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Abstract.  An analytical model of a plasma bubble (a wake wave in 
the strongly nonlinear regime) in transversely inhomogeneous 
plasma is generalised to an arbitrary profile of an electron sheath at 
its boundary. Within the framework of this generalisation we have 
found the potential within the bubble and shown that its envelope is 
described by a second-order equation, similar to the equation of a 
less general theory. We have also determined the domain of param-
eters at which this equation is considerably simplified and no longer 
depends on the profile of the electron sheath. 
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1. Introduction 

Recently, much attention has been paid to plasma-based 
methods for electron acceleration [1, 2]. The essence of these 
methods is that a high-power laser pulse [3] or a bunch of 
charged particles [4] propagating through plasmaexcites a 
plasma wakefield with a large longitudinal electric field which 
can be used to accelerate charged particles. This makes it pos-
sible to attain an acceleration rate that is several orders of 
magnitude higher, as compared to conventional methods. 
One of the most promising ways of wakefield excitation is the 
strongly nonlinear regime in which a plasma structure is 
formed in the form of a bubble from which virtually all 
plasma electrons are expelled [5].

Of interest is also a theoretical study of the strongly non-
linear regime. For example, Lu et al. [6] managed to construct 
an analytical model that describes the envelope of a bubble 
for the case of homogeneous plasma. Later, Thomas et al. [7] 
showed that this theory can be generalised to the case of 
transversely inhomogeneous plasma with an axially symmet-
ric density profile. The need for such a generalisation arose 
from the analysis of the numerical results demonstrating that 

the use of a plasma channel allows one to produce electron 
bunches with a small energy spread [8]. 

The disadvantage of existing models describing the shape 
of a plasma bubble is that they allow for various assump-
tions that do not follow from first principles. In particular, 
these models postulate a specific profile of the electron 
sheath at the boundary of the bubble. Rectangular [6, 7] and 
exponential [9] profiles have been previously used. In this 
paper, we get rid of this assumption and consider an arbi-
trary profile. Using it, we generalise the model of a bubble in 
transversely inhomogeneous plasma [7] and derive an equa-
tion for the envelope of the bubble, as well as show that, 
under certain conditions, the choice of the profile does not 
affect the shape of the bubble. We find a domain of param-
eters for which the equation for the envelope is represented 
in a simple form, and show that these domains are similar to 
the parameters of significantly different profiles of the elec-
tron sheath. 

2. General equations 

Let a laser pulse or an electron bunch exciting a bubble prop-
agate in plasma with a transversely inhomogeneous density 
profile n(r) along the longitudinal axis z. For convenience, we 
will consider the dimensionless quantities, in which the time is 
normalised by p

1w- ; the coordinates by /k cp p
1 w=- ; the 

momenta and energies by mc and mc2, respectively; the 
charges by e; the concentrations by np; and the electric and 
magnetic fields by mcwp/e. Here, e > 0 is the elementary 
charge; m is the electron mass; c is the speed of light in vac-
uum; np is the typical plasma concentration (for example, for 
the case of a plasma with a deep channel it can be the concen-
tration outside the channel); and wp = (4pe2np/m)1/2 is the 
characteristic plasma frequency. The electromagnetic field of 
the wake is conveniently described by the vector potential A 
and the wake potential Y = f – Az, where f is the scalar 
potential of the electromagnetic field. 

Because the plasma profile is cylindrically symmetric, we 
assume that the fields in the wake wave are also cylindrically 
symmetric, i.e. do not depend on the azimuthal angle j. Also, 
we will use the quasi-static approximation, which assumes 
that the bubble propagates in plasma with a velocity close to 
the speed of light, while its structure virtually does not change 
over time. In this approximation, all the fields depend only on 
the combination of the time and longitudinal coordinate x = t 
– z. We also use the Lorentz gauge for the wake potential Y 
and the vector potential A 
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Under the Lorentz gauge, the equations for Y and Az are 
written in the form: 

¶
¶

¶
¶

r r
r
r
A J1 z

z=-c m ,	 (2)
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These potentials can be used to find the fields in the wake 
[6,  7, 9]. 

3. Electron sheath model 

According to equation (3), the source of the wake potential Y 
is the quantity S(x, r) = Jz – r. We consider the bubble model 
which assumes that within this bubble bounded by the curve 
rb(x), plasma electrons are completely absent, and so Jz – r = 
– rion(r). Besides, there is a thin electron sheath at the bubble 
boundary. Within this model, the source S(x, r) can be written 
as follows: 

S = sion(r),   r < rb(x),	
(4)

( )
( )

S s g
r rb

0 x
x

D=
-c m,  r > rb(x),

where sion(r) = – rion(r); rb(x) is the bubble envelope; D is the 
characteristic thickness of the electron sheath at the bubble 
boundary; and g(x) is an arbitrary function describing the 
shape of the boundary. For example, the analytic models 
from Refs  [6, 7] make use of a rectangular profile g(x) = q(1 
– x), where q(x) is the Heaviside function, while the model 
from [9] considers an exponential profile g(x) = exp(–x). 

