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Abstract.  Having solved numerically the time-dependent 
Schrödinger equation, we have analysed the dependence of the high 
harmonic generation yield on the ellipticity  of an intense laser field. 
For the case of a zero angular momentum of an initial state, it has 
been shown that the ellipticity dependence of the HHG yield is 
affected by the harmonic number. The numerical results are inter-
preted in the framework of our recently developed quasi-classical 
analytical model for HHG.  In the quasi-classical approximation, 
the difference in the ellipticity dependence of the HHG yield for 
different harmonics is shown to be caused by the interference effects 
of quantum orbits. 

Keywords: femtosecond pulses, atoms, ionisation, high harmonic 
generation, attosecond pulses, numerical simulation. 

1. Introduction 

High harmonic generation (HHG) occupies one of the central 
places in the physics of interaction of ultraintense laser fields 
with atomic and molecular systems. The presence of a charac-
teristic plateau-like structure in the spectrum of high harmon-
ics allows the use of HHG for producing attosecond laser 
pulses [1, 2]. Of special relevance is the task of obtaining an 
isolated attosecond pulse. One of the commonly used meth-
ods for the generation of such pulses is a polarisation gating 
technique [3 – 5], the essence of which consists in the fact that 
the polarisation parameters of the pump pulse are selected in 
such a way that the main contribution to the HHG amplitude 
is made by only one optical cycle of the pump field. As this 
takes place, the contributions from other cycles of the field 
are suppressed by increasing the ellipticity of the pump field. 
Using this technique of generation of isolated attosecond 
pulses requires a detailed analysis of the dependence of the 
HHG yield on the pump field ellipticity. This dependence has 
been investigated in several studies [6 – 8], the latter of which 
has shown that the dependence of the high harmonic yield on 

the laser pulse ellipticity is sufficiently universal and corre-
sponds to a Gaussian distribution. 

Qualitatively, the spectral features of high harmonics are 
described within the framework of a three-step rescattering 
model [9], in accordance with which the HHG process can be 
divided into three steps. In the first step, the valence electron 
of the atom tunnels through the barrier produced by an 
atomic potential and laser field. In the second step, the elec-
tron moves in a field-modified continuum and after some 
time returns to the parent ion, gaining additional energy from 
the laser field. Finally, in the third step, the electron recom-
bines to the initial bound state, accompanied by the emission 
of fundamental radiation harmonics. As shown in [8, 10], a 
Gaussian dependence of the harmonic yield on the ellipticity 
is caused by the first step, i.e. tunnelling of the valence elec-
tron in an elliptically polarised laser field. At the same time, 
the effect of the second (propagation) and third (recombina-
tion) HHG steps on the law of a decrease in the harmonic 
yield with increasing ellipticity has not been studied. The aim 
of this work is to investigate the deviations of the dependence 
of the HHG yield with increasing laser field ellipticity on the 
Gaussian law, due to the peculiarities of the electron propaga-
tion in a laser-dressed continuum. 

2. Numerical results for the HHG spectrum 

Interaction of a laser field with an atom induces a dipole 
moment [D(t)], whose spectrum defines the probability of the 
harmonic generation [11]*:  
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where r(W) is the spectral density at frequency W; D(W) is the 
Fourier transform of the dipole moment at frequency W; and 
c is the speed of light. In numerical calculations of the HHG 
spectra, instead of the dipole moment D(t) it is convenient to 
use the dipole acceleration ( ) ( )t ta D= p , the Fourier transform 
of which is related to D(W) by the obvious expression: 

( ) ( )a D2W W W=- .	 (2)

Quantum mechanically (in the single-active-electron 
approximation) the dipole acceleration is calculated as an 
average value of the total force acting on the atomic electron 
in an intense laser field: 
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( ) ( , ) ( ) ( ) ( , )dt t t U r t ra r F r*y y= - - d6 @y ,	 (3)

where y(r, t) is the wave function of an electron in an atomic 
potential U(r) and in the laser field with the electric vector 
F(t). The vector F(t) can be represented as 

