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Abstract.  We study the focusing of the optical electromagnetic 
radiation energy into a nanoscale spatial region in the vicinity of 
the nanoapex of a metal microtip located near a dielectric or metal 
plane. Focusing arises from a symmetric convergence of a surface 
plasmon TM wave at the nanoapex. The metal boundary near the 
nanoapex is approximated by a paraboloid of revolution. A numer-
ical model, based on the method of moments, is developed to find 
the electric field near the tip apex. Calculation results show that, 
compared to a single tip, the presence of a plane leads to an addi-
tional concentration of the electric field near the nanoapex.

Keywords: nanofocusing, surface plasmons, plasmon waveguide.

1. Introduction

Nanofocusing of light energy at the apex of a microtip is the 
most important phenomenon that underlies the promising 
nanotechnology applications. One of the manifestations of 
nanofocusing is an unusually sharp increase in the intensity of 
a surface plasmon polariton, symmetrically excited at the 
base of a conical metal microtip, when it symmetrically con-
verges at the nanoapex [1 – 3]. This phenomenon is explained 
by the fact that on a geometrically perfect metal tip, there can 
exist an axially symmetric electromagnetic standing wave with 
a singularity of the electric field at the apex [4, 5]. Experiments 
have shown [6, 7] that this wave can be efficiently excited by 
a convergent surface plasmon TM wave with the same axial 
field symmetry. The presence of the singularity of the electric 
field is well explained in the quasi-static approximation, which 
is fulfilled in the vicinity of the nanoapex of a metal microtip. 

A real apex of a microtip is not ideal and has a rounding. 
In papers [8, 9], to find the electric field distribution on a 
rounded top of a single microtip, the surface of the apex was 
approximated by a paraboloid of revolution and the problem 
was solved in the paraboloidal coordinate system. It has been 
shown that the characteristic size of the focal distribution at 
the tip apex decreases in proportion to its radius of curvature, 
which explains nanofocusing. 

In this paper we study how the focal field distribution 
changes if the apex of the tip is located near the flat surface 
of  a  material (for example, by scanning the surface with 
the tip). 

It should be noted that an increase in the electromagnetic 
optical field on sharp edges and tips has already been considered 
in relation to other problems [10 – 12]. In addition, attempts 
to solve the problem of finding a field at the top of a tip near 
a flat structure have already been made in [13]. However, for 
simplification Passian et al. [13] considered the problem in 
which the tip has the form of a hyperboloid of revolution, 
which is located above the half-space whose boundary corre-
sponds to the coordinate surface of a spherical coordinate 
system. In this formulation of the problem with a fixed geo
metry of the tip (for fixed values of the focal length of the 
hyperboloid and the apex radius), it is impossible to change 
independently the distance to the plane boundary (this dis-
tance is uniquely determined by the geometry of the tip). 

The method used in this paper, as will be shown below, is 
free from this drawback. 

2. Electric field distribution at the nanoapex 
of a metal microtip located near a plane  
boundary in the quasi-static approximation. 
Formulation of the problem 

Consider a metal microtip with a nanoscale radius of curva-
ture R. Let the surface of the tip near the apex be described by 
the paraboloid of revolution z = R/2 – (x2 + y2)/(2R) (axially 
symmetric with respect to the z axis) (Fig. 1). Suppose also 
that near the tip there is a perpendicular plane defined by the 
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Figure 1.  Geometry of the problem. 
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equation z = zp, where zp ³ R/2. The complex dielectric con-
stants of the metal tip, external homogeneous medium and 
semi-infinite medium at z ³ zp are denoted by em, ed and ep, 
respectively. 

