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Abstract.  We study theoretically the process of turning a laser 
pulse into a train of attosecond or even zeptosecond pulses due to 
high harmonic generation (HHG) upon backreflection of intense 
laser radiation from a plasma surface. It is shown that under appro-
priate conditions these attosecond pulses may have an amplitude 
that is several orders of magnitude larger than that of the laser 
pulse. We study this process in detail, especially the nanobunching 
of the plasma electron density. We derive the analytical expression 
that describes the electron density profile and obtain a good agree-
ment with particle-in-cell simulations. We investigate the most effi-
cient case of HHG at a moderate laser intensity (normalised vector 
potential a0 = 10) on the overdense plasma slab with an exponential 
pre-plasma profile. Subsequently we calculate the spectra of single 
attosecond pulses from back radiation using our expression for 
density shape in combination with the equation for spectrum of 
nanobunch radiation. 

Keywords: high harmonic generation, attosecond pulses, plasma 
surface. 

1. Introduction 

In last decade the development of laser technology has shown 
an immense progress [1 – 4], which opens an opportunity to 
study the new physical phenomena of laser – plasma interac-
tion. One of the most important processes in this field is the 
high harmonic generation (HHG), which is being studied very 
intensely today. As the minimum achievable duration of laser 
pulses is reducing with time, it is interesting whether the genera-
tion of even shorter pulses (in attosecond or even zeptosecond 
range) is possible. The reduction of the pulse duration and the 
radiation wavelength would open new potential applications, 
which is the motivation of the HHG investigation. 

The most efficient method of HHG is the interaction of 
high contrast laser pulses [5] with solid density targets. The 
pedestal of the pulse ionises the surface and the main pulse 
interacts with overdense plasma electrons, while ions remain 
virtually immobile during the short pulse duration. One dis-
tinguishes two main HHG mechanisms in this case: coherent 
wake emission (CWE) [5, 6] and relativistically oscillating 
mirror (ROM) [7 – 11]. CWE is caused by fast Brunel elec-

trons [12] which excite the plasma oscillations at the local 
plasma frequencies. Thus there is no harmonics behind the 
maximal plasma frequency in the case of CWE. This process 
dominates for non-relativistic laser intensities, for which the 
normalised vector potential is a0 < 1.

For а0 >> 1 the harmonics are generated mostly via ROM. 
In this case the electron layer at the plasma surface acts as a 
mirror that oscillates at relativistic velocities and generates 
high order harmonics via the Doppler effect, while moving 
towards the incident wave. For this process there is no limit 
of frequency like by CWE, and so higher harmonics can be 
generated. The first theoretical description of ROM claimed 
that the intensity spectrum envelope of the reflected wave 
can be described by I (l) µ l–5/2 up to the ‘roll over’ frequency 
wr proportional to 4 g2, where l is the harmonic order and g 
is the relativistic gamma factor [7]. Later this theory was 
improved, especially the acceleration of the reflecting layer 
was taken into account. This results in the power law I (l) µ 
l–8/3 and wr µ g3 [8]. This model assumes the existence of a 
so-called apparent reflection point (ARP) where the trans-
verse electric field vanishes. This model was experimentally 
proved [9 – 11]. 

Most recently another HHG mechanism was discovered. 
Using a p-polarised oblique incident pulse with а0 >> 1 one can 
cause the formation of extremely dense electron nanobunches 
under appropriate conditions. These bunches emit attosecond 
pulses with intensities much larger than those of incident pulses 
[13, 14]. That means that the boundary condition assumed in [8] 
corresponding to the ARP fails and thus the ROM theory can-
not be applied in this case. This process is called coherent syn-
chrotron emission (CSE). The reflected radiation in case of 
CSE is characterised by the power law I (l) µ l–4/3 or I (l) µ l–6/5 
which is flatter as compared to ROM [13, 14]. The correspond-
ing experiments can be found in Refs [15 – 17]. 

Detailed numerical investigation of the case of p-polarised 
oblique incidence in Ref. [18] shows that the ROM model can 
be violated when the similarity parameter S = n/a0 (where n 
is the electron density given in units of the critical density nc 
[19]) is smaller than five. The authors of [18] present a new 
relativistic electronic spring (RES) model for S < 5. 

