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Abstract.  The problem of detecting correlated fragments in a 
sequence of images recorded by the superimposing holograms 
within the Fourier holography scheme with angular multiplication 
of a spatially modulated reference beam is considered. The 
approach to the solution of this problem is based on the properties 
of the variance of the image sum. It is shown that this problem can 
be solved by providing a constant distance between the signal and 
reference images when recording superimposed holograms and a 
partial mutual correlatedness of reference images. The detection 
efficiency is analysed from the point of view of estimated image 
data capacity, the degree of mutual correlation of reference images, 
and the hologram recording conditions. The results of a numerical 
experiment under the most complicated conditions (representation 
of images by realisations of homogeneous random fields) confirm 
the theoretical conclusions.

Keywords: superimposed holograms, multipole hologram, holo-
graphic memory, Fourier holography, data processing, correlation, 
sequence of images, detection of correlated fragments.

1. Introduction 

Superimposed holograms (SHs), i.e., holograms that are suc-
cessively or simultaneously recorded is the same region of a 
holographic recording medium (HRM), are used to imple-
ment a holographic memory [1 – 7]. The SH method is based 
on dividing the dynamic range of the HRM exposure charac-
teristic into subranges, each of which is designed for record-
ing one SH via matching the exposure conditions for this 
hologram to the subrange size. The SHs recorded in a given 
HRM region produce a multiplexed hologram.

One of the urgent practical problems in both designing 
optical memory and processing optical data as a whole is to 
record and reconstruct not individual images but their 
sequences (including temporal ones) [8 – 12]. The term ‘image’ 
is used below as a synonym of the following concepts: ‘pat-
tern’ and ‘complex amplitude field’. In this context, the term 
‘sequence’ implies connectivity, i.e., partial correlation 
between the images forming this sequence (at least, between 
its neighbouring elements). In this case, the presentation of 
one arbitrarily chosen image from a stored series makes it 
possible to successively reconstruct all related images, in both 
forward and backward directions.

The procedure of recording and reconstructing a sequence 
of images is often considered as a way to increase the capacity 
and operating speed of memory. At the same time, storage of 
sequences of images makes it possible to implement not only 
their reconstruction, but also more complex models of asso-
ciative data processing. In particular, living systems use this 
technique to search for regularities and detect casual relation-
ships in chains of events [13]. In turn, a key stage in solving 
these problems, which are also urgent for artificial informa-
tion systems, is the search and detection of related (i.e., cor-
related) fragments of images within a sequence.

In view of the development of optical information tech-
nologies, it is of interest to analyse the potential of the SH 
method in detection of correlated fragments of images when 
recording and reconstructing image sequences. Note that the 
formulation of the problem in correlation terms suggests the 
absence of any other (except for the occurrence frequency) a 
priori criteria for assigning fragments to common (for the 
entire sequence) or individual ones. This statement compli-
cates the problem, because it excludes from consideration the 
solution methods based on the difference in other characteris-
tics of common and individual (different) fragments.

An approach to the solution of the aforementioned prob-
lem by the method of superimposed Fourier holograms was 
proposed and previously modelled in [14]. In this paper, the 
approach described in [14] is developed by considering the 
Fourier holography scheme in which SHs are recorded using 
angular multiplication of a spatially modulated reference 
beam. An estimate of the fragment detection efficiency is 
introduced through the ratio of the variances of the corre-
sponding fragments of images in the field reconstructed by 
multiplexed hologram. Its dependence on the estimates of the 
data capacity of image fragments, mutual correlation of refer-
ence images, and hologram recording conditions when 
describing images as realisations of homogeneous random 
fields is analysed. The results of a numerical experiment con-
firming the theoretical conclusions are presented.

2. Optical scheme and model 

2.1. Optical scheme and statement of the problem 

Let us consider the 4f Fourier holography scheme, in which 
an SH is recorded using angular multiplication of a spatially 
modulated reference beam (Fig. 1). To simplify analytical 
expressions, the consideration will be performed (whenever 
possible) by describing images and, correspondingly, holo-
grams as functions of one variable. 

