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Abstract.  By solving analytically and numerically the three-dimen-
sional time-dependent Schrödinger equation, we have studied the 
excitation of a residual current density during gas ionisation by a 
two-colour laser pulse containing a field at the fundamental fre-
quency and an additional field at the doubled frequency. We have 
found the dependences of the residual current density on the phase 
shift between the components of the field and on the intensity of the 
fundamental harmonic. It is shown that the strong-field approxima-
tion taking into account the interaction of freed electrons with the 
parent ion yields a good quantitative agreement with the results of 
direct numerical simulation. 

Keywords: imaginary-time method, two-colour laser pulse, ionisa-
tion, plasma, residual current density, terahertz radiation. 

1. Introduction 

Currently, much attention is focused on the excitation of a 
residual current density (RCD) in plasma produced through 
gas ionisation by intense femtosecond laser pulses. The 
RCD is responsible for plasma polarisation and excitation 
of oscillations whose frequencies, at a sufficient plasma den-
sity, lie in the terahertz range, which can lead to the genera-
tion of broadband terahertz pulses with a high enough peak 
power [1 – 12]. 

Various mechanisms for accelerating free electrons to gen-
erate RCD in plasma are being considered at present. When 
multicycle laser pulses are used, the RCD can be excited due 
to gas ionisation by two-colour pulses with a strong funda-
mental field and a weak-amplitude field at the doubled or 
halved frequency [1 – 5, 10]. In this case, the maximum (with 
respect to the phase shift between the field components) RCD 
is a linear or quadratic function of the amplitude of the addi-
tional field in a wide range of intensities of its components. 
Furthermore, the RCD can also be efficiently excited by using 
few-cycle (with the duration of the order of the field period) 
laser pulses [2,  7,  8,  13 – 15] or a spatially asymmetric ionised 
medium [16]. 

The RCD excited via gas ionisation by a two-colour laser 
pulse has been previously calculated analytically [10, 17, 18] 
and numerically [8, 19, 20] with the help of semi-classical and 
quantum-mechanical approaches. The semi-classical 
approach is based on the solution of the hydrodynamic equa-
tion for the electron current density and the equation for the 
density of free electrons with a quasi-static probability of tun-
nelling ionisation per unit time [7]. The quantum-mechanical 
approach is based on the solution of the three-dimensional 
time-dependent Schrödinger equation for the electron wave 
function [13]. The range of applicability of the semi-classical 
approach is limited by the laser pulse parameters correspond-
ing to the tunnelling ionisation regime, at which the Keldysh 
parameter /( )I U2p pg =  [21] is much less than unity (here Ip 
is the ionisation potential of an atom, and Up is the pondero-
motive energy of an electron in the laser field) [13 – 15]. For g 
³ 1, the electron detachment from the ion occurs at a time of 
the order of the field period and greater, and to adequately 
calculate the RCD it is necessary to apply the quantum-
mechanical approach. 

Previous works, which employed quantum-mechanical 
numerical calculations of the RCD excited through gas ioni-
sation by a two-colour laser pulse, were aimed at finding the 
optimal phase shift between the components of the laser pulse 
fields [19, 20]. In addition, based on the approximate solution 
of the time-dependent Schrödinger equation, an optimal ratio 
between the amplitudes of harmonics was found by neglecting 
the depletion of the ground state of the atoms [18]. 
Nevertheless, this depletion has a significant impact on the 
RCD value already at moderately low intensities correspond-
ing to the ionisation threshold. 

The aim of this work is to study the dependence of the 
RCD excitation efficiency on the intensity of the main field 
of a two-colour laser pulse at a fixed ratio of the intensities 
of the main and additional fields. The calculations employ 
the semi-classical approach and the exact numerical solution 
of the three-dimensional time-dependent Schrödinger equa-
tion, which takes into account the depletion of the ground 
state of the atoms. Based on the approximate semi-analyti-
cal solution of the time-dependent Schrödinger equation by 
the imaginary-time method [22], we interpret differences in 
the results of the quantum-mechanical and semi-classical 
calculations at the Keldysh parameter g ³ 1.

