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Abstract.  We have studied the defect modes of a structure of 
Fabry – Perot interferometer type, in which the layer separating 
Bragg mirrors is made of a heterogeneous composite material with 
metallic nanoscale inclusions. Effective optical characteristics of 
the nanocomposite material have resonance singularities in the 
visible region of the spectrum, which are conditioned by the surface 
plasmon resonance of metallic nanoparticles. It is shown that the 
spectral profile of the energy bandgap of the photonic structure can 
be modified by varying the volume fraction and size of nanopar­
ticles. The interrelation of splitting and shift of defect modes with 
structural parameters of a nanocomposite layer is studied by means 
of a numerical – graphical method with allowance for the frequency 
dependences of phases and amplitudes of reflectances in Bragg mir­
rors.

Keywords: photonic crystal, defect modes, nanocomposite medium, 
plasmon resonance.

1. Introduction

Photonic crystals, i.e. structures whose optical properties vary 
with a period comparable to the wavelength of electromag-
netic radiation, are of great interest due to their unique electro-
dynamic characteristics [1, 2]. Electromagnetic waves propa-
gating along the periodicity direction of a photonic-crystal 
structure undergo multiple re-reflections, which leads to the 
formation of a band structure in their spectrum. The presence 
of alternating regions of high and low transmission (reflection) 
in the spectrum is used for the development of new photonic 
and optoelectronic devices – photonic-crystal waveguides, 
Bragg filters, mirrors and resonators.

In a photonic crystal with a lattice defect (the structure’s 
periodicity is disturbed), the transmission and reflection spec-
tra are modified: in the region of a photonic bandgap, the 
structure transmits light in a certain narrow spectral band, 
which is called the defect band. The position and shape of the 
defect transmission band can be controlled by varying the 

geometric parameters of the defect layer [3 – 7]. On the basis 
of the defect photonic-crystal structures, new types of wave-
guides [8] and nanoresonators with a high Q-factor [9, 10] 
have been developed, and also new methods for increasing the 
intensity of nonlinear-optical processes [11, 12] have been 
proposed. New opportunities for controlling defect modes in 
a photonic crystal become available by using nanocomposite 
materials, optical characteristics of which substantially 
depend on their internal structure [13 – 18].

In this paper we consider a photonic structure with a 
nanocomposite defect layer formed on the basis of a dielectric 
medium, with metallic nanoparticles being uniformly distrib-
uted within its volume. The frequency and amplitude of the 
surface plasmon resonance of nanoparticles and, conse-
quently, the effective characteristics of the nanocomposite 
layer depend on the dielectric constant of original materials, 
and also on the shape, size and concentration of nanoparticles 
[19 – 23]. The primary focus is on the study of modifications 
of the structure’s photonic bandgap, revealing the mecha-
nisms of splitting and shift of defect modes when varying the 
size and volume fraction of the composite nanoparticles.

2. Basic equations for photonic-crystal  
structures with a nanocomposite layer

Consider a one-dimensional photonic-crystal structure formed 
by plane-parallel layers of non-magnetic materials with dielec-
tric constants ej ( j = 1, ..., N). Let an electromagnetic wave 
propagate along the normal to the interface between the layers, 
i.e. along the stratification axis of the structure, coinciding 
with the z axis of the Cartesian coordinate system.

As applied to the structure under consideration, solving 
Maxwell’s equations leads to two orthogonally polarised eig-
enwaves with the field components Ex, Hy, 0 and Hx, Ey, 0. 
Taking into account their proportionality to the factor exp(iwt), 
we define the coordinate dependence of the field components 
for the first wave type in the following way:

Exj = Aj exp(–ikj z) + Bj exp(ikj z),   ,i
d
d

H
k z

E
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where Aj and Bj are the field amplitudes; jk kj 0 e=  is the 
propagation constant; k0 = w/c; and w and c are the wave 
frequency and velocity in vacuum, respectively. We introduce 
a vector Fj with the components Exj and Hyj , and a transfer 
matrix mjt  which relates the wave field amplitude on the input 
and output surfaces of the jth layer:

( ) ( ),F z m F z Lj j j j= +t
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where Lj is the layer thickness. In the case of normal inci-
dence, the expression for the transfer matrix takes the form [24]
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Next we consider a structure representing two Bragg mir-
rors separated by an additional (defect) layer of the material. We 
assume that the mirrors are formed by the alternating layers of 
two different unabsorbing materials, with the sequence order 
of layers in one mirror being inverted relative to the other. The 
full transfer matrix of the structure under consideration is as 
follows:

( ) ( ) ,Q m m m m md
u

1 2 2 1=
ut t t t t t 	 (2)

where the integer positive numbers u and u are equal to the 
numbers of binary layers (periods of the structure) in the 
Bragg mirrors; m1t , m2t  are the transfer matrices of the layers 
being a part of the dielectric mirrors; and  mdt  is the transfer 
matrix of a layer separating the mirrors. The energetic coeffi-
cients of reflection and transmission for the entire structure 
placed into a dielectric medium with a refractive index ne can 
be expressed in terms of elements of the matrix Qt  [24]:
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The energetic absorption coefficient of the structure is calcu-
lated according to the formula A = 1 – T – R.

We assume that the approximation of the effective 
medium can be used to describe the optical properties of a 
nanocomposite layer placed between the photonic structure’s 
mirrors. In the frame of this approximation, the separating 
layer corresponds to a transfer matrix of form (1), constructed 
for the effective (averaged over the macroscopic region) 
dielectric constant eeff = e'eff + ie''eff.

