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Abstract.  We have studied the processes of excitation of low-fre-
quency residual currents in a plasma produced through ionisation of 
gases by two-colour laser pulses in laser-plasma schemes for THz 
generation. We have developed an analytical approach that allows 
one to find residual currents in the case when one of the components 
of a two-colour pulse is weak enough. The derived analytical 
expressions show that the effective generation of the residual cur-
rent (and hence the effective THz generation) is possible if the ratio 
of the frequencies in the two-colour laser pulse is close to a rational 
fraction with a not very big odd sum of the numerator and denomi-
nator. The results of numerical calculations (including those based 
on the solution of the three-dimensional time-dependent Schrödinger 
equation) agree well with the analytical results. 

Keywords: two-colour laser pulses, terahertz radiation, ionisation, 
combination frequencies, time-dependent Schrödinger equation. 

1. Introduction 

Laser-plasma schemes based on ionisation of gases by two-
colour laser pulses attract much attention due to the possi-
bility of generating high-power and broadband terahertz 
(THz) radiation [1 – 14]. These schemes have been studied 
for pulses which contain a strong field at the fundamental 
frequency and an additional weaker field at the second har-
monic frequency generated by a frequency doubling crystal 
[1 – 12]. The use of such laser pulses has made it possible to 
obtain THz fields with a spectrum covering tens of terahertz 
[2 – 4] and with electric strengths of up to a few MV cm–1 
[5 – 7]. In addition, the possibilities of controlling the prop-
erties of generated THz radiation (polarisation, shape of the 
spectrum, energy) are demonstrated in manipulating the 
polarisation and phase of the ionising two-colour pulse [8], 
or in changing the gas pressure and focusing conditions [3, 
9, 10], as well as in changing the type of the ionised gas and 
in the presence of pre-pulses ionising or orienting gas mole-
cules [3, 11, 12]. Recently, another scheme has been experi-
mentally and theoretically investigated in which a two-
colour laser pulse contains, apart from a fundamental-fre-
quency main field, an OPA-generated additional weak field 

with a frequency tunable near the half-harmonic frequency 
[13, 14]. 

The THz spectrum in laser-plasma schemes usually has 
a low-frequency core (with frequencies around 1 THz, which 
are much smaller than the inverse duration of the ionising 
pulse), where the main energy of the THz pulse is concen-
trated [6, 9, 13]. This low-frequency radiation is attributed to 
plasma currents in the long wakefield of the laser pulse, 
and the amplitude of the radiation is proportional to the 
residual current density (RCD) excited by the laser pulse 
behind the ionisation front [13, 15 – 17]. 

In this paper we study the processes of RCD excitation, 
when the ratio of the frequencies in a two-colour laser pulse is 
different from two, and the amplitude ratio of its components 
is arbitrary. For this purpose, the RCD is found analytically 
and numerically using semi-classical and quantum-mechani-
cal approaches, and the dependences of the RCD on the laser 
pulse parameters are analysed in detail. Particular attention is 
paid to the dependences on the frequency ratio in a two-
colour laser pulse. These dependences present a set of reso-
nance-like peaks at frequency ratios that are close to rational 
fractions with an odd sum of the numerator and denomina-
tor. 

2. Statement of the problem and derivation  
of analytical expressions for the residual current 
density 

In this section, we describe the analytical model developed for 
finding the RCD and derive closed formulas for the depen-
dences of the RCD on all the parameters of the laser pulse in 
the case when one of the components of the two-colour laser 
pulse (additional field) is sufficiently small in comparison 
with the other component (main field). The model is based on 
the semi-classical approach that uses the solution of the bal-
ance ionisation equation for the concentration N of free elec-
trons in the plasma and the equation for the free-electron cur-
rent density j [5, 13, 15 – 18]: 

( ) (| |)
d
d
t
N N N w Eg= - ,	 (1)

d
d
t m

e NE
2

=
j

.	 (2)

Here Ng is the initial concentration of neutral gas particles; 
w(|E(t)|) is the probability of ionisation of an atom per unit 
time in an electric field with an intensity E; e and m are the 
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electron charge and mass; and E(t) is the given dependence of 
the electric field of the laser pulse on time t. We consider lin-
early polarised two-colour laser pulses whose electric field is 
parameterised as follows: 