2. Statement of the problem 

Let the electric field E of an ionising two-colour laser pulse be 
linearly polarised along the z axis. In order to ensure equality 
of the time integral of the electric field to zero, we will set E(t) 
through the vector potential 
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Here zt  is the unit vector directed along the z axis; E0 is the 
maximum amplitude of the main field; a is a small ratio of the 
amplitudes of the main and additional fields; w0 is the fre-
quency of the main field; j is the phase shift between the com-
ponents of the additional and main fields; f (t) is the pulse 
envelope; and c is the velocity of light in vacuum. We assume 
that the laser pulse envelope has a Gaussian shape 

/exp lnf t t2 2 p
2 2t= -^ ^h h, 	 (2)

and the pulse duration tp is much larger than the field period. 
To neglect the collisions of electrons with neighbouring 

atoms, we assume that the concentration of the gas is suffi-
ciently low. Also, we do not take into account the polarisa-
tion response of the plasma, assuming that the maximum 
plasma density is much smaller than the critical density and 
the plasma frequency is much smaller than the inverse dura-
tion of the laser pulse. For simplicity, we use atomic units in 
which |e| = ћ = m = 1, where ћ is the reduced Planck constant, 
and e and m are the electron charge and mass. 

The quantum-mechanical approach to the RCD calcula-
tion is based on solving the time-dependent Schrödinger 
equation for the electron wave function y: 

¶
¶
i ( )t U r zE2

1
z

2d y
y
= - + +` j .	 (3)

Here Ez is the projection of the electric field strength on the z 
axis; and U(r) is the potential of interaction with the parent 
ion. For simplicity, we assume that the gas consists of hydro-
gen atoms. In this case, the potential of the ion is a Coulomb 
potential, U(r) = – 1/r. The RCD directed along the  z axis is 
expressed as 

| |j N pRCD g f fz t
y y=-

"3
t ,	 (4)

where Ng is the initial concentration of gas atoms; ¶ ¶i( / )p zz =-t   
is the z component of the momentum operator; and yf is the 
wave function of free electrons. The time-dependent 
Schrödinger equation is solved by the split-step method with 
a Hankel transform and a fast Fourier transform with respect 
to spatial variables according to the method described in [15, 
23, 24]. 

The semi-classical approach is based on the classic equa-
tion for the electron current density j(t) directed along the z 
axis, 

¶
¶
t
j

NEz= ,	 (5)

where the concentration of free electrons N(t) is obtained 
from the equation 

¶
¶N ( ) (| |)
t

N N w Eg z= - .	 (6)

Here w is the ionisation probability per unit time, which is 
determined from the solution of the stationary Schrödinger 

equation for an atom in a constant electric field and is a func-
tion of an instantaneous value of the electric field. In this 
paper we assume that the function w(E) is given by the for-
mula corresponding to the process of tunnelling ionisation of 
the hydrogen atom [25]: 

w(E) = (4/E)exp(–2/(3E)).	 (7)

Note that the range of applicability of this formula is limited 
by sufficiently low laser pulse intensities, corresponding to the 
tunnelling regime in which the upper limit of the potential 
barrier is higher than the energy of the ground state of the 
atom. When this condition is not satisfied (in the above-bar-
rier ionisation regime), it is more appropriate to use an empir-
ical formula for the tunnelling ionisation rate [26]. Application 
of formula (7) is attributed to a more convenient comparison 
of the results of the semi-classical approach and the below-
described semi-analytical method of the solution of the time-
dependent Schrödinger equation. Using this method, the 
period-averaged ionisation probability per unit time at a 
small Keldysh parameter coincides with the time-averaged 
formula (7) [22, 27]. 

The residual current density jRCD is found as a solution of 
equation (5) at t → ¥, 

dj NE tRCD z=
3

3

-
y .	 (8)

Then we normalise the RCD to the maximum possible oscilla-
tory current density in the field of the fundamental harmonic, 
josc = E0Ng /w0. The obtained normalised current density 

jnorm = jRCD  /josc	 (9)

is independent of Ng, and its square characterises the conver-
sion efficiency of the laser pulse energy to the energy of low 
frequency terahertz radiation [7]. 