In solving the problem we will use a complex representation 
of the fields with a temporal dependence of form exp(–iwt), 
where w is the cyclic frequency. The problem can be solved 
in the quasi-static approximation [8], in which the potential of 
the electric field F obeys the Laplace equation DF = 0, and the 
normal and tangential components of the electric field on the 
surface of the tip and the plane should meet the known 
boundary conditions, namely: 

edEdn = emEmn and Edt = Emt	 (1a)

on the surface of the tip and

epEpn = edEdn and Ept = Edt	 (1b)

on the plane. 
We seek an axisymmetric solution to the Laplace equa-

tion, which has a maximum of the field at the tip apex and 
corresponds to the focusing of a TM-mode surface plasmon 
wave at the microtip. 

In addition, to automatically satisfy the boundary condi-
tions on the plane (1b), we will use the method of mirror 
images. Its essence, as applied to the problem under study, is 
as follows: let the potential of charges on a paraboloidal metal 
tip in space with a dielectric constant ed be described by the 
function F tip(r) = F tip(x, y, z), where the radius vector r = 
(x, y, z) passes through the origin of the coordinates to the 
point of determining the potential. In this case, the expression 
for the potential of induced charges on a plane boundary of 
dielectrics in space with the dielectric constant ed can be written 
in the form [14] 

( ) ( )r rref
p d

p d
tip refe e

e e
F F=-

+

-
,

where rref = (x, y, 2z0 – z). Then, in a region filled with a dielec-
tric having a dielectric constant ed, the total potential is 

( ) ( ) ( )r r rd tip refF F F= +

	 ( , , ) ( , ,2 )x y z x y z ztip
p d

p d
tip 0e e

e e
F F= -

+

-
- .	 (2)

The potential of all the tip charges and the charges induced 
on a plane boundary (it follows from Maxwell’s equations 
that inside a homogeneous dielectric, the polarisation charges 
are absent because they can only be at the boundary) in half-
space filled with a dielectric having a dielectric constant ep can 
be written in the form 

( ) ( ) ( , , )x y zr r
2 2

p
p d

d
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e
e e

e
F F F=

+
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+
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The correctness of formulas (2), (3) follows from the 
uniqueness theorem and from the automatic fulfillment of 
conditions (1b) at the boundary of the half-space. 

Let us now find a general expression for the potential of 
tip charges F tip(r), satisfying the Laplace equation in a homo-
geneous dielectric space (without a plane) inside and outside 
of the tip; in this case, conditions (1a) must be satisfied on the 

boundary. We introduce paraboloidal coordinates [15] (or a 
system of parabolic coordinates of revolution) a, b, y, which 
are related to rectangular Cartesian coordinates x, y, z by the 
expressions 

x = cab cos y,  y = cab sin y,  z = 
2
1 c( b2 – a2),	 (4)

where c is a constant scaling factor. In the coordinate system 
in question (Fig. 1), the Laplace equation for the electric 
potential F inside and outside of the tip under conditions of 
the axial symmetry (F does not depend on y) can be written 
in the form [15]: 

¶
¶

¶
¶ ¶ ¶ 0
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2 2 2 2

2

2
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DF F F F F
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+

+ + + =
¶b b¶aa^ eh o .	(5)

The general solution of (5) is known [15] and is given by 

( ) ( ) ( ) ( )B J p B Y p C I p C K p1 0 2 0 1 0 2 0a a b bF = + +6 6@ @/ ,	 (6)

where p, B1, B2, C1, C2 are the constants; J0 and Y0 are the 
zero-order Bessel functions of the first and the second kind; 
and I0 and K0 are the modified zero-order Bessel functions of 
the first and the second kind. The summation is performed 
over all solutions with different values of the constants. 

Let the boundary of a paraboloidal tip be determined by 
the equation b = b0. It follows from (4) that the tip boundary 
b = b0 in the Cartesian coordinates x, y, z is described by the 
equation z = c 0

2b /2 – (x2 + y2)/(2c 0
2b ). It is easy to show that the 

radius of curvature of the tip apex is R = c 0
2b .