In this work we investigate the CSE process described in 
[13, 14] more extensively. We introduce an original analytical 
approach which allows us to calculate the electron density 
profile of the given nanobunch as well as its current distribu-
tion. The obtained equations enable us to improve the formulas 
for a back-radiating spectrum derived in [13, 14]. Moreover 
we perform several 1D PIC simulations and find different 
regimes of HHG. Finally we compare the derived expressions 
with simulation results done with 1D PIC-code called VLPL. 
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2. PIC simulation of the HHG process

For our simulations we use a one dimensional version of the 
PIC code called Virtual Laser Plasma Laboratory (VLPL) 
[20]. In our geometry the incident wave comes from the left 
hand side of the simulation box and propagates along the x 
axis. The wave is p-polarised and the electric field component 
oscillates along the y axis. The plasma is located at the right 
hand side of the simulation box. It is also possible to describe 
the interactions where oblique incidence is used with our 
code. Let q be the angle of incidence in the laboratory frame. 
We consider some frame moving along the y axis with velocity 
V = с sin q. The Lorenz transforms verify that in this frame the 
laser radiation is normally incident (see [21] for more details). 
At the same time the whole plasma moves in the y direction in 
this frame. Thus, attributing some initial velocity to plasma 
in our simulation we are working in the moving frame. If we 
need the results in the laboratory frame, we have to transform 
the values obtained from the simulation via the Lorenz trans-
form. Consequently we obtain the results that correspond to 
the process with oblique incidence. We use the incident field 
Ei(t) of duration T = 10 l/c that is given by the expression 
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Assuming that the ions are at rest during the whole interac-
tion process we consider only the interaction between the 
electrons and the incident wave. In the simple case of normal 
incidence there are two forces acting on particles along the 
x  axis: the electrostatic force proportional to Ex and laser 
ponderomotive force oscillating with 2w (twice the laser fre-
quency). Thus the plasma surface oscillates with half the laser 
period. In the case of oblique incidence of a p-polarised wave 
there is an additional longitudinal component of the electric 
field oscillating at frequency w and acting on surface. Conse
quently the interaction becomes even more complicated which 
leads to stronger oscillations on the plasma surface contain-
ing both w and 2w modes.

Thus, as soon as the electrons are pulled back by the elec-
trostatic force they form a thin nanobunch that reaches a 
velocity close to c. In this case the generation of high har-
monics is possible. 

3. Density profile of a thin electron layer

In this section we derive two different analytic expressions 
for two different cases, which roughly describe the electron 
density profile at the intervals where sharp spikes appear. The 
starting point of our calculations is the approximation of the 
electron phase space distribution at these intervals. As we will 
see later this distribution depends on the propagation velocity  
( )x t0o  of the given electron layer.
Firstly let us consider the case of a slow electron bunch  

[ ( )x t0o  << с]. Figure 1 shows the electron density and its distri-
bution in the x – px phase space at a certain time. Let the curve 
in phase space be described by the function x(p) at some small 

interval close to the density spike. Obviously, x0 is the local 
minimum of this function that coincides with the position of 
the spike. In fact, we have always a spike of electron density 
at the point, where the function x(p) exhibits the local extreme 
value. The idea that gives us the starting point for our calcula-
tions is the following. We can locally describe the given curve 
in phase space as a parabola:

x(p, t) = x0(t) + a(t)(p – p0(t))2.	 (2)

The point [x0(t), p0(t)] corresponds to the local minimum. In 
order to simplify the notation, we drop the time dependence 
and set p0 = x0 = 0. Then we have

x(p) = ap2. 