( ) ( ) ( ) ( )cos sint F f t t tF e e
1
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0

h
w h w=

+
+6 @,	 (4)

where F0 is the peak electric vector; w is the carrier frequency; 
h is the ellipticity; and the function   f (t) specifies the pulse 
envelope. To simplify the interpretation of the numerical 
results, in this paper we use a trapezoidal pulse with two full 
cycles in the regions of switching on/off the field and four full 
cycles in the region of a constant field amplitude: 
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where T = 2p/w.
The exact wave function y(r, t) satisfies the time-depen-

dent Schrödinger equation (TDSE): 
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with the initial condition y(r, t = 0) = y0(r) , where y0(r) is 
the ground state in the potential U(r) with the angular 
momentum l = 0. The atomic potential is chosen in the 
form 

( ) ( / ) ( / ) /b tanhU r r a r a rsech2=- - 	 (6)

with the parameters a = 0.3 and b = 2.17, providing the coin-
cidence of energy of the ground s-states in the given potential 
with energy of the ground state of the hydrogen atom. Note 
that for large distances (r >> a) the behaviour of potential (6) 
is determined a purely Coulomb dependence: U(r) » –r –1. 

For the numerical integration of TDSE (5) we employ a 
pseudospectral method using a fast Fourier transform algo-
rithm in the directions x, y, z [12, 13]. The convergence of the 
numerical results is ensured by the selection of the integration 
grid size and the values of spatiotemporal steps: the number 
of nodes Nx = 512, Ny = Nz = 256 along each of the coordinate 
x, y and z, respectively; and the steps in time and coordinates 
Dt = 0.025, Dx = Dy = Dz = 0.3. To suppress spurious reflec-
tion waves, we use absorption layers of width 20 near the grid 
boundary along the coordinate x, and 15 – along the coordi-
nates y and z. 

To reduce pulse shape effects, we perform an averaging of 
the numerical results by calculating the integral yield of har-
monics (RN ) in the vicinity of frequency W = Nw: 
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To study the dependence of the HHG yield on the ellipticity 
h, we introduce the reduced HHG yield: 

( ) ( ) / ( )R R R 0N N Nh h h= =t .	 (8) 

Figure 1 shows the dependence of the reduced yield  RNt  
on the harmonic number and ellipticity h for w = 0.057 (800 
nm wavelength) and peak field strength F0 = 0.107, corre-
sponding to the peak intensity /( )I cF 80 0

2 p=  = 4 × 1014 W cm–2. 
The numerical results show that at a fixed harmonic number, 
the reduced harmonic yield as a function of ellipticity h can be 
approximated by the expression: 

( ) ( ) eR f1N N
2 2 2

.h h+
ah-t ,	 (9)

where the superscript a is universal for all harmonics and the 
coefficient fN, determining pre-exponential factor, essentially 
depends on the harmonic number, for example, for N = 45 
(see Fig. 1) the distribution in h is determined with good accu-
racy by a purely Gaussian distribution; however, for N = 47 
the reduced yield ( )RN ht  as a function of h decreases much 
faster. (Note that the violation of the Gaussian dependence 
( )RN ?ht  exp 2ah-^ h for the harmonics in the region of a high-

energy plateau is in contradiction with the quasi-classical 
result from paper [8].) 

3. Interpretation of the numerical results 

To analyse qualitatively the high harmonic yield in the region 
of a high-energy plateau we will use the analytical approach 
proposed in [10] for an initial state having a zero angular 
momentum. According to this approach, the HHG yield near 
the high-energy plateau cutoff can be presented as the prod-
uct of three factors, each of which has a clear physical mean-
ing in terms of the three-step scenario [10]: 

( ) ( ) ( , ) ( , ),WR I E E E I0 pN h h h s q W= = = - ,	 (10)

where Ip is the ionisation potential of the ground state. The 
factor I(h) describes the tunnelling of the bound electron in 
the elliptically polarised field, the factor W(E) describes the 
propagation of the electron in the laser-dressed continuum, 
and the factor s(E, q) is the exact photorecombination cross 
section to the ground state y0(r)  for the electron with energy 
E, which emits a photon with frequency W = Nw, and the lin-
early polarised vector, whose geometry is determined by an 
angle q between the momentum vector of the recombining 
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Figure 1.  Dependence of the reduced harmonic yield in the region of 
the high-energy plateau on the ellipticity of a laser pulse with a carrier 
frequency w = 0.057 at a peak vector F0 = 0.107. 
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electron and the polarisation vector. Expression (10) explic-
itly shows that for the case of the s-state the reduced harmonic 
yield does not depend on the photorecombination cross sec-
tion: 

