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Abstract.  We have studied spectra of above-threshold ionisation of 
atoms by a two-colour laser field with collinear linearly polarised 
components. We have found a sharp (gap-like) dependence of the 
length of the high-energy plateau in above-threshold ionisation 
spectra on the relative phase of the two-colour field at comparable 
intensities of the field components. Using the quasi-classical analy-
sis we have shown that this effect results from the suppression of 
partial above-threshold ionisation amplitudes, associated with 
closed classical trajectories of an electron in the laser field, within a 
certain range of relative phase values. 

Keywords: above-threshold ionisation of atoms, femtosecond laser 
pulses, numerical simulation. 

1. Introduction 

The use of a two-colour laser field in the investigation of 
above-threshold ionisation (ATI) of atomic systems has 
opened up the possibility of studying a number of interesting 
practical applications of the effects that can be used to obtain 
information about the dynamics of the valence electron of an 
atom on the attosecond time scale [1, 2] and to control inter-
ference effects during the ATI process [2 – 5]. The simplest 
configuration of a two-colour field, i.e. two pulses with fre-
quencies w and 2w, linearly polarised in the same direction, is 
also very effective in the generation of THz radiation [6 – 8]. 
In a recent paper [9], Skruszewicz et al. have demonstrated the 
possibility of extracting spectroscopic information about the 
atomic structure of the target from the ATI spectra in a two-
colour field. 

Qualitatively, the ATI process is described in the frame-
work of the quasi-classical three-step model [10 – 12], which 
involves tunnelling ionisation of an optically active electron 
of the atom, its subsequent propagation in the laser field and 
rescattering by an ion of the parent atom with account for the 
additional energy gain from the laser field. Analysis of the 
ATI amplitude in the quasi-classical approximation shows 

that it can be represented as a sum of partial amplitudes asso-
ciated with the classical trajectories of an electron in the laser 
field [12]. This approach has proven to be very productive and 
is now widely used for the interpretation of the experimental 
data and for the development of original semi-classical 
method for calculating the ATI spectra. One such method has 
been recently proposed in [5] and is based on the Monte Carlo 
method and the classic representation of the dynamics of an 
electron in the laser field. In particular, Zheng et al. [5], using 
the Monte Carlo method and numerical solution of the time-
dependent Schrödinger equation, have studied asymmetry of 
the ATI spectra in a two-colour field. Despite the fairly 
detailed analysis of the ATI spectra in a two-colour laser field 
[5], a number of effects have not been considered, such as sup-
pression of the contribution of short classical trajectories 
under changes in the relative phase of the field. 

In this paper, we discuss the possibility of controlling the 
ATI process of atoms by a two-colour laser field with inten-
sity-comparable collinear linearly polarised components. The 
possibility of such a control arises from the strong depen-
dence of the position of the high-energy plateau cutoff in the 
ATI spectra on the relative phase of the field components in a 
certain range of phase values. This effect is observed numeri-
cally as a result of the solution of the time-dependent 
Schrödinger equation and is qualitatively explained using 
classical analysis of trajectories of an optical electron in a 
two-component field within the framework of analytic theory 
for ATI [13, 14].

2. ATI spectra in a two-colour laser field 

In numerical calculations ATI spectra (or the momentum dis-
tribution of photoelectrons) are calculated using the wave 
function obtained by solving the time-dependent Schrödinger 
equation after the laser pulse is turned off (see, e.g., [14]): 

[ ( )] ( , )dtP r r r( ) *
p

2
? ty y =-y ,

where ( )r( )
py -  is the wave function from a continuous spec-

trum in the atomic potential U(r) with the asymptotic behav-
iour of converging spherical waves and the asymptotic 
momentum p; y(r, t) is the wave function of an electron in the 
laser field and the atomic potential U(r); and t is the pulse 
duration. The analysis shows that for the momentum distri-
bution of high-energy electrons to be calculated, the wave 
function of the continuous spectrum ( )r( )

py -  can be replaced 
by a plane wave. Therefore, limiting our consideration to a 
high-energy part of the ATI spectrum only, we will calculate 
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the momentum distribution of photoelectrons by using the 
relation* 

( , )( ) ( )exp dtiP p pr r r
2

? ty =-y .	 (1)