For further analysis it is convenient to introduce functions 
Mn(x) associated with the electron sheath profile: 

3

( ) ( )dM x y g y yn
n

x
= y .	 (5) 

We also assume that the function g(x) decreases rapidly 
enough (i.e. all the integrals Mn converge) and is normalised: 
M0(0) = 1. 

The function s0(x) from model (4) can be found from the 
continuity equation in the same way as in [7]: 
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where e(rb) = D/rb, and the function Sion is defined as follows: 

( ) ( ) dS r s r r rion ion
r

0
= l l ly .	 (7) 

It should be noted that Sion(r) < 0, because sion(r) = – rion < 0. 

4. Solution for the potential 

Within the framework of model (4) the solution to equation 
(3) can be written as Y (x, r) = I(x, r) + Y0(x), where 

r
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Outside the bubble, i.e., for r > rb, the integral I can be repre-
sented as a sum of two integrals over the regions inside and 
outside of the bubble, respectively: I = I1 + I2, where 

( )
( )

dI
r

S r
rionr

1
0

b
x =

l
l

ly ,	 (9) 

and I2(x, r) with (6) taken into account can be written as 
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where x(x, r) = [r – rb(x)]/D; and e = e(rb(x)). Given that at 
r ® ¥ the potential Y must tend to zero, we can find Y0(x): 
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where the function b(rb) is introduced as follows: 
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In the case of a rectangular profile this definition of b coin-
cides with that from [7]. In [9], where the exponential profile 
g(x) = exp(–x) was considered, this notation is not used, but 
the calculation of the function b(rb) for this profile allows one 
to obtain the same expression for the potential, as in [9]. 

Thus, the expression for the potential inside the bubble 
can be written in the form 
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Here, the dependence of the potential on the coordinate x is 
determined by the bubble envelope rb(x). The expression 
obtained for the potential Y inside the bubble almost com-
pletely coincides with the expression obtained in [7], differing 
only in the definition of the function b(rb), which is generally 
given by expression (12). Accordingly, the equation for the 
bubble envelope obtained in [7] with the use of this potential 
will also be valid. Thus, the bubble envelope rb(x) is described 
by the equation 

b b+( ) ( ) ( ) ( ) ( ) /A r r B r r C r rb b b b
2 xL+ =ll l ,	 (14) 

where L(x) is determined by the electron bunches within the 
bubble, 
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and coefficients depending on the functions Sion(rb) and b(rb) 
generally have the same form as in [7], but for the function  
b(rb) given by relation (12). It should be noted that for sim-
plicity, equation (14) takes into account the possibility of 
exciting a bubble only by an electron bunch. When the action 
of the laser field is taken into account, the coefficient C and 
the right-hand side of the equation contain additional terms 
that depend on the vector potential of the laser field, the form 
of which is found in [7]. 

Thus, we have shown that for the electron sheath profile 
of arbitrary shape we can find the second-order equation 
describing the bubble boundary rb(x). 
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5. Approximations in the equation for the envelope 

In some cases, equation (14) can be greatly simplified. We 
consider a situation when the electron sheath at the bubble 
boundary is sufficiently thin compared to the size of the bub-
ble, i.e. D << rb, which corresponds to e(rb) = D/rb << 1. In this 
case, the function b(rb) can be linearised in the small parame-
ter e(rb). From (12) it is easy to see that for e << 1 

b(rb) » 
3

( ) 2 (0)dM y y M2 0 1
0

e e=y .	 (16) 

In particular, for a rectangular profile g = q(1 – x) the linear 
expansion is written as b » e(rb), and for an exponential pro-
file g = exp(–x) – as b » 2e(rb). Thus, b(rb) ® 0 for e ® 0 for 
any shape of the bubble boundary. In this limit two coeffi-
cients in equation (14) for the shape of the bubble can be writ-
ten in a simpler form: 

A(rb) » 1
( )S r
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ion b
- ,	

(17)
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The coefficient C(rb) in equation (14) has the form: 
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There are two limiting cases when the expression for this coef-
ficient can also be simplified. 

5.1. Approximation of an infinitely thin electron sheath 

We assume that the value of D is so small that |Sion  b/2| << 1. 
With regard to expression (16), this condition can be rewrit-
ten as follows: 

D << 
( )S r M

r
0ion b

b

1
.	 (19) 

In this limiting case, C(rb) » – Sion(rb)/rb, and the equation for 
the envelope rb(x) will have the form 

b
2

b( 2) ( ) 2 2 ( )S r r s r r Sion b ion b ion
2 xL- + + =-ll l .	 (20) 

Note that the coefficients of this equation do not depend on 
the function g(x), i.e. on the electron sheath profile at the 
bubble boundary. 

