also for small t1. In the latter case, it must coincide with 
those in [1]. In (2) we assume r+ (t1) to be slowly varying com-
pared to the r– (t1) function and will seek an approximate solu-
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tion of the equation for r– in the form of a Jacobi elliptic func-
tion [11]:   r– (t1) = C– (t1)dn [j–  (t1), m–]. Here the amplitude 
C– (t1) and the instantaneous frequency dj–  (t1)/dt1 are slowly 
varying functions, and m– is a free parameter. Let us substitute 
r– (t1) into the second equation of system (2), neglect the terms 
containing the derivatives of the slowly varying functions 
C– (t1), dj–  (t1)/dt1, and find C– (t1) and j–  (t1) in the form: 
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From (3) we see that at short times, 
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which coincides with the results of [1 – 5]. The procedure for 
finding the slow component of the electric field does not differ 
from that used in [1 – 5]. As in [1], we obtain r+ (t1) = C+ ´   
cn(n+ t1, m+). Here, 
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E( m–) and K( m–) are complete elliptic Legendre integrals of 
the second and first kind; and m+ is a free parameter. 
Substituting r+ (t1) into (3), we shall specify the expressions 
obtained for the modulation of the amplitude and instanta-
neous frequency, 
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where m = (s1 + 2s2)C+
2 /(2D k–), as well as the phases 
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Recall that the adiabatic approximation requires the ful-
filment of the inequality T_ << T+, superimposing constraints 
on the parameters of the problem. Here, T+ = 4K( m+)/n+ and 
T_ = 2K( m–)/(dj– /dt1) are the periods with which the compo-
nents of the electric field change. 

3. Spectrum of the approximate solution 

To calculate the spectra of 
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of the found approximate solution of E± (z, t), in the expres-
sion for r+ (t1) we present the Jacobi elliptic cosine as a trigo-
nometric series [16 – 18]: 
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Substituting (10) into (9), we find that
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Equation (11) shows that the spectrum ( , , )S zw w+ l  is equidis-
tant and its components are arranged symmetrically with 
respect to the carrier frequency w. The distance between adja-
cent lines is equal to pn+/K( m+). The modulus of the spectral 
amplitude of the harmonic decreases exponentially with dis-
tance from the centre frequency, and the phase shift of the 
harmonic depends on its numbers. The spatial period of spec-
trum (11), Dz+ = 4uK( m+)/n+, is determined by the require-
ment of multiplicity 2p of the phase shifts for all the harmon-
ics of the spectrum. 

To calculate the spectrum of ( , , )S zw w- l  we represent the 
radicals from (7) and (8) in the form of a series in powers of 
m << 1. In order to simplify the form of the obtained formu-
las, we restrict our consideration below by a small modula-
tion depth, assuming 
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Substituting the elliptic Jacobi cosine in the form of (10) into 
the above relation, we obtain [determined in (7)] expressions 
for C–(t1) and dj– /dt1 in the form of trigonometric series. 
Now we can calculate the integral in (8) and write the phase of 
the information signal j– (t1) associated with the frequency n+ 
in the form: 
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The expansion coefficients aq can be determined using for-
mula (10). Substituting (12) into the expansion of the elliptic 
function dn[j–  (t1), m–] in series [16 – 18], 
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and using formulas 
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where Jr(a) are the Bessel functions, and using the expression 
derived for C–(t1), we can obtain the spectrum of ( , , )S zw w- l  
in the form of infinite sums of d-functions: 
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Here, Rq, r, p are the spectral amplitudes, the explicit form of 
which, due to the awkwardness, is not given; n1 = n+/K( m+); 
and n2 = [n0 /K( m–)]{1 + (m/2m+2)[E(m+)/K( m+) – 1 + m+2 ]}]. 
Formula (14) suggests that the resulting spectrum is discrete, 
but, in the general case, non-equidistant. Its splitting is due to 
two independent factors, i.e., the control signal (lower har-
monic frequency n1) and information signal (lower harmonic 
frequency n2 renormalised by frequency modulation). All the 
spectral components in (14) are in phase only in the plane z = 0. 
As the distance from it increases, distortions are accumulated 
in the phases, and the approximate solution becomes aperiodic 
and resembles chaos. An exception is the case of multiple fre-
quencies: ln1 = n2, where l  is an integer that is greater than unity 
due to the adiabatic approximation. In this special case, with 
increasing running coordinate z the phases shift of all spectral 
harmonics in (14) can be a multiple of 2p. This will occur for 
the first time at a distance Dz– = 2u ´ K( m+)/n+. On the period 
Dz = Dz+ = 2Dz– the information and control signals will be 
phase-locked. With this choice of n1,2 the emerging distortions 
are first accumulated and then completely compensated for, 
and the information signal is periodic. 

We emphasise that in a similar manner we can generalise 
other approximate solutions of system (1), written in the form 
of numerous combinations of elliptic functions, to the case of 
large interaction times. For example, a combination consid-
ered in [4] with the solutions resulting from the permutation 
of the Jacobi elliptic functions in the ‘fast’ and ‘slow’ compo-
nents, as well as solutions in the form of identical, but nonuni-
formly time-scaled, elliptic functions. For all of these solu-
tions we can construct spectra and draw similar conclusions. 

It is interesting to compare the found spectra of approxi-
mate solutions (11) and (14) of system (1) with those of its 
exact particular solutions ( , ) ( ) ( )exp iA z t r t z1 1 k=! ! !

u u u  [17], cor-
responding to the type of separation of variables used in this 
paper and expressed through the same elliptic functions: 
( ) ( , )cnr t r t1 0 1n m=+ +u  and ( ) ( , )dnr t r t1 0 1n m=- -u , where r0!  are 

the constant amplitudes, and k!u  are the constants of separa-
tion of variables for partial solutions [17]. Their temporal 
spectra are equidistant, and they can be obtained from (11) 
and (14) at  m± = m, n+ = n0 = n, m = 0 [in this case, in (14) the 
sums over q and r disappear). Distortions in them are also 
absent. 

4. Conclusions 

We have analysed the evolution of the spectra (obtained in 
[1]) for the approximate solution to the problem of adiabatic 
interaction of two plane cnoidal waves (information and con-
trol signals) with orthogonal circular polarisations in an iso-
tropic gyrotropic nonlinear medium with the second-order 
group velocity dispersion. We have found a discrete equidis-
tant spectrum of the control signal. It is shown that in the 
general case, the spectrum of the information signal is discrete 
and non-equidistant. It contains an infinite number of spec-
tral lines – combinations of frequency harmonics of ampli-
tudes of two interacting cnoidal waves. It is this form of the 
spectrum that determines aperiodicity and gradual ‘chaotisa-
tion’ of the approximate analytical solution for the informa-
tion signal. If the frequency harmonics of the amplitudes of 
two interacting cnoidal waves are multiples, then on the first 
half of the spatial period of the approximate solution the 
resulting distortions are accumulated, and on the second – are 
fully compensated for. The polarisation state of the resultant 
electric field consisting of fast information and slow control 
signals in this case will also vary periodically. 

The generalisation of the algorithm for constructing the 
solutions to nonintegrable systems of nonlinear Schrödinger 
equations of type (1) in the adiabatic approximation [1] for 
larger interaction times allows us to extend the findings of 
spectral analysis to other solutions of this system. 
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