The wave function of the electron at time t = t was deter-
mined by numerical integration of the time-dependent 
Schrödinger equation: 

¶
¶ ( , )

( ) ( ) ( , )i
t
t

U r t t
r

rF r
2

2dy
y= - + +; E ,	 (2)

where 

( )
( )

( )cos cost
Ff t

t tF e
1

2x 2b
w b w j=

+
+ +6 @

is the electric field strength of a two-colour laser pulse; f (t) is 
the pulse envelope; ex is the unit polarisation vector of the 
laser field; F is the amplitude of the fundamental component 
of the field at a carrier frequency w; b is the relative amplitude 
of the component of the second harmonic of the field; and j 
is the relative phase of the field components. To reduce the 
effects associated with the envelope of the laser pulse, we used 
in the calculations a trapezoidal pulse with a two-cycle linear 
ramp for switching on and off and six cycles on the flat-top 
part of the envelope: 
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where T = 2p/w. The atomic potential U(r) is modelled by a 
smoothed Coulomb potential [15]: 

( ) ( / ) ( / ) /tanhU r r a r a rsech2a=- - ,	 (3)

where a = 0.3 and a = 2.17. The choice of the parameters a 
and a provides coincidence of the ground-state energy of the 
electron in potential (3) with the ground-state energy of 
hydrogen, EH = –13.6 eV. 

The time-dependent Schrödinger equation is solved by a 
pseudo-spectral (split-step) method using the Hankel trans-
form and the fast Fourier transform in spatial variables 
[16 – 18]. In order to achieve the convergence of the numerical 
algorithm for calculating the wave function, the number of 
grid points along the field polarisation axis (x axis) Nx was set 
equal to 16384 and the number of nodes along the orthogonal 
direction Nr – to 480. Steps in time t and coordinate x were 
chosen as follows: Dt = 0.015, Dx = 0.225, grid nodes in the 
coordinate r (r is the distance to the x axis) are arranged non-
equidistantly and the grid boundary corresponds to rmax = 74. 

Figure 1a presents numerically obtained energy distribu-
tions of photoelectrons (ATI spectra) emitted in the direction 
of the polarisation vector of laser radiation upon ionisation of 
the hydrogen atom by a two-component field at various val-
ues of the relative phase j. The results are shown for compa-
rable intensities of the field components ( b = 0.9), main com-
ponent intensity I = cF 2/(8p) = 3 × 10–3 (~1 × 1014 W cm–2), its 
wavelength l = 2 mm and frequency w = 0.0228 (~0.62 eV). 
One can see that for a wide range of energies E, the yield of 
photoelectrons remains on average constant, forming a so-
called high-energy rescattering plateau in the ATI spectra. 
The position of the region of the plateau cutoff (behind which 
the ATI yield is sharply reduced) is described mostly by a 
smooth harmonic dependence on the phase j, except for the 
interval j » 2.4 – 3 rad, for which there is a dip in the spec-
trum of photoelectrons. For this range of the phase shift of 
the second harmonic of the field, the maximum energy of 
photoelectrons in the plateau region is significantly reduced. 
Numerical analysis shows that at comparable intensities of 
the frequency components of the laser field, the dip of the 
spectrum of the ATI yield disappears and a harmonic depen-
dence of the position of the plateau cutoff on j holds for the 
entire range of j values. * Hereafter we use atomic units.
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Figure 1.  Dependences of the yield of high-energy electrons in the course of ATI of hydrogen atoms by a two-colour laser field on the photoelectron 
energy E = p2/2 and the relative phase j of the laser field components, obtained by solving numerically the time-dependent Schrödinger equation (a) 
and within the analytical approach [13, 14] (b). Interference effects caused by the destructive/constructive interference of short and long trajectories 
are clearly visible in Fig. 1b, but are not visible in Fig. 1a due to a lack of small steps in phase j in the numerical calculations, required for the 
manifestation of these effects. 
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3. Interpretation of numerical results 

For a qualitative explanation of the sharp suppression of the 
yield of high-energy electrons by varying the relative phase of 
the two-colour field, we use an analytical approach to the 
description of the high-energy part of the ATI spectrum 
[13, 14]. Briefly, in this approach, the ATI amplitude of high-
energy electrons AR( p) can be represented as the sum of the 
partial amplitudes Aj: 