In what follows we will use the axially symmetric solutions 
of the Laplace equation. Therefore, to meet the boundary 
conditions on the entire surface of the rotation of the tip, it is 
sufficient to satisfy them on the line of intersection of the 
boundary surface of the tip with any symmetry plane passing 
through the z axis. As such a plane we choose the plane xz. 
It is easy to show that in our case it is sufficient to fulfill the 
boundary conditions only at the boundary of intersection of 
the half-plane y = 0 for x ³ 0 and the surface of the parabo-
loidal tip. 

For generality of further discussion, we pass in the plane xz 
to dimensionless coordinates xu  = x/R, zu  = z/R and au  = a/b0, 
bu  = b/b0. Dimensionless paraboloidal ( , )a bu u  and Cartesian  
( , )x zu u  coordinates on the plane xzu u  are related by the expres-
sions 

au  = x z z
/2 2 1 2

+ -u u u^ h  and x x z z
/2 2 1 2

b = + -
-u u u u u^ h  

at positive xu  [8]. In these coordinates, the tip boundary is 
given by the expression zu  = 1/2 – xu 2/2, and the Laplace equa-
tion (5) in the dimensionless coordinates has the form 
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If the axially symmetric potential is found from the solu-
tion of the Laplace equation, i.e. if it is a function of only au  
and bu , then the expression for the tangential and normal 
dimensional components of the field on both sides of the 
dielectric – metal interface can be written as 
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We normalise the potential to its U value in the maximum 
of the field at the tip apex, then we can pass from the dimen-
sional potential to the dimensionless potential Fu  = F /U or 
from the dimensional field components to their dimensionless 
quantities: 
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In the normalised Cartesian coordinates, in the plane xzu u  
the components of the normalised electric field have the form 
Exu u  = –¶Fu /¶xu , Ezu u  = –¶Fu /¶zu . Below, it will be convenient to 
consider the potential tipFu  and its gradient as a function of 
,a bu u , and refFu  and its gradient – as a function of xu  и zu  in the  
xzu u  plane. 

Thus, based on the general solution of (6), we seek a solu-
tion of the boundary problem for the electric field in the vicinity 
of the tip, suggesting that the expressions for the potentials  
tipFu  outside ( b ³ b0) and inside ( b £ b0) of the metal tip have 

the form 

J q K qtipd j
j

N
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1
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(7)

where Aj, Bj and qj are the constants. The quantities qj were 
chosen in the form qj = mj /L, where mj are the first N roots of 
the Bessel equation J0( mj) = 0, and L is a dimensionless dis-
tance from the apex, at which the boundary conditions on the 
tip surface must be satisfied. In the limit N ® ¥, the system of 
functions J0(qj au) with the given qj on the interval 0 £ au  £ L 
is a complete system of functions [16]. 

Note that the choice of functional dependences (7) from 
the general solution (6) is due to the natural requirements to 
the field focused at the microtip (which uniquely identify 
these dependences): 

1) outside of the tip the potential should decrease with 
increasing distance from its surface, be finite and maximal at 
the top of the tip; 

2) inside of the metal tip the potential should be finite at 
the origin of the coordinates.

In addition, the electric potential should be continuous 
across the interface. 

Substituting (7) into (2), we obtain the potential in the 
dielectric in the plane xzu u   
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where z0u  = z0 /R is the normalised coordinate of a plane 
boundary. Similarly, the potential in the metal tip in the plane  
xzu u  can be written as 

j j,x z B J q x z z
/

m
j

N

1
0

2 2 1 2
F = + -

=

u u u u u u^ ^`h h j/

	 I q x x z z
/

j0
2 2 1 2

# + -
-

u u u u^` h j.	 (9)

At the tip boundary (at zu = 1/2 – xu2/2), the unit vectors of 
normal and tangential components are described by formulas 
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Then, the boundary conditions for the normal and tangential 
components of the fields on the surface of the tip can be writ-
ten using Exu u  = –¶Fu /¶xu  and Ezu u  = –¶Fu /¶zu , respectively, in the 
form 
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If we substitute expressions (8), (9) into (10), (11), we 
obtain linear equations for Aj and Bj, which can be expressed as 

j, , 0A f q x B g q xd m
j

N

j

N

1 1

e e- + =
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For brevity, we will not write here expressions for the 
functions fj (qj,xu), gj (qj,xu), hj (qj,xu) and tj (qj,xu) in an explicit 
form, which can be obtained at this trivial substitution. 