3. Calculation of the residual current density by 
the imaginary-time method 

The high accuracy of the results obtained on the basis of 
numerical solution of the time-dependent Schrödinger equa-
tion requires much computing time. In addition, the numeri-
cal results often do not have a clear physical interpretation. 
Therefore, of great interest is the development of analytical or 
semi-analytical methods for finding the RCD, based on an 
approximate solution of the time-dependent Schrödinger 
equation. In this section we describe the imaginary-time 
method used for this purpose [22, 27].

Assume that the pulse duration is so great that the con-
centration of free electrons increases for a large number of 
periods of the electric field. This makes it possible to present 
the RCD as an integral: 

¶
¶
dtj t
j
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3

3
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where ¶ /¶tj  is the time derivative of the low-frequency (aver-
aged over the field period) current density jr . The value of 
¶ /¶tj  is

¶
¶

( ) ( , )
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where ( , )W tp  is the period-averaged momentum distribution 
of the ionisation probability per unit time; and ( )N tn  is the 
averaged concentration of neutral atoms. This value is equal 
to the initial gas concentration Ng and satisfies the approxi-
mate equation 

¶
¶ ( ) ( , )d
t
N N t W t ppn

n
3

=- y .	 (12)

Since the characteristic time of variation of ( , )W tp  is much 
larger than the field period, in calculating ( , )W tp  we can 
assume that the electric field has a constant envelope [17] and 
that the depletion of the ground state of an atom for the 
period of the laser pulse field is negligible. The latter assump-
tion is valid even at a very high peak intensity, because in this 
case, the depletion of the ground state of the atom takes place 
mainly at the leading edge of the laser pulse at an intensity 
that is close to the breakdown threshold. Within the frame-
work of the strong-field approximation [21], in which we 
neglect the interaction of photoelectrons with the parent ion, 
( , )W tp  is represented as the sum of the probabilities of 

n-photon processes: 
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Here * /n I 1p 0w= +K    is the minimum possible number of 
absorbed photons (brackets denote the integer part); 
I I Up p p= +K ; Up = Up0(1 + a2/4) is the ponderomotive 
energy of an electron in a two-colour laser field ; /( )U E 4p f0

2
0
2w=   

is the ponderomotive energy of an electron in the field of the 
fundamental harmonic; Ef (t) = E0  f (t) is the amplitude of the 
electric field of the laser pulse; and /p I2 p

2DE = + K    is the 
energy spent on ionisation and acceleration of the electron. 

The function L(  p) in formula (13) describes the envelope 
of the momentum distribution of the ionisation probability 
per unit time. Assuming that the photon energy is much less 
than the ionisation energy (i.e. n0 = Ip/w0 >>  1), the function 
L(  p) is written as 
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is the part of the action of a free electron, which does not 
depend on the coordinates; ts are the stationary points S(  p,  t); 
and s is an index numbering the stationary points. The ts val-
ues satisfy the equation 

0¶ ¶( , ) /S t tp ts = 	 (16)

and have a positive imaginary part and a real part which lies 
in the range [0, 2p/w0). 

The strong-field approximation does not take into account 
the electron interaction with the parent ion at the stage of 
motion of an electron in the continuum. This leads to signifi-
cant differences in the magnitude and the character of the 
function of the photoelectron momentum distribution from 
the results of the numerical solution of the three-dimensional 
Schrödinger equation. Interaction of photoelectrons with the 
parent ion can be taken into account on the basis of the imag-

inary-time method which is used for the correction of the elec-
tron action and trajectories in the laser field [28, 29]. Let us 
express action S through complex trajectories of the electrons: 
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where c0 is a constant independent of s; and tmax is the time 
after the pulse propagation. Trajectories rs correspond to the 
motion of electrons under the action of an external electric 
field of the laser pulse and satisfy Newton’s equations 

¶
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¶
¶
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with the initial conditions

( ) , ( )r pt t I0 2 ps s s s
2= =- ,	 (19)

which determine the most probable trajectories, minimising 
action S. Account for the electron interaction with the parent 
ion leads to an additional term 

( )
dS r t
t

C
t

t

s

max

s
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in the action, and to the correction of the equation for the 
trajectory of the electron motion: 