The scheme presented in Fig. 1 records a multiplexed 
Fourier hologram
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formed (on the assumption of recording within the linear por-
tion of the dynamic range of the HRM exposure characteris-
tic) by superposition of n SHs of image pairs Sk(x) « Rk(x), 
where
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k x k k k

R
k
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Sk(x) and Rk(x) are, respectively, the signal and reference 
images; F is the Fourier transform symbol; nx is the spatial 
frequency; wx = 2pnx; x

( )
k
R  and   x ( )k

S  are the coordinates 
describing the spatial position of the corresponding images 
(their shift) with respect to the principal optical axis in the 
input plane; and j is the imaginary unit. The sequences of sig-
nal and reference images will be denoted as 

n{ }Sk k 1=  and 
n{ }Rk k 1= , respectively.
If the kth image Rk(x) is presented to the multiplexed 

hologram (1) recorded in the input plane, directly behind the 
hologram, in the +1st diffraction order (corresponding to 
the propagation direction of the signal beam F (Sk (x)) × 
exp(–jwxk

(S)) during hologram recording), we have the com-
plex amplitude field
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In the rear focal plane of second Fourier transform lens 
L2, taking into account the coordinate inversion (because of 
the unrealisability of the inverse Fourier transform) when 
choosing signs, we obtain the complex amplitude field

( ) ( ( )) ( ))E x F F R x Hout k xn= (
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where ) and 7  are the convolution and correlation symbols, 
respectively, and the terms in square brackets are pulsed 
responses, which describe the diffraction spread of points.

If hologram (1) is recorded in a thin HRM (according to 
the criterion of angular invariance) and the condition 
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k
R

l
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k
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l
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is satisfied during recording (i.e., the distance between the sig-
nal and reference images in the input plane is retained the 
same when recording all SHs), all fields reconstructed by indi-
vidual SHs and described by the terms in the right-hand side 
of expression (4) spatially coincide in the output plane in Fig. 
1, i.e., are superimposed.

With allowance for the requirement of the absence of any 
other (except for the occurrence frequency in the image 
sequence) criteria for assigning image fragments to common 
(see Introduction), we take that all images are described as 
realisations of a homogeneous random field, on the assump-
tion that the ergodic hypothesis holds true [15].

Let us consider the problem of detecting correlated frag-
ments in a sequence of signal images n{ }Sk k 1= . Signal images 
are presented in the form

c u( ) ( ) ( )S x S x S xk k k= + ,

where c ( )S xk  is a fragment correlated with other images, and  
u( )S xk  is an uncorrelated fragment. Fragments c ( )S xk  and  
u( )S xk  may spatially coincide, i.e., be completely or partially 

superimposed. Then, expression (4) takes the form
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To solve the problem of detecting correlated fragments, 
one needs a criterion making it possible to distinguish the first 
term in (6) from the term in braces and a physical mechanism 
implementing this criterion. Below we will show that variance 
(as an integral estimate of the degree of modulation (contrast) 
of fragments) can play a role of a real criterion and evaluate 
the dependence of the ratio of the variances of common and 
individual fragments on the SH number and the correlation 
coefficient of reference images.

2.2. Model for detecting correlated fragments

One of possible instrumental (and visual) methods for dis-
criminating image fragments is based on the difference 
between the integral (over a fragment) estimates of the degree 
of modulation (contrast). The degree of modulation of images 
will be estimated using their second central moment: vari-
ance. It is necessary to find the dependence of the variance of 
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Figure 1.  4f Fourier holography scheme: Rk and Sk are images forming 
a pair, which are recorded in the hologram H; xk

(R) and xk
(S) are their 

shifts with respect to the principal optical axis; and L1 and L2 are 
Fourier transform lenses with a focal length f. The dashed lines show 
the paths of the rays reconstructing the image Sk in the output plane 
when the image Rk is presented to the hologram H.
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a reconstructed fragment on the SH number, characteristics 
of recorded images, and the recording conditions of a multi-
plexed hologram. Taking into account the possibility of holo-
graphic recording of reconstructed images, we will estimate 
the variances of amplitudes. In this case, there are no funda-
mental difficulties in passing to the estimation of variances of 
image intensities when registering them by a quadratic detec-
tor.