As an example we consider the domain of applicability of 
this approximation for the case of homogeneous plasma, i.e. 
rion(r) = 1. In this case, in accordance with definition (7), 
Sion(rb) = – rb2 /2, so that condition (19) is written as D << 2 × 
(rb M1(0))–1. Figures 1a and 1b show the domain of parame-
ters in which this approximation is valid for the rectangular 
[g = q(1 – x)] and exponential [g = exp(–x)] profiles of the 
electron sheath at the bubble boundary. It is seen that this 
approximation correctly describes the bubble only at very 
small values of D. In this case, the domains of parameters for 
the rectangular and exponential profiles visually do not differ 
if we use 2D instead of D as the second parameter for the 
exponential profile. This is explained by the fact that for the 
exponential profile the coefficient before the linear expansion 

of the function b(rb) is two times greater than that for the rect-
angular profile.

5.2. Relativistic approximation 

Consider now the case that is opposite to the previous one, i.e. 

D >> 
( ) (0)S r M
r

ion b

b

1
.	 (21) 

Physically, this condition corresponds to the fact that the 
electrons at the bubble boundary are relativistic, and there-
fore this approach is called relativistic. This condition can be 
fulfilled simultaneously with the D << rb if the plasma bubble 
is large enough. In this case, C(rb) » – Sion(rb)/(2rb), and in the 
coefficient A(rb) we must also neglect unity, so that the equa-
tion for rb(x) is written as follows: 

b
2 ( ) 2 ( )S r r s r r Sion b ion b b ion

2 xL+ + =-ll l .	 (22) 

In this approximation, the coefficients of the equation do not 
depend on the profile of the electron sheath at the bubble 
boundary; therefore, the equation is identical to that obtained 
in [7]. This approximation often yields the results that corre-
spond to the results of PIC simulations [6, 7]. 

As an example we also consider the domain of the param-
eters (where this approximation is valid) in the case of homo-
geneous plasma for the same two (rectangular and exponen-
tial) profiles of the electron sheath on the bubble boundary. 
These domains are shown in Figs 1c and 1d. As in the previ-
ous case, they are virtually indistinguishable when D and 2D 
are used as the second parameter for the exponential and rect-
angular profiles, respectively. At the same time it is clear that 
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Figure 1.  Maximum relative error O in calculation of the coefficients A, 
B and C in the approximation of an infinitely thin electron sheath (a, b) 
and in the relativistic approximation (c, d) as compared to the exact 
numerical solution in the space of parameters rb and D for rectangular 
(a, c) and exponential (b, d) electron sheath profiles in the case of homo-
geneous plasma. Solid curves correspond to the level of 0.25, the dashed 
curves correspond to D = 4/rb (a, c) and 2D = 4/rbb (b, d). 
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for the approximation to be fulfilled, inequality (21) can be 
replaced by a less stringent one, D ³ 2rb /M1(0). This approach 
is also invalid at small transverse sizes rb. This means that 
within its framework, it is impossible to describe the process 
of bubble excitation because originally rb = 0. It should be 
noted that for any given value of D we can find a sufficiently 
large bubble of size rb, at which this approximation will be 
fulfilled, which explains why this approach is often in quite 
good agreement with the results of PIC simulations. 

6. Conclusions 

Using the already established theory of a bubble in trans-
versely inhomogeneous plasma, we have considered a gener-
alised model of the electron sheath at the bubble boundary in 
which the sheath has not only rectangular or exponential pro-
files, as in previous works, but also can be described by an 
arbitrary function. 

Within the framework of this model, we have found the 
potential within the plasma bubble and have shown that it has 
the same form as in the particular case of the theory for the 
rectangular profile; however, the form of the function b(rb) 
depends on the shape of the electron sheath. This allows one 
to use a second-order differential equation to describe the 
bubble envelope in the general theory as well. 

We have also shown that the equation for the bubble in 
the general case has two approximations within the frame-
work of which it does not depend on the thickness and profile 
of the electron sheath at the bubble boundary. The domains 
of applicability of the approximations are substantially simi-
lar for different profiles (with a corresponding re-determina-
tion of thickness D). This leads to the conclusion that the 
selectable profile shape has little effect on the shape of the 
bubble envelope and justifies the description of the bubble 
with the help of a simple model with a rectangular profile of 
the electron sheath at the boundary. 

However, the profile of the electron sheath has a signifi-
cant effect on the electromagnetic field outside the plasma 
bubble, the knowledge of which is necessary for the analysis 
of injection processes and self-injection of electrons. To find 
this field for an arbitrary profile of the electron sheath is the 
subject of future work.
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