¶
¶
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p
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r
1s

s
s3=- - .	 (21)

Allowance for the electron interaction with the parent ion 
leads to the additional condition (that is automatically ful-
filled for complex trajectories, not taking into account the 
Coulomb interaction): 

ps(tmax) = p.	 (22)

The solution of equations (18) with initial conditions (19) 
for t ® ts corresponds to 2 ( )r I t tps s

2 2.- - . This leads to the 
fact that the correction to action (20) has a logarithmic diver-
gence. Regularisation of the action is based on the following 
idea [27]. When an electron is located near a nucleus, its 
motion is determined primarily by the interaction with the 
parent ion rather than with the laser field. In this case, the 
action of the electron is determined by the asymptotic behav-
iour of the atomic wave function at large distances from the 
nucleus. After the regularisation procedure, the correction to 
the action takes the form 

i i
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where /v I1 2 p=  is the effective principal quantum number. 
As a result, taking into account corrections associated with 
the interaction of electrons with the parent ion, 

/ ( ) i ( , ) i ( , )p p pexpL I S t S t S t2p / /
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s
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To find the complex trajectories satisfying (21) with con-
ditions (19), (22), an iterative approach is used [28]. In the 
first step, the initial momentum ps0 is used, and the trajectory 
of the electron and its final momentum ps' are calculated. In 
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the second step, the initial momentum is corrected based on 
the comparison of the obtained final momentum ps¢ with the 
desired value of the momentum p. The procedure is repeated 
to achieve a high convergence of calculations of electron tra-
jectories. 

4. Results of calculations 

The RCD value strongly depends on such parameters of a 
two-colour laser pulse as the phase shift j between the pulse 
components, their intensities and the wavelength of the main 
field l0 = 2pс/w0. The model developed in this paper, based on 
the imaginary-time method, allows one to find the depen-
dences of the RCD on these parameters. The results obtained 
show that the dependence of the RCD on the phase shift j is 
close to sinusoidal, i.e. it vanishes at a nonoptimal phase and 
is maximal at an optimal phase jopt. The RCD corresponding 
to the optimal phase depends linearly on the amplitude of the 
additional fields in accordance with the results of semi-classi-
cal calculations [2, 30]. 

Let us now study the dependence of the RCD on the 
main field intensity /( )I cE 80 0

2 p= . Figure 1 shows the depen-
dences of the normalised maximum current density jmax = 
|  jnorm(jopt)| corresponding to the optimal phase shift jopt on 
I0 at a fixed ratio of the amplitudes of the main and addi-
tional fields, a = 0.2. 

One can see from Fig. 1 that with increasing intensity, jmax 
increases sharply, reaches a maximum at an intensity of 
~ 2 ́  1014 W  cm–2 and gradually decreases at higher intensi-
ties, according to the law   I /

0
1 2\ - . The maximum normalised 

RCD jmax   corresponding to the optimal intensity depends 
weakly on the laser wavelength and is equal to ~0.2 both in 
quantum-mechanical and semi-classical calculations. At high 
intensities corresponding to the tunnelling ionisation regime  
( g <<  1), the results of semi-classical and quantum-mechani-
cal calculations are in good agreement with each other. At the 
same time, when g ³ 1, the semi-classical approach greatly 
underestimates the value of jmax. 

To explain the differences in the results of semi-classical 
and quantum-mechanical calculations for g ³ 1, we consider 
the semi-analytical solution of the time-dependent Schrödinger 
equation by the imaginary-time method. The solid curve in 
Fig. 1 shows the function jmax(I0) found on the basis of this 
method. It can be seen that this curve quantitatively coincides 
with the result of a direct numerical calculation in the entire 
range of the values of the Keldysh parameter g. In the multi-
photon ionisation regime ( g >> 1), the dependence  jmax(I0) is 
close to a power function with an exponent increasing with 
the wavelength of the laser pulse. 