( ) ( ) ( )W E,R IN h h h= tt t ,	 (11)
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Let us consider each term in turn.
The ionisation factor I(h) describes tunnelling of an opti-

cally active electron from a bound state y0(r) to the contin-
uum state with a zero momentum projection along the major 
axis of the polarisation ellipse and a projection p 2y 0h e=  
along the minor axis of the polarisation ellipse, where e0 = 
3.17Up, Up = /( )F 40

2 2w . As shown in [10], the factor I(h) can 
be presented in the form 
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( )
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where g = wk/F0 is the Keldysh parameter; I2 pk = ;

. ; . ( / )F F1 585 0 95 1 /
0

2 2 3 2d dh g= = + -u ;	

and ( ) /exp( )F F2 3t
3

s ? kG -u u  is the probability of decay in a 
static electric field with an effective strength Fu  [14]. The anal-
ysis shows that the dependence on the parameter h2 in the 
limit of small ellipticity h is significant only in the exponent, 
whereas the h-dependence in pre-exponential factors can be 
neglected. In this approximation, by expanding the exponent 
in a series, 

/
F F
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we obtain the expression for the ionisation factor I(h): 

( ) ( ) , /( )eI I F0 3
0
22

.h h a dk g= =
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Thus, the dependence of the reduced ionisation factor  
( ) ( ) / ( )I I I 0h h h= =t  on ellipticity is determined by the 
Gaussian dependence [8, 10] and does not depend on the 
energy (or number) of the harmonic: 

( )I e
2

.h ha-t .	 (15)

The propagation factor W(E, h) in (10) describes the 
propagation of an electron in a laser-dressed continuum 
along closed classical trajectories and is expressed in terms of 
the Airy function Ai(x): 
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( . )F0 536 /
0
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0.65t TD = .	 (17d)

It is known that in the region of photon energies close to the 
high-energy plateau cutoff, only two closed electron trajecto-
ries contribute to the amplitude of the HHG process [15]. 
Interference of these trajectories leads to an oscillation pat-
tern in the HHG yield, which is described in (16) by the Airy 
function Ai(z). Using (16), we obtain the expression for the 
reduced propagation factor: 
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Let us analyse expression (18) in detail. In the case of small h, 
when expanding the Airy function in a series in h2 up to terms 
of order h2, it takes the form 
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For further analysis of the ellipticity dependence of the HHG 
yield in the region of the high-energy plateau (E < e0) we use 
the asymptotics of the Airy function and its derivative and 
simplify expression (19) to the form: 

( , ) ( ( ) )W E f E1 2 2.h h+t ,	 (20)

where

( ) | | | |f E
3
2

4
ctg /

0 0
3 2 pb z z=- +b l.	 (21)

For those arguments of z0, which correspond to zeros of the 
Airy function, the value of f (E) tends to infinity [see (18) and 
(19)]. The arguments z0 can be found with high accuracy from 
Eqn (21) as roots, which leads to infinity of the cotangent in 
Eqn (21): 

. [ ( )] , , , , ...n n0 25 3 4 3 0 1 2( ) /
n

2 3pz =- + =
3 	 (22)

This nonphysical behaviour for Wt  at ( )
n0 "z z 3  explicitly 

shows the limit of applicability of the analytical expression 
(10). The coefficient f (E) becomes equal to zero at z0 for 
which the cotangent in (21) vanishes: 

. [ ( )] , , , , ...n n0 25 3 4 1 0 1 2( ) /
n
0 2 3pz =- + = 	 (23)

We note that conditions (22) and (23) correspond to those of 
destructive and constructive interference of short and long clas-
sical trajectories of an electron in a linearly polarised field [16]. 
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Analytical results (15) and (20) for reduced ionisation and 
propagation factors allow us to study the ellipticity depen-
dence of the reduced HHG yield for different N. As was 
already mentioned, the reduced ionisation factor (15) defines 
the universal (independent of N) Gaussian dependence of the 
reduced harmonic yield on h. Thus, the difference in the ellip-
ticity dependence of the HHG yield for different N is caused 
by the dependence of the propagation factor on both the ellip-
ticity h and harmonic energy. Obviously, for two harmonics 
with numbers N and N', for which the reduced propagation 
factors are related as ( ,( )W EN ht  > ,( )W EN hlt ) (EN = Nw – Ip), the 
distribution of the reduced harmonic yield on h will be wider 
for the Nth harmonic than for the harmonic with the number 
N'. 