We consider some short interval Dx where this assump-
tion makes sense. The distribution function of the electrons is 
then given by

fa(x, p) = Cda(x – ap2),	 (3)

where C is a normalisation constant and da is defined as
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The parameter a describes the width of da, which means that 
a > 0 is required. In order to get the expression for the density 
we have to perform the integration in the momentum space 

( ) ( , ) .dn x f x p pa a= y 	 (5)
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Figure 1.  (Colour online) Electron density (red) and electrons in x – px 
plane (green); x0 is the position of the maximal density. Simulation pa-
rameters: initial plasma density n0 = 38.9nc; s = 1.1836 ́  10–3l (labora-
tory frame), a 820-nm pulse with a dimensionless amplitude a0 = 10 and 
p-polarised oblique incidence at 57°.
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We have to be careful with integration boundaries since da is 
the bounded support function. As a result we obtain:
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In order to calculate the constant C, we first write an equation 
for the number of particles in the interval [– a, Dx] by integrat-
ing the density over this interval: 
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Further we solve the obtained equation for C and insert 
it into equation (6). Finally we obtain the expression for the 
electron density profile
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Note that the parameter a is reduced and does not affect the 
density profile. In Fig. 2 we see that the density described by 
(8) agrees very well with the simulation results. We call the 
case where ( )x t0o  << с is valid, the ‘parabolic case’. We chose 
quite a small value for a because we are dealing with a very 
big and sharp spike in this example. This is due to a strong 
laser pulse and very small cell size (5 ́  10–5 l). 

Now we discuss another case with ( )x t0o  ® с. Consider 
the  phase space evolution taken from another simulation 
illustrated in Fig. 3. At the beginning by t = 5.4 l/c the 
momentum is close to zero and the distribution is parabolic 
as expected. Further, as soon as the electron bunch is pulled 
back by the electrostatic force, the negative momentum of 
the bunch growth constantly with time and the distribution 
changes resembling a kind of ‘whip’ between t = 5.7 l/c and 
5.8 l/c. The extremely dense electron nanobunch reaches the 
velocity close to c during this period. In this case the phase 
space distribution can be roughly fitted with an exponential 
function

xp(p, t) = x0(t) + exp[a(t)(p – p0(t))].	 (9) 

As we will show later the incident angle and the density gra-
dient used here are optimal for producing the most intense 
attosecond pulse. The given phase space distribution belongs 
to the nanobunch that radiates this pulse. As in the previous 
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Figure 2.  (Colour online) Electron density taken from the simulation 
(blue) and calculated analytically by (8) (red), with same simulation pa-
rameters as those in Fig. 1; Dx = 0.0012 l, a = 4.4 ́  10–5 (simulation 
frame).
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Figure 3.  (Colour online) Electrons in x – px plane (red) and its longitudinal velocity (green) taken from the simulation at different times t during the 
process of nanobunching at n0 = 100nc; s = 0.4 lc (laboratory frame), a 820-nm pulse with a dimensionless amplitude a0 = 10 and p‑polarised oblique 
incidence at 50°. 
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case we drop the time dependence and set p0 = x0 = 0. Then we 
have

xp(p) = exp (ap)	 (10) 

and the distribution function:

fa(x, p) = Cda(x – exp(ap)).	 (11)

The density can be given in this case by

( ) ( , ) ,dn x f x p pa a
pcut

=
-
y  	 (12) 

since we should take into account that the momentum of the 
electrons is limited by some amount pcut. Further we calculate 
the number of particles on some interval [xmin, xmax], where 
xmin = exp (– apcut), in order to obtain the normalisation con-
stant C. Finally, we obtain:
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Now as in the previous case we are going to compare 
the calculated analytical function with the simulated density 
profile (Fig. 4). Again we obtain a good agreement and are 
able to describe the density spike quite well. Although there 
is  some further spike at x = 1.323 l which is not described 
analytically, it does not contribute to the radiation signifi-
cantly and so we can just ignore it.

Before we go further to the next section we analyse the 
intermediate case ( )x t0o  ~< c, which is important for further 
applications. In this case the electron phase space distribution 
looks like that shown in Fig. 5 and cannot be approximated 

well either with a parabolic or with an exponential function. 
Nevertheless, we find out that the density profile of the spike 
can still be well approximated with equation (8) (Fig. 5), and so 
we classify the cases with intermediate velocities as parabolic.