E(t) = [A0(t)cos(w0t) + A1(t)cos(w1t + f)]x0,	 (3)

where A0(t) and A1(t) are the slowly varying envelopes of the 
main and additional fields, respectively; f is the phase shift 
between the fields; x0 is the unit vector directed along the x 
axis; and w0 and w1 are the carrier frequencies of the fields. 
The exact solution of system (1), (2) has the form 

( ) (| ( )|)exp dN t N w t tE1g
t

= - -
3-

l lc m; Ey ,	 (4)

t
( ) ( ) ( )dt m

e N t t tj E
2

=
3-

l l ly .	 (5) 

The RCD is determined by the free-electron current density at 
t ® +¥, or, in other words, by the zero harmonic of the time 
derivative dj/dt of the current density: 

3+

( ) ( ) ( )lim dt m
e N t t tj j ERCD

t

2

= =
"3 3-

l l ly .	 (6) 

The concentration of free electrons in the field of a lin-
early polarised laser pulse varies in a stepwise manner, and 
the moments of jumps in the concentration coincide with the 
maxima of the electric field magnitude. We consider laser 
pulses which produce sufficiently slow ionisation (over sev-
eral periods of the main field), so that the value of each jump 
is small as compared with the total concentration of free elec-
trons. In this case, in the right-hand side of equation (1), the 
concentration N(t) can be replaced by its averaged (over the 
main field period) value ( )N t   [16]:

( ) (| ( )|)
d
d
t
N N N w tEg= - ,	 (7) 

where the averaged value itself satisfies the equation 

( ) (| ( )|)
d
d
t
N N N w tEg= - .	 (8) 

In the last equation, ( )w E  is the period-averaged ionisation 
probability. Under the tunnelling ionisation conditions, the 
ionisation probability is typically a strong function of the 
field, and so we can use the expression ( ) [2/( )] ( )w E n w E/

0
1 2p=  

for the averaged ionisation probability, where ( )n E0 =
( ) / ( )Ew E w El  >> 1 characterises the steepness of the ionisa-

tion probability w as a function of the field E. The number 
n0(E ) is equal to an exponent of the power function that best 
approximates the function w(E ) in the vicinity of a particular 
value of E . The square root of this number at a maximum 
field strength determines how many times the duration of the 
corresponding jump of the plasma concentration is less than 
the period of the main field. 

As was done in [13, 15], for obtaining a closed-form for-
mula for the RCD, we need to analyse the spectral composi-
tion of the electron concentration N. This analysis can be per-
formed using the perturbation theory with respect to the 
small additional field. Taylor’s formula for the ionisation 

probability as a function of the electric field allows one to 
write the relation 

(| ( )|)w t w wE 0 1 f= + + ,	 (9) 

where the expression for the contribution wl to the ionisation 
probability in the lth order of the perturbation theory has the 
form 

)t(( ( ))
w

l
w E t E( )

l

l l
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u

.	 (10) 

Here E0(t) = A0(t)cos(w0t) and E1(t) = A1(t)cos(w1t + f) are 
the projections of the main and additional fields on the x axis; 

( )w E( )l
=u  sgnl(E)w(l )(|E |); and ( )w E( )l  is the lth field deriva-

tive of the ionisation probability. Substituting (9) and (10) 
into equations (2) and (7), we obtain

N(t) = N0 + N1 + . . . ,    j(t) = ( j0 + j1 + . . . )x0,	 (11) 

where the contributions Nl and jl to the concentration of free 
electrons and current density in lth order satisfy the equations 
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where N–1 ≡ 0.
In long and not too intense laser pulses, when the ionisation 

continues during a significant number of the main field periods, 
each of the functions w ( )lu  is a sequence of narrow peaks near 
the moments of the E0(t) extrema, i.e. near the moments of time 
ts = sp/w0, where s is an integer. In this case, the amplitudes of 
adjacent peaks do not differ greatly in absolute value. It allows 
us to represent ( )w t( )lu  as a sum of harmonics of the frequency 
w0 with slowly varying envelopes ( )W t( )