Equations (12), (13) were solved by the method of moments 
[17]. Given the fact that on the surface of the tip (at zu  = 1/2 
– xu 2/2) au  = xu  and bu  = 1, as the weight functions on the 
boundaries at 0 £ xu  £ L, we chose the functions W i = J 0 (qi xu ), 
which in the interval 0 £ xu  £ L in the limit N ® ¥ form a 
complete system of functions with a scalar product 
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, dW F WxF xi j i j

L

0
= u uy .

Then, after multiplying scalarly equations (12) and (13) by 
Wi (i = 1, ..., N – 1), we obtained 2N – 2 linear algebraic equa-

tions with 2N unknowns. To find the unique solution we added 
another two equations: we equated the potentials outside and 
inside of the tip to unity. The solution of the resulting system 
of 2N equations determined the potential of the electric field 
in the entire space, normalised to unity at the top of the tip. 
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Figure 2.  Focal distributions of (a) the electric potential modulus | |Fu  and (b, c) a maximum field Ea for a silver tip near the flat surface z0u  = 1 of 
the half-space with ep = 4 at a frequency wu  = 0.26053. For comparison, shown is (d) the distribution | |Fu  for a single tip. 
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The above choice of the weight functions can satisfy, in 
the limit N ® ¥, the boundary conditions on the surface of 
the tip at 0 £ xu  £ L. The value of L in the calculations was 
chosen sufficiently large, compared with the size of the domain 
in which computations of the fields were carried out. 

Finally, we should once again discuss the logic of deriving 
expressions (8), (9) as the only solution in the vicinity of the 
tip apex and in the gap between the top of the tip and the 
plane. There are two reasons for an increase in the electric field 
of the light wave approaching the apex of the tip. The first one 
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Figure 3.  Same as in Fig. 2, but for a frequency wu  = 0.62252.
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is the convergence of the light wave, excited in the form of 
a  surface plasmon (symmetric with respect to the axis) TM 
mode [1], at the apex of the tip. Symmetrical convergence of the 
surface wave leads to the formation of a symmetric field of a 
standing wave in the vicinity of the tip apex. The second reason 
is an increase in the field at the top of any tip. In the vicinity of 
a nanoapex, one can take advantage of the quasi-stationary 
approximation, requiring that the electric potential satisfies the 
Laplace equation, the general solution to which is given by for-
mula (6). The mentioned increase in the field and the presence 
of its maximum at the tip apex uniquely determine from (6) the 
only kind of the solution for the standing wave (7) with a max-
imum of the field at the tip apex. In the case of a single tip, the 
solution is given by an only term with a fixed q. In the presence 
of a plane boundary in the half-space, we obtain a series with 
different values of qj. Note that, as shown in [18], the TE mode 
cannot exist at the frequencies considered in the paper. The 
same paper also presents the proof of the applicability of the 
quasi-stationary approximation. 

3. Investigation of focal distributions  
of the electric potential and the electric field 
at the nanotip apex near the flat surface of  
the material 

Numerical calculations were carried out for a silver tip near 
a plane boundary of a dielectric or metal. The dielectric con-
stant of the metal tip is approximately described by the Drude 
formula em = 1 – p

2w /(w2 + i wG ), where wp is the plasma fre-
quency of the metal, and G is the coefficient taking into 
account losses. For silver we used the parameters wp » 
1.36 ́  1016 s–1 and G » 2 ́  1014 s–1 [19]. It is convenient to 
express em through the normalised frequency wu  = w/wp and 
the normalised absorption coefficient g = G /wp by the formula  
em = 1 – 1/(wu 2 + iwu g). For silver, g = 0.01471. 