( ) iA Ap j
R

j

w= / .	 (4)

Each of the amplitudes Aj is associated with times t and t( ) ( )
i f
j j , 

having the sense of the initial (subscript i) and final (sub-
script  f) moments of time during the electron motion along 
the jth closed classical trajectory under the action of the laser 
field. These times may can be obtained from the analysis of 
saddle-point equations in the approximate calculation of the 
integral for the amplitude AR( p) by the saddle-point method 
and are determined by a system of equations [11, 13, 14] 

( ) ( )dA t
t t

A1 0( )
( ) ( )i
f
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= ,	 (5b)

where ( ) ( )F t te Fx= ; ( ) ( )A t tAex= ; and A(t) is the vector 
potential of the laser field [F(t) = – c–1 ( )tAo ]. Equations (5a) 
and (5b) have a simple classical interpretation. Equation (5a) 
shows that at the time of ionisation, t = ti

(  j )
, the electron leaves 

the atomic system with zero velocity and moves in a laser field 
along a closed trajectory up to time tf

(  j )
. At the time of return,  

t = tf
(  j )
,, the electron is backscattered by the atomic core, and 

equation (5b) implies that the electron has a maximum energy 
after such backscattering. 

Classical trajectories associated with times ti
(  j )
 and tf

(  j )
 

can be classified as single-return and multiple-return in accor-
dance with the number of returns of the electron to the atomic 
core during the time t t t( ) ( )

f ij
j jD = -  between the moments of 

ionisation and rescattering. Single-return trajectories imply 
that the electron moves along these trajectories and during 
the time Dtj returns once to the atomic core and experiences 
rescattering. Moving along multiple-return trajectories, the 
electron returns to the atomic core several times before being 
rescattered. Because the times ti

(  j )
 and tf

(  j )
 depend on the rela-

tive phase j, the change in the latter allows the times of ioni-
sation and rescattering to be controlled. As a rule, the main 
contribution to the formation of the high-energy part of the 
ATI spectrum is made by a single-return trajectory with a 
minimum return time Dtj < 2p/w, because for these trajectories 
the kinetic energy gained by the electron as a result of its 
movement along a closed trajectory is maximum by the time 
of rescattering. The energy gained by the electron moving 
along a closed trajectory is approximately determined by the 
square of the difference of vector potentials at the times t = 
ti
(  j )
 and t = tf

(  j )
 [13, 14]: 

( ) ( ) | |
( )

( )
E A t A t E

F t

F t
2
1 2( ) ( ) ( )

( )

( )

max i f
i

fj j j
j

j

0
2

= - -7 A  =

	 ( ) ( )A t A t
2
1 ( ) ( )

i f
j j 2

. -7 A ,	 (6)

where the second term, proportional to the bound state 
energy E0, yields a small quantum correction to the classical 
result. It can be shown [12, 14] that E ( )max

j  takes the highest 
values for those trajectories, the beginning and the end of the 
movement along which are in the vicinity of the extrema of 
the laser field strength and vector potential, respectively. It 
should also be noted that multiple-return trajectories make a 
substantial contribution to the middle part of the high-energy 
plateau and do not affect the part of the ATI spectrum near 
the top boundary of the plateau [14].

The partial amplitude Aj, which determines the amplitude 
(4), is represented as a product of three factors describing the 
three-step scenario of the ATI process [10]: 

xp(i )SeA a a a( ) ( ) ( )
j

j
W
j j

s j= t .	 (7)

The factor at
(  j )
 describes tunnelling of the electron from an 

atom in the first stage of the scenario. Motion of the electron 
in the laser field along a closed trajectory in the second stage 
is determined by the factor aW

(  j )
, and the subsequent rescatter-

ing on the atomic core is described by the amplitude as
(  j )
 of 

elastic scattering of the electrons by the ion of the parent 
atom. The value of Sj determines the classical action of the 
electron, corresponding to the movement along a closed tra-
jectory, starting and ending at ti

(  j )
 and tf

(  j )
, respectively. 