k
l : 
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Since the ionisation probability is a function of the absolute 
value of the field strength, at even l the amplitudes of all the 
peaks have the same sign (positive), and at odd l positive 
peaks alternate with the negative ones. Accordingly, in expan-
sion (14), the terms with odd k at even l are small and can be 
neglected, and, vice versa, the terms with even numbers can be 
discarded at odd l. Integral (15) for the remaining terms can 
be calculated approximately using the Laplace method:
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for even k + l. Here nl = w(l + 1)(|A0|)|A0|/w(l )(|A0|) characterises 
the steepness of the lth field derivative of the ionisation prob-
ability. In calculating integral (15) by the Laplace method, we 
used the condition nl >> 1. For commonly encountered func-
tions w(E ) at nl >> 1, it turns out that nl – nl + 1 » 1. For these 
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functions strong inequalities nl >> 1 and n0 >> l + 1 are equiva-
lent. The latter inequality actually sets the upper limit on the 
order of the perturbation theory, where further calculations 
are valid. 

Given that 
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we obtain 

( ( ))w E t( )l
0u  » 

( )
(| ( )|)n

n
A t

n
w A t

2l l

i
i

l

0

0

0

1

0
=

-

%

	 ( )
[(2 1) ]exp cos

n
k

k t
2

2 1
lk

2

0
0# w-

+
+

3

=

; E/ 	 (18) 

for odd l and 
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for even l. The contributions wl are proportional to the prod-
uct of ( )w E( )l

0u  and ( )cosE A tl
1w f= +l l

1 1  and represent a sum 
of harmonics at certain combination frequencies of a two-
colour pulse. In accordance with (12) and (13), the contribu-
tions jl to the current density are also a sum of harmonics at 
some combination frequencies aw0 + bw1 of the field of a two-
colour pulse (others than those in the case of wl ), where a and 
b are even numbers, and a + b is an odd number. The contri-
bution to the RCD can be only made by very low combina-
tion frequencies Dw = bw1 – aw0 that are small compared with 
the inverse time scales of the slowly varying envelopes of the 
corresponding harmonics, where a and b are the natural num-
bers of different parity. In order to find these low-frequency 
components of the current density, according to (13), one 
should find the harmonics of the electron concentration at 
frequencies w0 ± Dw and w1 ± Dw that are close to the fre-
quencies of the ionising pulse. 

Substituting (18) and (19) into (10) and (12) and analysing 
the resulting expressions, we find that the lowest order of the 
perturbation theory where there is a low-frequency compo-
nent of the current density derivative at the frequency Dw is 
the order l = b. This low-frequency current density in the 
bth order is determined by the correction Nb containing the 
harmonics N [( ) ]a b1 0 1" !w w

b  at frequencies 0 !w wD = (1 )a 0" w  
1! bw , and by the correction Nb – 1 containing the harmonic 

N [ ( ) ]a b 10 1w w- -
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In deriving these expressions, in integral (12) we took the slow 
factor N Ng-  outside the sign of integration. Substituting 
expressions (20) and (21) into equation (13) with l = b, we find 
the equation for the current density harmonic at the frequency 
Dw = bw1 – aw0:
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If a + b << n0, then n0 » n1 » . . . » nb, and the exponents in 
the previous expression can be approximated by their Taylor 
expansion around the value of –a2/(2n0). In this case, Kb » 
( ) [ /( )] (| |) /( !)N N n A A w A b2 2g

b
0 1 0 0- , and the expression for 

the harmonics of the current density is greatly simplified: 
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Having integrated expression (24) over time with the use of 
the Laplace method, for the contribution to the RCD at a 
particular combination frequency Dw = bw1 – aw0 we obtain 
the expression

j ( , )a b

RCD  » 
2

( )exp sing j
F
n F b t x

2 2osc

b2

0

0 1
0 0s w t f wD D- -ic cm m .	 (26) 

Here josc = e2NgF0 /(mw0) is the amplitude of the oscillatory 
current induced by the main field in the plasma with concen-
tration Ng; F0,1 = A0,1(t0); t0 is the position of the inflection 
point of the function ( )N t , i.e., the moment of time at which 
the averaged electron concentration grows most rapidly (‘time 
moment of ionisation’); [ ( / ) /( / )] |d d d dN t N t /

i t t
3 3 1 2

0t = - =  » 
/n /1 2t 0  is the characteristic ionisation time; t = [–A0 /(d2A0 /
dt2)]1/2 |t = 0 is the duration of the ionising pulse [we assume 
here for convenience that the maximum of the envelope 
A0(t) occurs at t = 0]; and ( ) / ( ) /N N N Ng g3 3s = + = +  » 
1 [ (2 )exp /1 2

#p- -  (| |) ]w F i0 t  is the final (maximum) degree of 
ionisation. 