In Section 4 we are going to analyse the corresponding 
simulation results more extensively. We will use the descrip-
tions of the electron layer density profile derived here in order 
to calculate an expression for the spectra of the reflected 
waves in different cases. 

4. Electron density evolution and HHG 

We are interested in the high-frequency spectrum of the 
reflected pulse mostly determined by the behaviour of the ARP 
when it moves away from plasma with a maximal velocity. 
This moment corresponds to a stationary phase point (SPP) 
(see [13, 14]). The ARP gamma factor exhibits a sharp spike 
at this time, which is called g-spike [8]. One distinguish different 
orders of g-spikes depending on the behaviour of the trans-
verse current ĵ  in the vicinity of the SPP, which can be 
approximated with 

ĵ (t, x) » (–a0t)n f (x – x0(t)).	 (14) 

We assume that the transverse current density does not 
change its shape f during the time. The number j denotes the 
order of the given g-spike. The reflected radiation is deter-
mined by the transverse current distribution via

Er(t) = ( , ) ,dj t x x xp -=y 	 (15) 

and so we are able to derive the expression for the spectrum 
of the reflected pulse in line with [16] and obtain:
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Figure 4.  (Colour online) Electron density taken from the simulation 
(blue) and calculated analytically by (13) (red), as well as electrons in the 
x – px plane (green), with the same simulation parameters as in Fig. 3, 
taken at t = 5.7 l/c, xmin – x0 = 9 ́  10–4 l, xmax – x0 = 0.02 l, a = 1 ́  10–4 
(simulation frame).
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Figure 5.  (Colour online) Electron density taken from the simulation 
(blue) and calculated analytically by (8) (red), as well as electrons in 
the x – px plane (green). Simulation parameters: n0 = 100nc; s = 0.066 l 
(laboratory frame), a 820-nm pulse with a dimensionless amplitude a0 = 
10 and p-polarised oblique incidence at 60°.
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where umax is the maximal velocity of the moving electron 
layer in the SPP; and nmax is the maximal density assumed to 
be constant in time. In (15) we use the normalised PIC units 
[22]. To give the expression for the shape function we use the 
results from the previous section and write
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We multiply the density profile with a wider Gaussian 
function since na decays too slowly (as µ 1/x for a ‘whip’ or as 
µ 1/ x  for a parabolic case) for positive x and after certain 
x value does not coincide with the given density.

Further we consider two different examples where we 
apply (16) to calculate the spectrum of a single reflected pulse 
Er
p(t), that is filtered out by the Gaussian function

Er
p(t) = Er(t) exp[(t – tmax)2/su 2 ],	 (18) 

where tmax corresponds to the maximal wave amplitude and 
su  = 0.2 l/c. 

At first we investigate the example of the whip case  
[ ( )x t0o  ® с] from the previous section illustrated in Figs 3 
and 4. The electron nanobunch which radiates a strong atto-
second pulse can be clearly recognised from Figs 6 and 7a. 
For convenience we chose the coordinates in the way that the 
SPP is at point (0, 0). In Fig. 8b the spectrum calculated using 
(16) is compared with the spectrum calculated from original 
reflected pulse via the fast Fourier transform. Obviously, the 
description works well almost until 1000th harmonic. In 
Fig.  8a the corresponding pulses are compared. The both 
graphs behave in the similar manner.

Going along the same lines we analyse now the inter
mediate case [ ( )x t0o  ~< c] shown in Fig. 5. As we said before we 
attribute this case to the parabolic case. The corresponding 

pictures illustrating this case are Figs 9, 10 and 11. Here the 
velocity in SPP significantly deviates from the speed of light 
and approximately equals 0.91c. For that reason the electron 
phase space distribution does not become ‘whip-like’ (Fig. 5). 
Although there is no ultrarelativistic regime here, we still may 
apply the same analysis, assuming the absolute velocity of the 
electrons to be approximately constant close to SPP. Again 
we obtain good agreement for the spectrum behavior.