The power dependence  jmax(I0) in the multiphoton ionisa-
tion regime is associated with a corresponding power-law 
dependence of the ionisation probability per unit time on the 
laser pulse intensity. It follows from Fig. 2, in which the solid 
and dotted curves show the dependence of the period-aver-
aged ionisation probability w  per unit time, obtained by the 
imaginary-time method, on the intensity I of the main field of 
a two-colour laser pulse under the assumption that the pulse 
envelope is constant. In the calculations the ratio of the ampli-
tudes of the main and additional fields is a = 0.2, and the 
wavelength of the main field is l0 = 800 or 1200 nm. The 
phase shift j is set so as to maximise the absolute value of the 
RCD. It can be seen that the curves  w (I) for different wave-
lengths coincide with each other in the region of tunnelling 
ionisation and differ at g ³ 1. In this region the curves w(I) 

are close to power functions with an exponent that increases 
with increasing wavelength. Also in Fig. 2 the dashed curve 
shows the averaged tunnelling formula (7). It coincides with 
the quantum-mechanical calculations only in a narrow region 
corresponding to small values of the Keldysh parameter. In 
the region g ³ 1, the tunnelling formula significantly underes-
timates the ionisation probability; as a result, the low-fre-
quency current density found on the basis of the semi-classical 
approach is low compared with the results of quantum-
mechanical calculations. It can be seen from Fig. 3, which 
shows the dependences of the maximum (with respect to the 
phase shift j) time derivative of the low-frequency current 
density ¶ ¶/j t  on the intensity I, calculated on the basis of the 
imaginary-time method and semi-classical approach at the 
same parameters of the laser pulse, as in Fig. 2. 

Let us now briefly consider the dependence of the optimal 
phase shift corresponding to the maximum RCD on the laser 
pulse intensity. Previously, these dependences have been 
investigated numerically in [19, 20]. It has been shown that 
the optimal phase shift jopt obtained on the basis of the semi-
classical approach is approximately equal to p/2, regardless of 
the intensity of the fundamental harmonic. At the same time, 
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Figure 1.  Dependences of the maximum normalised residual current 
density jmax = |  jnorm(jopt)| corresponding to the optimal shift phase jopt 
on the peak intensity I0 of the fundamental harmonic for the wave-
length of the main field l0 = (a) 800 nm and (b) 1200 nm at a laser pulse 
duration tp = 50 fs and amplitude ratio of the additional and main fields 
a = 0.2. The dashed curves are the results of the semi-classical approach, 
solid curves are the calculations based on the imaginary-time method 
and points are the numerical solution of the time-dependent Schrödinger 
equation. 
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the value of jopt found by solving numerically the time-
dependent Schrödinger equation increases with decreasing 
laser pulse amplitude and tends to constant values that are 
close to p and p/2 at small and large intensities, respectively. 
It is also confirmed in Fig. 4, which shows the obtained 
dependences jopt(I0) at a wavelength of the main field l0 = 
1200  nm. An approximate solution of the time-dependent 
Schrödinger equation on the basis of the imaginary-time 
method yields a good qualitative agreement with the results 
of direct numerical simulation. A detailed analysis of the 

electron motion equations in a two-colour laser field shows 
that in taking into account the interaction of electrons with 
the parent ion, the trajectories to the ion are strongly dis-
torted. This leads to a change in the optimal phase shift 
when changing the intensity I0 of the main field near the val-
ues corresponding to g ~ 1. For large values of intensity cor-
responding to g <<  1, the distortion of the trajectories is 
negligible, and the optimal phase shift is constant and close 
to the value obtained on the basis of the semi-classical 
approach. 

5. Conclusions 

Having solved numerically and semi-analytically the time-
dependent Schrödinger equation, we have investigated the 
excitation of the residual current density during gas ionisation 
by a two-colour laser pulse. We have found the dependences 
of the optimal phase shift and the corresponding maximum 
RCD on the intensity of the main field. It is shown that the 
imaginary-time method, which takes into account the interac-
tion of free electrons with the parent ion, allows one to calcu-
late the RCD with high accuracy in a wide range of intensities 
and wavelengths corresponding to both tunnelling and multi-
photon ionisation regimes. Calculations of the concentration 
of free electrons and RCD by the imaginary-time method can 
be used to interpret the results of numerical calculations and 
to find the optimal parameters of laser pulses in order to 
implement the ionisation mechanisms of generation of tera-
hertz radiation. 
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