3. Discussion of the analytical results  
and their comparison with the results  
of semi-classical calculations 

Equation (26) describes the contribution to the RCD at spe-
cific values of a and b. The general expression for the RCD is 
obtained by summing over all admissible a + b: 
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j j ( , )

,
RCD RCD

a b

a b

=/  (with odd a + b).	 (27) 

In this sum the terms decrease rapidly with the growth of 
both a and b, and the summation can be done only over the 
terms with a + b £ n0, when expression (26) holds true. 
Moreover, due to the strong Gaussian factor exp(–Dw2 ti

2/2) 
in (26), only one or two terms with not very large Dw and 
a + b can be significant for any particlualr value of the 
ratio w1/w0. At the ratio w1/w0 that is close to a fraction a/b 
with a not very large odd sum of the numerator and denom-
inator, we actually can neglect all the terms, but one that 
meets these specific values of a and b, and assume that 
expression (26) describes the total value of the RCD. In 
other words, for those ratios of the frequencies at which the 
RCD is not too small because of the mentioned Gaussian 
factors, we can keep only one term in the sum. If the final 
degree of ionisation is not very large, we can set t0 = 0 and 
s » (2 ) (| |)w F/

i
1 2

0p t , which turns (26) in a closed-form for-
mula for the RCD under the given dependences A0, 1(t) and 
( )w E . This formula and the dependences of the RCD on the 

laser pulse parameters show that RCD excitation by a two-
colour pulse can be interpreted as a wave mixing in the inter-
action of b quanta of the additional field and a large number 
(about n0 >> 1) of quanta of the main field. Below, we dis-
cuss these dependences in detail. 

When w1/w0 » a/b and jRCD  » j ( , )RCD
a b , the value of the 

RCD has a periodic dependence on the phase shift f between 
the carriers of the main and additional fields with the period 
2p/b that is determined by the denominator of the fraction 
a/b. The maximum absolute RCD value achieved at an opti-
mum phase shift is given by the expression 

| |max j ( , )RCD
a b

f
» | | expg j

F
n F

2 2osc
i

b2 2

0

0 1s w tD
-c m .	 (28) 

Because in the sum of (27) either one term dominates over all 
others, or all the terms are sufficiently small, we can assume 
that 

| |max jRCD
f

» | |max j ( , )

,
RCD
a b

a b Nd
f

/  (with odd a + b). 	 (29)

Formulas (28) and (29) give an idea about the dependence 
of the maximum RCD (corresponding to the optimal phase 
shift) on the parameters of a two-colour laser pulse, in par-
ticular on the frequency of the additional field at a fixed fre-
quency w0. Each term in the sum of (29) corresponds to a 
resonance-like Gaussian peak near the frequency w1 corre-
sponding to some rational fraction a/b, where a and b satisfy 
the above conditions. Figure 1 shows this dependence calcu-
lated for a two-colour pulse with Gaussian envelopes of the 
main and additional fields, 

( ) exp lnA t c
I t8

2 2,
,

p
0 1

0 1
2

2p
t

= -e o,	 (30) 

where I0 and I1 are the maximum intensities of the main and 
additional fields; tp = 2(ln2)1/2 t is the laser pulse duration 
(intensity full width at half maximum), which is the same for 
the envelopes of the main and additional fields; and c is the 
speed of light. For the ionisation probability we use the Tong 
formula for the hydrogen atom [19], 