Analytical results (20) allow one to establish a number of 
common features in the behaviour of ( , )W E ht  and ( ) .RN ht
Consider a sequential set of harmonics, for which the z0 val-
ues satisfy the inequality <( )

n 1z 3
+  < ( )

n0z z 3 . (Recall that with 
increasing energy of harmonics in the region of the high-
energy plateau, the absolute value of z0 decreases and remains 
negative [see the dependence of z0 on the harmonic energy in 
(17b)].) In accordance with (20), for this group of harmonics 
the largest and smallest value of f (E) will correspond to har-
monics with the lowest and highest N, respectively. Thus, the 
yield of harmonics with the lowest energy will fall with 
increasing h slower than that for the harmonic with the high-
est energy. Indeed, in Fig. 1 the yield of the 45th harmonic 
with an increase in h decays much more slowly than the yield 
of the 47th harmonic. Let us now consider a group of harmon-
ics for which z0 values satisfy the inequality < <(0) (0)

n n1 0z z z+ . In 
this case, part of the harmonics have an energy that is smaller 
than the ‘threshold’ energy corresponding to ( )

nz
3 , and the 

other  –  greater. In passing through threshold energy the sign 
of f (E) is changed from negative to positive, leading to a 
change in the distribution of RNt  with respect to h from nar-
row to a broader one; for example, in Fig. 1 the probability of 
the yield of the 51st harmonic decays much more rapidly with 
increasing h than that of the 55th harmonic. Thus, the transi-
tion from one harmonic to the other changes the dependence 
of the reduced harmonic yield on the field ellipticity, which 
leads to the emergence of an irregular behaviour of the 
numerically found dependence of  RNt  on h and N in Fig. 1. 

Figure 2 shows the reduced HHG yield near the high-
energy plateau cutoff for the same parameters of the laser 
field, as those in Fig. 1. The colour scale (from light to dark) 
shows the results of the numerical solution of the TDSE, and 
the level lines correspond to the analytical results (11). As can 
be seen from Fig. 2, the analytical results are in good agree-
ment with the results of the numerical solution of the TDSE 
with the exception of the harmonics near the region of 
destructive interference of short and long classical trajecto-
ries, for which, as noted above, the presented theory does not 
adequately describe the reduced yield RNt . The energies of 
these harmonics are found from formula (22) with (17b) taken 
into account. The corresponding harmonic numbers are gen-
erally not integers and depend on the parameters of the laser 
field; therefore, Fig. 2 does not show the level lines in the 
vicinity of the harmonics with N = 43 and 53, for which the 
energies are close to the energies corresponding to the posi-
tion of the dashed lines. However, in the vicinity of the har-
monic with N = 47 the analytical results are in good agree-
ment with the numerical ones, because the energy correspond-

ing to the dashed line gives the value of N that is substantially 
different from the integer. 

4. Conclusions 

We have studied the dependence of the HHG yield on the 
ellipticity of the external laser field for the case of HHG by an 
electron located initially in the s-state. It is shown that the law 
of a decrease in the yield of high harmonics with increasing 
ellipticity is not universal for the harmonics in the plateau 
region. Deviations of this law from the universal Gaussian 
distribution are associated with the interference of electron 
trajectories in the laser field, taking place in the second step of 
the quasi-classical HHG scenario, i.e. the step of the electron 
propagation in the continuum.

Thus, we have shown that the dependence of the HHG 
yield on the ellipticity of the pump field polarisation is not 
determined by the ionisation step only, as was assumed previ-
ously [8]. It should be noted that in the above-considered case 
of the s-valence electron the dependence of the reduced HHG 
yield on the atomic target parameters is absent. However, in 
the more general case of the nonzero angular momentum in 
an initial state, the effect of the atomic structure on the ellip-
ticity dependence of the HHG yield can be more significant 
and requires a separate study. 
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