In the present study we also studied the distribution of 
the maximum value of the electric field Ea for an oscillation 
period over spatial points in the plane xzu u. The calculation 
method consists in the following [20]. First, at the point under 
study we found complex components Exu u  = –¶Fu /¶xu  and Ezu u  = 
–¶Fu /¶zu  of the complex vector of the electric field. Then, we 
found the real terms of the components Re[Exu uexp(–iwt)] and 
Re[Ezu uexp(–iwt)] at some point in time t. Finally, we calcu-
lated the maximum value of the electric field for the period 

( ) ( )max Re exp Re expi iE E t E t
0 2

a
t

x z
2 2w w= - + -

G Gw p
u u
u u6 6@ @" ", , .

Figures 2a and 2b show the distributions of the electric 
potential modulus | |Fu  and the maximum field Ea for the silver 
tip, calculated by the described method, at a frequency wu  = 
0.26053, corresponding to a wavelength in free space l = 532 nm, 
at which the experiments were carried out in [1]. The tip was 
located in a medium with ed = 1 at a distance Dzu = 0.5 (0.5R) 
from the half-space filled with a dielectric having ep = 4. The 
distributions have been normalised to unity in the maximum 
of the field at the top of the tip. The field distribution Ea 
(Fig. 2b) in the tip apex is shown in more detail in Fig. 2c. For 
comparison, Fig. 2d shows the distribution | |Fu  for a single 
tip without a dielectric half-space. 

From a comparison of Figs 2a and 2c one can see that the 
presence of a half-space with a dielectric (boundary z0u  = 1) 
enhances the focusing of the field in the vicinity of the tip apex. 

Thus, in experiments on scanning of the surface with a surface 
plasmon wave focused by a nanoapex microtip (to study 
Raman scattering of molecules at the surface [1]), the presence 
of a half-space with a dielectric enhances nanofocusing of the 
electric field in the vicinity of the tip apex and the nearest 
point on the plane boundary. 

Figure 3 shows the same distributions as in Fig. 2, but at 
a  higher frequency (wu  = 0.62252). Figure 3a demonstrates 
the distribution of the electric potential modulus | |Fu  for the 
silver tip located at the same distance Dzu = 0.5 from a plane 
boundary of the half-space with ep = 4, Fig. 3b – the distri
bution of the maximum field Ea in the focusing spot, Fig. 3c 
– a more detailed distribution of Ea (Fig. 3b) in the focal spot, 
and Fig. 3d – the distribution | |Fu  for a single tip. 

One can see from Fig. 3d that for a single tip, the first 
node of the potential corresponds with great accuracy to the 
point with the coordinates xu  = 1, zu  = 0; for this purpose we 
have specially chosen the frequency wu  = 0.62252. Figure 3a 
shows that the first node was shifted closer to the focus, i.e. 
the focal spot in the presence of a dielectric half-space was 
smaller, and focusing became sharper. Obviously, this is due to 
a higher dielectric constant of the half-space (ep = 4 vs. ep = 4 
for a single tip). 

Calculations were also performed for a silver tip, located 
above the half-space filled with silver, in the same geometry 
at a frequency wu  = 0.62252. Figure 4 shows the distribution 
Ea in the focal spot. One can see that nanofocusing did not 
disappear in the presence of a metal plane. Thus, investiga-
tion of a surface with a surface plasmon wave focused by a 
microtip nanoapex is applicable for studying both dielectric 
and metal surfaces. 

4. Conclusions 

We have developed a method for finding the focal distribu-
tion of the electromagnetic field near the nanoapex of a metal 
microtip. The results of calculations show that the presence of 
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Figure 4.  Focal distribution of the maximum field Ea for a silver tip 
near the flat surface z0u  = 1 of the half-space filled with silver, at a fre-
quency wu  = 0.62252.
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a flat surface of a material near the microtip enhances the 
focusing. It is found that the presence of a metal surface near 
the tip does not impair its focusing properties; this allows us 
to study Raman scattering of molecules located on a flat 
metal surface in the focusing spot. 
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