( ) 4 expw E E
E

E
E

E
E

3
2 12a

a a

a
W= - -c m,	 (31) 

where Wa and Ea are the atomic frequency and field. In con-
trast to the traditional formula for the probability of tunnel-
ling ionisation, the Tong formula correctly describes an 
increase in the plasma concentration in the above-barrier ion-
isation regime, and its use to find the RCD leads to results 
that are in good agreement with the results of quantum-
mechanical calculations [20]. One can see from Fig. 1 that in 
the range of frequency ratios from 0.3 to 2.7, most pro-
nounced are the peaks near the ratios 1/2, 2/3, 2/5, 3/4 and 
their inverse values, i.e., with small enough a and b. Figure 1 
shows both the results of analytical calculations by formulas 
(28) and (29) and the result of direct numerical integration by 
formulas (4) and (6). Despite the fact that these dependences 
were plotted for a sufficiently large value of the additional 
field intensity located on the border of applicability of the 
analytical model, the positions and widths of the peaks 
(Fig.  1) are very well described by the derived analytical 
expressions. The amplitudes of the peaks coincide fairly well 
in analytical and numerical calculations for not very large val-
ues of the denominator b, while for large b discrepancies are 
observed. 

For peaks at ratios of the frequencies with the same 
denominators, the amplitudes of the peak maxima decrease 
with increasing a due to a Gaussian factor exp[– a2/(2n0)] in 
expression (25) for g at large a. At small a, the dependence of 
the peak width on a can be nonmonotonic. For example, at 
n0 > 7, the amplitude of the peak at a/b = 4 is greater than at 
a/b = 2, i.e. the addition of the fourth harmonic leads to a 
greater residual current and a greater yield of THz radiation 
than the addition of the second harmonic with the same inten-
sity. The value of the RCD is dependent on the maximum 
amplitude of the additional field as a power law with an expo-
nent b; therefore, the ratio of amplitudes of the peak maxima 
at frequency ratios with different denominators essentially 
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Figure 1.  Dependences of the maximum normalised RCD on the ratio 
of frequencies w1 and w0 of the additional and main fields of an ionising 
two-colour laser pulse. Hereinafter, the RCD values are normalised to 
ja = Nge2Ea /(mWa) and correspond to the optimal (at which the RCD 
reaches its maximum in absolute value) value of the phase shift f be-
tween the components of the main and additional fields. The param-
eters of the laser pulse are as follows: the main field intensity is I0 = 
1014  W  cm–2, the additional field intensity is I1 = 1013 W cm–2, the pulse 
duration is tp = 50 fs, and the frequency of the main field w0 corre-
sponds to a wavelength of 800 nm. Points were obtained using analyti-
cal formulas (28) and (29). The solid curve is the result of semi-classical 
calculations using formulas (4) and (6). 
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depends on the ratio of the intensities of the additional and 
main fields or, more accurately, on the value n0F1/(2F0). This 
is illustrated in Fig. 2, which shows the dependences of the 
maximum RCD on the additional field intensity. It is seen 
that at not very high intensities of the additional field, the 
dependences are given by a power law with high accuracy, 
and analytical expressions provide a very good approxima-
tion for the value of the residual current. In this case, the 
amplitudes of the peak maxima decrease rapidly with 
increasing b. At large ratios of the frequencies, near the 
boundary of applicability of the theoretical approach based 
on the perturbation theory with respect to the additional 
field, the peaks corresponding to larger b may be higher 
than the peaks corresponding to smaller b. For example, the 
peak at a ratio a/b = 1/2 is higher than that at a/b = 2 if the 
additional field is not very small [17]. 

The dependence of the magnitude of the peak on the 
intensity of the main field at a fixed ratio of the intensities of 
the main and additional fields is to a large extent determined 
by the factor joscs. The dependence grows rapidly at small 
intensities of the main field when the degree of ionisation s 
remains low. In the case of depletion of neutral particles and 
saturation of the increase in the ionisation degree, the residual 
current growth also slows down. Note that the dependence of 
the intensity can also be affected by other factors in formula 
(26) because n0 and ti also depend on the main field intensity. 
Despite the fact that n0 and ti usually depend on the intensity 
of the main field slower than s, their dependences may lead to 
a substantial modification of the dependence of the RCD on 
the intensity of the main field (for example, nonmonotonicity) 
at large values of a, b or Dwt. 