Following the analytical model proposed in [13, 14], the fac-
tor at

(  j )
 is determined by the tunnelling ionisation probability 

Gst in a constant electric field with an effective strength 
| ( ) |F F t ( )ij

j
=u  [19]: 

( )a F( )
t

j
js? Gt u ,	 (8)

and the propagation factor aW
(  j )
 is expressed in terms of the 

Airy function Ai(x): 

[ ( )]ia E EA( ) ( )
maxW

j
j j

j? a - ,	

( )E c tp A
2
1 1 ( )

j f
j

2

= +: D ,	

(9)

where p is the momentum of the photoelectron, and the 
parameter aj is expressed in terms of the electric field strength 
at times  ti

(  j )
 and tf

(  j )
 [13, 14]. The amplitude of elastic scatter-

ing as
(  j )
 in (7) describes the elastic scattering of the electron 

(rescattering) by the atomic core with the initial ( pi) and final 
( pf) momenta | |p e P( )

x ji
j
=  and p P( )

jf
j
= , where Pj = p + 

( )c tA ( )
f
j1- . 

The explicit expression (7) for the partial ATI amplitude 
points to possible ways of suppressing or enhancing certain 
partial amplitudes. Indeed, a change in the time dependence 
of the field, for example by varying the relative phase in the 
case of a two-colour-field, causes a significant change (due to 
the exponential dependence of Gst on the laser field strength) 
in the factor at

(  j )
. An increase (decrease) in the factor at

(  j )
 leads 

to a predominance (suppression) of a particular term in sum 
(4). As will be shown below, in the case of a two-colour field 
the phase variation causes suppression of a whole group of 
partial amplitudes. 
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Consider the time dependence of the two-colour laser field 
with comparable intensities of the components shown in Fig. 
2. During a cycle of the main components T = 2p/w, the laser 
field has four extrema corresponding to two local maxima 
and minima. In one of the two minima located in the vicinity 
of the half-cycle, the field strength is maximum in absolute 
value, and therefore, the ionisation factors of the partial 
amplitudes corresponding to the classical trajectories with ti

(  j ) 

» 
(j + 1/2)T (j = 0, 1, 2, ...) will be greatest. However, these 

trajectories exhibit multiple-return behaviour (see the lower 
graph in Fig. 2) and contribute to the middle part of the high-
energy plateau. The value of the electric field in the vicinity of 
the second minimum is close to zero, and the partial ampli-
tudes corresponding to the classical trajectories with  ti

(  j ) » jT 
will be suppressed due to a significant decrease in the tunnel-
ling ionisation probability, which determines the factor  at

(  j )
. 

One can see from Fig. 2 that also possible is the suppression 
of the contribution from the single-return trajectory that 
defines the boundary of the high-energy plateau. Thus, in 
suppressing the contribution of the short trajectory, the 
boundary of the high-energy plateau is defined by the multi-
ple-return trajectory, which leads to a decrease in energy, 
which determines the region of the plateau cutoff. 

Analysing the ionisation factor as the relative phase of the 
field function for different numbers at

(  j )
 of classical trajecto-

ries, we have found that in the interval ( . , . )rad rad2 4 2 6!j  
the single-return trajectory (j = 1) is suppressed with a mini-
mal time Dt1 of electron motion along a closed trajectory and 
the highest energy of the electron  E ( )

cut
1  after rescattering (for 

j = 2.4 rad we have wDt1 = 4.49, .E u15 32( )
cut p
1
= , 

[ /( )]u F 4p
2 2w= { /[ ( )]}1 3 4 12 2b b- + ). In this case, the length 

of the plateau in the ATI spectrum is determined by the tra-
jectory (j = 2) with a great time Dt2 > Dt1 and a lower energy  
E E<( ) ( )
cut cut
2 1 . With a further increase in j, the following [in 

order of decreasing energy E ( )
cut
j ] partial ATI amplitudes Aj 

[and correspondingly ( )Fst jG u ] are suppressed. Thus, at j = 
2.8 rad suppressed are four multiple-return trajectories, as a 
result of which the plateau length is determined by the trajec-
tory with wDt5 = 29.81 and .E u12 11(5)

cut p= .
Outside the phase interval from 2.35 to 2.85 rad, the form 

of the high-energy plateau, as well as the position of the 
region of its cutoff can be estimated with high accuracy in the 
framework of the approximation of single-return trajectories 
(as in the case of a monochromatic field and a short laser 
pulse). Thus, by varying the relative phase and amplitude of 
the second harmonic component of the two-colour field [lead-
ing to a decrease in the effective value of the laser field in the 
first step (tunnelling) of the three-step ATI scenario], one can 
suppress some partial ionisation amplitudes determining the 
yield of high-energy photoelectrons. 