We apply the well-known property of the correlation 
function of a sum of random processes [16] to random fields:
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where Xk (x, y) is the kth image as the kth realisation of a 
homogeneous random field, and Kkl is the cross-correlation 
function of the kth and lth images. The value of the autocor-
relation function at the reference point Kkk (0, 0), normalised 
to the image area Lx Ly (Lx and Ly are image geometric sizes 
(aperture) over corresponding coordinates on the assumption 
that the image is a rectangle), yields the variance of the image 
reconstructed by hologram: Dout = Kkk (0, 0)/(Lx Ly).

The problem of detecting correlated fragments can be 
solved both instrumentally and visually if the variance of the 
first term in (6) significantly differs from the variance of the 
second term.

The reconstructed field of correlated fragments [the first 
term in (6)] will be presented in the form
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and the reconstructed field of uncorrelated fragments will be 
written as
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We assume that the reference images within the sequence  
n{ }Rk k 1=  are partially correlated; i.e., they can be written as

c u( ) ( ) ( )R x R x R xk k k= + ,

c ( ) ( )R x mR xk k= ,	 (10)

u( ) ( ) ( )R x m R x1k k= - ,

where coefficient [ , ]m 0 1d  describes the specific weight of a 
correlated fragment of the image, both in area and amplitude. 
Correspondingly, the cross-correlation coefficient of refer-
ence images is m( )

kl
R 2r =  [16]. Then, if the kth reference image 

Rk is presented to multiplexed hologram (1), the expression 
describing the reconstructed field of correlated fragments (8) 
takes the form
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The reconstructed field as a whole, including both corre-
lated and uncorrelated fragments, will be described by the 
expression
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The first term in (12) is the image required to solve the 
problem: correlated fragment of signal images  {Sk}

n
k = 1 recon-

structed by multiplexed hologram (1). The second term 

[ ( ) ( )]S x x R x R x( )u
k k

S
k k) 7+^ h

describes the reconstructed uncorrelated fragment, i.e., plays 
the role of interference independent of the SH number. Let us 
show that the third and fourth terms, which depend on the 
SH number, reduce the influence of this interference. To this 
end, we will use expression (7) to estimate the dependence of 
the variances of the first and all other terms in (12) on the SH 
number n.

The variance of the image necessary to solve the problem, 
described by the first term in (12), depends [according to (7)] 
on the SH number n and correlation coefficient of reference 
images ( )

kl
Rr  [16]:
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where cD outk is the variance of a fragment reconstructed by 
one SH, i.e., with allowance for its change with respect to the 
variance of the reference fragment Sk

c as a result of filtering on 
the hologram, which is described by the pulsed response of 
the scheme [ ( ) ( )]R x R xk k7 . At ( )

kl
Rr  = 1, i.e., when the refer-

ence images are completely correlated, D c
S  quadratically 

depends on the SH number n.
The expression for the variance of the interference [the 

field described by the other terms in (12)] takes the form

[ ( ) ( )]D D S x x R x R x( )n u
k k

S
k k) 7= +S ^c h

	 [ ( ) ( )]m S x x R x R x( )u

k l
k
S

k k
2 ) 7+ +
!

l ^ h/

	 ( ) ( )S x x R x R x( ) u u
l

k l
k
S

k) 7+ +
!

l^ h m6 @/ .	 (14)

A detailed analysis of (14) leads to occurrence of a large 
number of covariance terms, which make the final expression 
highly cumbersome. Therefore, we leave it beyond the scope 
of this study and restrict ourselves to two extreme cases: com-
pletely correlated and completely uncorrelated reference 
images. 