The shape of the peaks is almost completely described by 
a Gaussian factor exp(–Dw2 ti2  /2) in (26). The width of the 
peaks is greater than the width of the main field spectrum and 
decreases with increasing denominator b. In the absence of 
ionisation saturation, the peak width is greater than the width 
of the main field spectrum by n0

1/2/b times. In the general case 
(even when the conditions of applicability of the analytical 
model are violated), this width is on the order of 1/(tib). 
Figure 3 gives an idea how the steepness n0 of the ionisation 

probability, characteristic ionisation time ti and peak width 
depend on the main field intensity and are related to each 
other. Figure 3 shows the dependence of the ionisation time, 
inverse peak width at w1 » w0 /2 and value of t/n0

1/2 at the pulse 
maximum on the intensity of the main field. The ionisation 
time is calculated by the formula 
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This definition of ti is practically equivalent to the previously 
given for the case when the shape of the function /d dN t  is 
close to Gaussian. The peak width is calculated by the for-
mula
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One can see that in the entire range of intensities, the ionisa-
tion time and the inverse peak width are approximately equal; 
at low intensities when neutral particles are not depleted, both 
values coincide with t/n0

1/2. This property of the residual cur-
rent can be interesting in connection with the possibility of 
determining the values of ti and n0 in the experiments on the 
generation of THz radiation by ionising frequency-tunable 
two-colour pulses through measuring tuning ranges in which 
the THz radiation is effectively generated. Such measure-
ments are, for example, performed in [13]. 

Note also an interesting feature of the considered phe-
nomenon of excitation of the residual current, associated with 
the asymmetrical shape of the peak. This asymmetry is dem-
onstrated by formula (25) for the factor g, which is explicitly 
dependent on the sign of frequency detuning Dw. The pres-
ence of this dependence leads to the fact that the peak maxi-
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Figure 2.  Dependences of the maximum normalised RCD on the addi-
tional field intensity of a two-colour laser pulse. The parameters of the 
laser pulse are as follows: the main field intensity is I0 = 1014 W cm–2, the 
pulse duration is tp = 50 fs, and the frequency of the main field w0 cor-
responds to a wavelength of 800 nm. Points were obtained using the 
analytical formula (28). Solid curves are the results of semi-classical cal-
culations using formulas (4) and (6). 
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Figure 3.  Ionisation time ti (solid and dashed curves) and inverse peak 
width of the RCD dependence on the additional field frequency (dot-
and-dash curve) as a function of the intensity I0 of the main field of a 
two-colour laser pulse. The parameters of the laser pulse are as follows: 
the pulse duration is tp = 50 fs; the main field frequency w0 corresponds 
to a wavelength of 800 nm; the additional field frequency w1 corre-
sponds to a wavelength of 1600 nm; and the intensity ratio of the main 
and additional fields is fixed, I1/I0 = 0.01. The dashed and dot-and-dash 
curves are the results of numerical calculations. The solid curve was 
obtained by the analytical formula for ti. 
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mum is shifted with respect to the exact value w1 = aw0/b. 
Finding the maximum of expression (28), we obtain that the 
peak maximum corresponds to the frequency detuning 

Dwopt »  
( )b a
n z1412

0
2 2 2

0

w t -i

.	 (35) 

4. Comparison of the results of the semi-classical 
and quantum-mechanical approaches 

The quantum-mechanical approach to the calculation of 
residual current density is based on the numerical solution of 
the three-dimensional time-dependent Schrödinger equation 
for the electron wave function in the hydrogen atom in a given 
field E(t) of a two-colour laser pulse. The details of the 
approach and the methods of solution are described in [16]. 
Figure 4 shows the dependences of the maximum RCD on the 
frequency of one of the quasi-monochromatic components of 
a two-colour pulse (at equal intensities of the components of 
a two-colour pulse when it is impossible to separate the main 
and additional fields). These dependences are calculated using 
the semi-classical and quantum mechanical approaches. It 
can be seen that the above-described peaks at the rational 
ratios of the frequencies in a two-colour laser pulse appear 
both in semi-classical and quantum-mechanical calculations. 
For high intensities, in the tunnelling ionisation regime, the 
results obtained using the semi-classical approach are consis-

tent both qualitatively and quantitatively with the results of 
quantum-mechanical calculations (Fig. 4a). Thus, under con-
ditions of tunnelling ionisation, the semi-classical approach 
can adequately describe both the amplitudes of the peak max-
ima and their width. 