It should be noted that despite good qualitative agreement 
of the ATI spectra obtained from the solution of the time-
dependent Schrödinger equation and calculated on the basis 
of the analytic theory [13, 14], there is a significant quantita-
tive difference between the two results (see., e.g., the photo-
electron yield in Fig. 1 for ( .2 4!j  rad, 2.6 rad). The emer-
gence of this difference is due to the restrictions imposed on 
the parameters of the laser field in the construction of the ana-
lytic theory [13, 14]. In fact, one of the key assumptions of the 
theory [13, 14] is the smallness of the Keldysh parameter gj at 
the ionisation time ti

(  j )
: /E F2j j0g w= u  << 1. It is obvious 

that this assumption allows us to express the ionisation factor  
at
(  j )
 through the tunnelling probability in the effective con-

stant electric field [see relation (8)]. However, in the region of 
suppression of single-return trajectories the Keldysh parame-
ter becomes the order of unity (because of the smallness of the 
absolute value of the field strength) and the value of the ioni-
sation factor, given by the analytical theory, is significantly 
underestimated in comparison with the real one. This is due 
to the fact that a decrease in the ionisation rate with a decrease 
in the electric field amplitude (i.e. with an increase in the 
Keldysh parameter) in the tunnelling limit occurs much more 
rapidly (exponentially) than in the multiphoton case (when 
the Keldysh parameter becomes greater than or of the order 
of unity, and the ionisation rate decreases with decreasing 
electric field amplitude in accordance with the power law). 
The underestimated value of the ionisation factor in the ana-
lytic theory causes a sharper dip in the spectrum of the photo-
electron yield in Fig. 1b as compared with the numerical 
results shown in Fig. 1a for the phases ( .2 4!j  rad, 2.6 rad). 

4. Conclusions 

We have analysed the ATI spectra of atoms in an intense, 
two-colour laser field with collinear linearly polarised com-
ponents. Using the numerical solution of the time-depen-
dent Schrödinger equation, we have found that for compa-
rable intensities of the frequency components of the laser 
pulse (with centre frequencies w and 2w) the boundary of the 
high-energy plateaus in the ATI spectra is substantially 
modified under changes in the relative phase j of the field 
components. This modification takes the form of a marked 
dip in the spectrum of high-energy photoelectrons in a nar-
row range of j values, resulting in a sharp decrease in the 
plateau length. 

0 1 2 3 4 5 wt/(2p)

0 1 2 3 4 5 wt/(2p)

F(t), A(t)

x(t)

Figure 2.  Time dependences of the strength (dashed curve) and vector 
potential (solid vurve) of a two-colour field with b = 0.9 and j = 2.8 rad 
(top figure), as well as the laws of motion of the electron along single- 
and multiple-return closed classical trajectories.
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To analyse and interpret the above numerical results, we 
have used the analytical theory for ATI [13, 14], modified for 
the case of a two-colour field. As part of this analytical 
approach, the ATI amplitude is represented as a coherent 
sum of partial amplitudes, each of which is associated with a 
closed ‘extreme’ trajectory ensuring a maximum photoelec-
tron energy after rescattering by the atomic core. Considering 
‘extreme’ trajectories as single-return and multiple-return 
ones and exploring their properties, we have presented a 
physically transparent quasi-classical interpretation of the 
obtained numerical dip in high-energy photoelectron spec-
trum: partial ionisation amplitudes associated with the short-
est trajectories corresponding to the maximum permissible 
classical electron energy at the moment of rescattering are 
suppressed at certain values of the relative phase j and com-
parable intensities of the field component. This suppression is 
caused by the suppression of the channel of tunnelling ionisa-
tion due to a decrease in the effective field at the time of ioni-
sation, determining the ionisation factor in the framework of 
the three-step scenario of formation of the high-energy pla-
teau in the ATI spectra. Finally, the presented mechanism of 
suppression of the contribution of individual trajectories into 
the ATI spectra enables in principle the control of the ATI 
process of the atoms by varying the two-colour laser field 
parameters: the ratio of the amplitudes and relative phase of 
its components. 
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