For completely correlated reference images, expression 
(14) takes the form
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k k k) 7+ =^^ h h  and D out
u
kl  is 

the covariance of the kth and lth signal images.
To estimate the /D Dout

u
out
u

kl k  ratio, we will use the results 
presented in [17]. We introduce into consideration the corre-
lation estimate of the fragment data capacity:

r
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where Lux  and L
u
y  are the sizes of the uncorrelated fragment 

(which is assumed to be rectangular), and rout is the correla-
tion length of the field reconstructed by the hologram (on the 
assumption that this field is isotropic). Then the aforemen-
tioned ratio, according to [17], can be is estimated by the for-
mula

D
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where k is a coefficient dependent on the field correlation 
function. Hence, expression (15) takes the form
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W
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Thus, the efficiency of selecting correlated fragments can 
be presented as the ratio of the variances of reconstructed 
fragments, which depends on the data capacity of uncorre-
lated fragments:
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It can be seen that dependence (18) of the efficiency of select-
ing correlated fragments (against the background of uncor-
related ones) on the SH number n becomes linear with an 
increase in the estimated data capacity of uncorrelated frag-
ments W u.

In the case of completely uncorrelated reference images 
cDS , dispersion (13) is independent of the SH number:

c cD D outk=S ,

whereas 
nDS  (14), on the contrary, retains this dependence, 

because (14) takes the form 
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where D13 is the covariance of the first and second terms, and 
the subscript 13 is taken with allowance for the position of the 
terms in the initial expression (14). Since the number of local 
maxima of the cross-correlation function that contribute to 
the [ ( ) ( )]S x x R x R x( )

k k
S

k l) 7+^ h  value is W u, one can assume 
in the first approximation that 
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Hence, it can be seen that the estimated selection efficiency at 
n = 1 is
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whereas at n = 2, even with the covariance term 2D13 disre-
garded,
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i.e., the estimate decreases. A further increase in the SH num-
ber n, in view of property (7), should somewhat increase this 
ratio; however, it will be smaller than unity at any n. Thus, the 
problem of selecting correlated fragments of signal images by 
the method of SHs cannot be solved within the scheme under 
study in the case of uncorrelated reference images.

3. Numerical simulation

We simulated the recording of volume holograms and forma-
tion of an image in the output plane of the scheme presented 
in Fig. 1 for the images described as functions of only one 
coordinate. Images were modelled by realisations of one sta-
tionary random process with an exponential spectrum of 
amplitudes and a random spectrum of phases with zero math-
ematical expectation and a variance equal to 2p and with dif-
ferent correlation lengths; the length of all realisations, both 
signal and reference, was 1024 references (pixels). Signal 
images Si were modelled for the following two cases:

(1) spatial separation of fragments Sk
c and Sk

u in image Sk, 
with lengths of both fragments equal to 512 references;

(2) spatial superposition of fragments Sk
c and Sk

u with 
lengths of 512 and 1024 references, respectively.

Fragment Sk
c always occupied the lateral regions of the 

signal image Sk (from zero to the 255th and from the 768th to 
the 1024th reference), while fragment Sk

u occupied (in the 
absence of superposition) the central region (from the 256th 
to the 767th reference).

We modelled the recording of a linear hologram and a 
hologram with reduced intensity of image spectra:

F(Rk)F *(Sk) = const,	

(20)
F(Rk)F *(Rk) = const.

The reduction of intensity (20) was used to minimise the 
influence of the pulsed response of the system by reducing this 
response to the d function: [ ( ) ( )] ( )R x R x xk k7 d= .

Figure 2 shows examples of images that confirm the con-
clusions drawn in the previous section: the first reference 
image S1 and the images obtained under certain conditions 
for recording and reconstructing of a multiplexed hologram 
formed by 15 SHs. The multiplexed hologram was recon-
structed by the first reference image R1. The amplitudes of 
both reference and reconstructed images were normalised to 
the maximum value in the region of Sk

c (and E  cout, respec-
tively); in some realisations the amplitudes in the region of Sk

u  
(E uout) could exceed the amplitudes in the region of Sk

c (E  cout), 
i.e., emerge beyond the boundaries of the interval [1, –1].