At lower intensities corresponding to the multiphoton 
ionisation regime, when the conditions of applicability of 
the semi-classical approach are not fulfilled, the semi-classi-
cal approach understates the amplitudes of peak maxima 
and overstates their widths. It can also be seen in Fig. 5, 
which shows the dependence of the maximum RCD on the 
intensities of the components of a two-colour  pulse  at  dif-
ferent  frequency ratios. For ratios w1/w0 = a/b with not very 
large a and b (such as 1/2 and 2/3), the dependence of the 
RCD on the intensity saturates at high intensities and is 
accurately described by the semi-classical model (Fig. 5a). 
For large a and b (with a/b = 2/5, 3/4), the dependences turn 
out to be more complex and do not saturate even at very 
high intensities, which is due to the proximity of a stronger 
peak corresponding to smaller denominators: the peak at a 
ratio a/b = 2/5 is close to the peak at a/b = 1/2, and the peak 
at a/b = 3/4 is close to the peak at a/b = 2/3 (Fig. 5b). 
Presumably, it also leads to the fact that the results of the 
semi-classical calculations less accurately describe the 
dependence of the RCD on the intensity. However, the semi-
classical model retains all the features of this dependence, 
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Figure 4.  Dependences of the maximum normalised RCD on the ratio 
of the frequencies of the quasi-monochromatic components of a two-
colour laser pulse. The parameters of the laser pulse are as follows: the 
pulse duration is tp = 50 fs, the main field frequency w0 corresponds to 
a wavelength of 800 nm, and pulse component intensities are I0 = I1 = 
(a) 1014 and (b) 3 ´ 1013 W cm–2. Solid curves are the results of semi-
classical calculations, and points are the results of quantum-mechanical 
calculations. 
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Figure 5.  Dependences of the maximum normalised RCD on the inten-
sities I1 = I0 of the quasi-monochromatic components of a two-colour 
laser pulse at frequency ratios (a) w1/w0 = 1/2 (solid curve, ) and 2/3 
(dashed curve, ), as well as (b) w1/w0 = 3/4 (solid curve, ) and 2/5 
(dashed curve, ). The pulse duration is tp = 50 fs, and the main field 
frequency w0 corresponds to a wavelength of 800 nm. Curves are the 
results of semi-classical calculations, and points are the results of quan-
tum-mechanical calculations. 
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such as its nonmonotonicity and position of the minimum 
and maximum at a/b = 2/5. 

5. Conclusions 

We have studied the generation of a quasi-constant RCD in a 
plasma produced by a two-colour laser pulse with an arbi-
trary ratio of the frequencies of the quasi-monochromatic 
components of the pulse. Based on the semi-classical 
approach, we have found a fairly simple analytical expression 
that describes the dependence of the RCD on the laser pulse 
parameters in the case when the field of the two-colour pulse 
represents a superposition of a strong quasi-monochromatic 
field at the fundamental frequency and a weak additional 
field at a different frequency. The obtained analytical expres-
sions show that the dependence of the RCD on the frequency 
of the additional field is a set of resonance-like peaks near the 
frequencies for which the ratio of the frequencies of the main 
and additional fields is equal to the rational fraction with a 
not very big odd sum of the numerator and denominator. The 
widths of the peaks are greater than the widths of the spec-
trum of the main ionising field and are determined by the 
inverse characteristic ionisation time divided by the denomi-
nator of the fraction which expresses the ratio of the frequen-
cies in a two-colour laser pulse. We have found the depen-
dences of the amplitudes of the peak maxima on the intensi-
ties of the main and additional fields. The presented numerical 
calculations show that the obtained analytical formulas 
describe well the RCD in a fairly wide range of laser pulse 
parameters. The results of calculations based on the numeri-
cal solution of the three-dimensional time-dependent 
Schrödinger equation are in good agreement with the results 
of semi-classical calculations for the tunnelling ionisation 
regime.
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