We see that in the first example (whip case) we have the 
second order gamma spike, whereas in the second example 
(parabolic case) the first order gamma spike is obtained. In 
order to find the parameter ranges which correspond to a 
whip or a parabolic case we perform a number of simulations. 
Using a moderate intensity of an incident wave (a0 = 10) we 
vary the steepness of the exponential density gradient as well 
as the incident angle. For each parameter set we consider the 
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Figure 6.  (Colour online) Electron density distribution of the radiating 
nanobunch in a space time domain. Simulation parameters are the same 
as in Fig. 3; the SPP [here (0,0)] corresponds to t = 5.7 l/c as in Fig. 4.
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Figure 7.  (Colour online) Transverse current density from the simulation near the SPP (0,0) (a) and calculated analytically by (14) at n = 2 (b). 
Simulation parameters are the same as in Fig. 3. The parameters used by the analytical calculation for x0(t): a0 = 4 ́  104, nmax = 1000 and g = 15; for 
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	 M. Cherednychek, A. Pukhov358

reflected radiation. In Fig. 12 we visualised the maximal 
amplitude of reflected wave for each parameter set, respec-
tively. 

Consider the incidence angle between 45° and 60°, since at 
these angles the most interesting things occur. Of course we 
notice a sharp increase in the reflected wave amplitude in the 
region around s = 0.4 l. We call this region a high amplitude 
parameter set (HAPS). In this region we mostly obtain the 
second order g-spikes and the current does not change its sign 
in SPPs like in Fig. 7 Furthermore our study shows that the 
maximal longitudinal velocity of the certain boundary elec-
tron layer increases monotonously with s up to the HAPS, 
where it almost reaches c. For s < 0.05 l the boundary oscil-
lates too slowly so that no short pulses are generated. 

Roughly between 0.05 l and 0.1 l we obtain the reflected 
radiation similar to Fig. 11. We call this region a moderate 
amplitude parameter set (MAPS). Here we have only first 
order g-spikes and the current changes sign in SPPs (Fig. 10). 
Thus the reflected spectrum in the MAPS can be approxi-
mated with equation (8) (parabolic case) and the region of the 
HAPS corresponds then to the exponential case [equation 
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Figure 8.  (Colour online) Reflected radiation obtained from the simulation [(a), red] and from the analytical current distribution [(a), black], as well 
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Figure 9.  (Colour online) The electron density distribution of the radi-
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Figure 10.  (Colour online) Transverse current density from the simulation near the SPP (a) and calculated analytically by (14) at n = 1 (b). Simulation 
parameters are the same as those in Fig. 5. The parameters used by the analytical calculation for x0(t): a0 = 1 ́  104, nmax = 500 and g = 2.5; for shape: 
a = 1 ́  10–3l and suu  = 0.02 l. The velocity u is derived from the given gamma factor. 
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(13)]. In the region between the MAPS and HAPS the interac-
tion is too complicated to be attributed to any model.

5. Conclusions

We have managed to obtain two different analytical expres-
sions of the electron density profile describing the density 
spikes in two different cases. We present some simulation 
results of HHG, where we can obtain the amplitude increas-
ing in the reflected pulse by a factor of five without using an 
extremely intense incident wave. This is possible after we have 
found optimal parameters for the density gradient combined 
with an optimal incident angle. Moreover, with some simple 
assumptions we have managed to describe analytically the 
transverse current distribution in the vicinity of SPP in both 
cases. Obtained expressions together with the expressions for 
the electron density give us the possibility to reliably calculate 
the spectra that fit the original spectra of a back radiated 
pulse.

Our work basically presents the idea of description of the 
plasma density considering the electron phase space distri-
bution, but this theory has a potential to grow and to be 
developed further. In this work we have introduced two appli-
cation examples of our theory. Nevertheless, it can become a 
strong tool in laser plasma analysis in general.
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Figure 11.  (Colour online) Reflected radiation obtained from the simulation [(a), red] and from the analytical current distribution [(a), black], as 
well as the corresponding spectra (b). 
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Figure 12.  (Colour online) Distribution of the maximum amplitude of 
reflected radiation in the plane of the incident angle – steepness of the 
density gradient [s is taken from (1) and n0 = 100 nc]. Each point is 
obtained in the numerical experiment (laboratory frame).
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