The efficiency of the method is clearly illustrated in Fig. 2:
(i) in the case of completely correlated reference images 

(Fig. 2b), both the degree of modulation and the realisation 
form barely change in the range of correlated fragments of the 
reconstructed image E  cout (from zero to the 255th and from 
the 768th to the 1024th reference); i.e., image E  cout is the undis-
torted reference image E  cout = S1

c. At the same time, in the 
range of uncorrelated fragments E uout (from the 256th to the 
767th reference), the degree of modulation significantly 
decreases, the maximum and minimum values of the ampli-
tude approach the mean value, and the reconstructed 
image E uout resembles none of the reference images of the 
set {Sk

u}n
k = 1;

(ii) similar results were obtained for the spatial superposi-
tion of fragments Sk

c and Sk
u, with the only difference: the 

reconstructed fragment E  cout did not completely coincide with 
the reference fragment S1

c (these results are omitted to avoid 
cumbersomeness);

(iii) in the case of partially correlated reference images 
(Fig. 2c), the efficiency of the method is somewhat lower: one 
can observe both a decrease in the variance ratio (17) and dis-
tortions of fragment E  cout with respect to reference the frag-
ment S1

c;
(iv) the method is invalid (as follows from the theoretical 

analysis) for completely uncorrelated reference images 
(Fig. 2d).
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Figure 2.  Examples of images used in the numerical experiment: (a) sig-
nal image S1 (the first SH in the multiplexed hologram recording) in the 
case of spatial spacing of fragments Sk

c and Sk
u when estimating data 

capacity W c = W u » 95 and (b – d) images Eout, reconstructed in the 
cases of (b) complete ( rkl

(R) = 1) and (c) partial ( rkl
(R) = 0.25) correlated-

ness of reference images and (d) for completely uncorrelated reference 
images ( rkl

(R) = 0). The boundaries of the fragments are shown by verti-
cal lines. 
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The dependences of the measured variances on the SH 
number n in the absence of spatial superposition of fragments 
Sk
c and Sk

u can be approximated by the formulas

0.56 0.29 25.157D n nc 2
=- + +S ,

. .D n n14 77 0 25n 2
= +S ,

i.e., the dependence is in fact quadratic for E  cout , according to 
(13), and practically linear for the region of uncorrelated frag-
ments E uout, also in correspondence with theoretical estimate 
(17). For the case with superposition of Sk

c and Sk
u, the depen-

dence of the variance on n retains to a great extent the qua-
dratic character for the region of correlated fragments E  cout 
and is basically linear for E uout:

0. .2 2 .D n n8 37 85 2 2 99c 2
=- + +S ,

4. . .D n n26 22 13 0 44u 2
=- + -S .

Figure 3 shows the dependences of measured variances of 
reconstructed images (with their amplitudes normalised to the 
maximum value) on the SH number n for fragments E  cout 
and E uout in the cases of spatial spacing and superposition of 
fragments Sk

c and Sk
u in signal images. The dependences 

were obtained for completely correlated reference images 
( ( )

kl
Rr  = 1).

It can be seen in Fig. 3 that, in the absence of superposi-
tion, the variance in the region of correlated fragments E  cout 
(i.e., the estimate of the degree of modulation of reconstructed 
image) remains constant. This is also evidenced by the data of 
Fig. 2b. In the case of spatial superposition of correlated (Si

c) 
and uncorrelated (Si

u) image fragments, the variance slightly 
changes with an increase in the SH number due to the super-
position of attenuated uncorrelated fragments. On the con-
trary, the dispersion in the region of uncorrelated fragments 
E uout decreases with an increase in the SH number in both 
cases.

Thus, the above-described mechanism of detecting corre-
lated fragments is also valid for spatial superposition of frag-

ments Sk
c and Sk

u. The efficiency of selecting correlated frag-
ments increases with an increase in the number of SHs consti-
tuting the multiplexed hologram.

Figure 4 shows the experimental dependences of the vari-
ance ratio on the SH number n for some values of the refer-
ence-image correlation coefficient ( )Rrkl  and their linear 
approximations for one realisation of a random process. It 
can be seen that the dependence of the estimated efficiency of 
selecting correlated fragments through the ratio of their vari-
ances (18) on the SH number is almost linear in these cases; 
i.e., it is in agreement with the theoretical predictions. The 
spread of experimental points with respect to the approximat-
ing straight lines is due to the poor validity of the accepted 
ergodic hypothesis for the given image sizes.

As an illustration, Fig. 5a shows the dependences (for 20 
realisations) of the mathematical expectation of the slope of 
the straight lines approximating the experimental data pre-
sented in Fig. 4 on the reference-image correlation coefficient 
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Figure 3.  Dependences of the variances of normalised images recon-
structed into the interval [–1, 1] on the number of SHs forming a multi-
plexed hologram, for fragments ( 1 ) E cout and ( 2 ) E uout, under spatial 
separation of S ck and S uk in examples, and fragments ( 3 ) E cout and ( 4 ) 
E uout, under spatial superposition of S ck and S uk in signal images.
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Figure 4.  Experimental dependences (symbols) of the variance ratio for 
the reconstructed correlated (E cout) and uncorrelated (E uout) fragments 
on the SH number and their approximations (lines) for reference-image 
correlation coefficients rkl

(R) = ( , 1 ) 0.01, ( , 2 ) 0.25, ( , 3 ) 0.49, ( , 4 ) 
0.81, and ( , 5 ) 1, obtained when estimating the data capacity of frag-
ments for all dependences W c = W u » 22. 
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Figure 5.  Dependences of the (a) mathematical expectation and (b) 
standard deviation of the slope of linear approximation of dependences 
on the variance ratio n of the reconstructed correlated (E cout) and uncor-
related (E uout) fragments on the reference-image correlation coefficient 
for an ensemble of 20 realisations and estimates of the data capacity ( ) 
W c = W u » 22, ( ) W c = W u » 46, and ( )W c = W u » 93.
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( )Rrkl  for a number of estimates of image data capacity; the 
standard deviations of this expectation are presented in 
Fig.  5b. The slope of the dependence of the variance ratio on 
the SH number yields an estimate of the method sensitivity to 
the reference-image correlation coefficient.

Figure 5a demonstrates that the method sensitivity to the 
reference-image correlation coefficient is almost independent 
of the image data capacity. From the practical point of view, 
it is important that the data of Fig. 5b confirm the efficiency 
of the method even in the absence of ergodicity: a decrease in 
the estimated data capacity leads to an increase in the stan-
dard deviation from the mathematical expectation for the 
dependence of the method sensitivity to the correlation coef-
ficient but does not change the character of this dependence.

4. Conclusions

The Fourier holography scheme with angular multiplication 
of the reference beam and SHs recorded for a sequence of 
image pairs makes it possible to solve the problem of detect-
ing correlated fragments of signal images. A necessary condi-
tion for solving this problem is partial correlatednes of refer-
ence images. Thus, we demonstrated the new possibilities of 
this scheme in the framework of the development of optical 
information technologies, in particular, systems of on-line 
analysis of augmented archive databases [5 – 7]. The applica-
tion of a unified element base, physical principles, and circuit 
designs jointly with memory systems is an urgent task of prac-
tical importance for instrumental unification of the computer 
memory and processor. 

The above-described method does not impose any require-
ments on spatial or spectral differences in the common and 
individual signs of recorded images. At the same time, it has a 
limitation: the spatial location of correlated fragments, as 
well as the mutual arrangement of signal and reference images 
must be preserved in the entire stored sequence of images.
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