The effective medium models have been developed by 
Bruggeman, Maxwell Garnett, Landau and Lifshitz, et al. 
[25, 26] for nanocomposite structures of different topologies. 
In this paper we consider the heterogeneous structure of matrix 
type, which represents a dielectric (matrix), with metallic par-
ticles (inclusions) of spherical shape uniformly distributed 
within its volume. It is assumed that the proportion of metallic 
particles does not exceed a few percent of the total volume of 
material, which ensures a high transmission capacity of the 
composite layers, including the region of the plasmon reso-
nance of particles, when the dissipative losses significantly 
increase. Effective optical characteristics of the matrix com-
posites can be most adequately described by a relation of the 
Maxwell Garnet model:

( ) ( )
( )

,1
3 1
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e h e e

h e e
= +

+ - -

-= G  	 (4)

where h is the volume fraction of inclusions; and em and ep are 
the dielectric constants of the matrix and inclusions, respec-
tively (the magnetic permeabilities are set equal to unity). To 
characterise the nanocomposite material, we will use the 
effective complex refractive index ineff eff effe Z= + . It should 

be noted that the Maxwell Garnett approximation of the 
effective medium is applicable when the size of inhomogene-
ities is much smaller than the wavelength of the radiation 
used, i.e., in the optical range, the size of inclusions should not 
exceed a few tens of nanometers.

To describe the optical properties of metallic nanoparti-
cles as part of the nanocomposite medium, we use an expres-
sion of the Drude model:
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+
 	 (5)

where wp is the plasma frequency of a free electron gas in an 
infinite volume; e0 describes the lattice contribution to the 
dielectric constant of the metal; and g is the damping factor 
of plasma oscillations. Generally, the damping factor g rep-
resents a size-dependent function for metal nanoparticles 
[26, 27]. The size effect occurs when the mean free path of 
conduction electrons exceeds the size of nanoparticles and 
the processes of electron scattering on the particle surface 
start to significantly contribute to the relaxation. Collisions 
of electrons with the nanoparticle surface are taken into 
account phenomenologically by introducing an additive to 
the relaxation rate, being inversely proportional to the par-
ticle radius:

( ) ,a q a
F

0g g u
= +  	 (6)

where g0 is the damping factor for an unrestricted volume of 
the metal; and uF is the velocity of electrons at the Fermi 
energy. The proportionality factor q is determined by the 
details of the process of electron scattering on the surface of 
nanoparticles, and there is no versatile expression for that 
process. Commonly, the value of q is set equal to unity.

Note that, at the size of particle less than 1 – 2 nm, when 
the de Broglie wavelength of electrons becomes comparable 
to the size of the region of their localisation, the quantum size 
effects start to play a significant role, which also leads to a 
modification of the dielectric constant [27]. In this work we 
consider the case of nanoparticles with a diameter greater 
than 4 nm, for which the macroscopic description remains 
valid.

3. Spectral characteristics of a metal-dielectric 
nanocomposite and photonic-crystal structure 
mode

We investigate the resonance characteristics of the following 
systems: a single metallic nanoparticle, a volumetric array of 
nanoparticles (nanocomposite) and a one-dimensional resona-
tor structure containing a nanocomposite layer in its structure. 
In our numerical calculations, a matrix of silicon dioxide (SiO2) 
and inclusions of silver nanoparticles are considered for defi-
niteness as composite medium components. Modern technolo-
gies allow matrix nanocomposites with various structural 
parameters to be formed on the basis of these materials [28 – 32].

The wavelength lp corresponding to the surface plasmon 
resonance of an individual metallic nanoparticle of spherical 
shape, embedded into a transparent dielectric matrix with a 
dielectric constant em, is determined from the condition e'p( lp) = 
–2em( lp) [33]. For a silver nanoparticle with parameters e0 = 5, 
uF = 1.4 ́  106 m s–1, wp = 1.36 ́  1016 s–1, g0 = 3.04 ́  1013 s–1 [34], 
the plasmon resonance in a matrix with em = 2.25 occurs at a 
wavelength lp » 420 nm. The size effect manifests itself for 



745Defect modes of one-dimensional photonic-crystal structure

silver nanoparticles with a radius less than 5 nm and mainly 
leads to an increase in the real part of dielectric constant (5) 
and to a shift of the plasmon resonance of a nanoparticle to 
the long-wavelength region of the spectrum (due to the pecu-
liarities of dispersion characteristics of silver). The size shift of 
the resonance wavelength is a few nanometers.

Resonance characteristics of a system of electrodynami-
cally interacting particles differ from those of single particles, 
and this effect is the stronger the smaller is the average dis-
tance between them. To illustrate this fact, Figs 1 and 2 show 
the spectral dependences of real (e'eff) and imaginary (e''eff) 
parts of the dielectric constant of a nanocomposite, calculated 
using formulas (4) – (6) for different volume fractions and 
sizes of inclusions.

It is seen from Fig. 1 that a change in the size of inclusions 
(while maintaining their volume fraction) mainly affects the 
resonance amplitude. The particle size reduction degrades the 
Q-factor of the resonant system due to an increase in the 
damping parameter (6), which reduces the amplitude and 
increases the half-width of the resonance curves e'eff( l) and 
e''eff( l).

Formulas (4) and (5) imply that detuning of the composite 
resonance from that of resonance of an isolated particle at 
wp >> g0 + quF /a and relatively small values of the volume 
fraction of inclusions (h £ 0.1) constitutes lr – lp » hlp /2, 
where lr is the composite’s resonance wavelength. According 
to the above expressions, the resonance of the effective dielec-
tric constant of a composite medium is always shifted relative 

to the resonance of a solitary particle into the long-wave-
length region of the spectrum, while the detuning value is sub-
stantially dependent on the volume fraction of inclusions. 
This is confirmed by the dependences shown in Fig. 2.

In the nanocomposite case, the resonance wavelength 
shift may constitute tens of nanometers, which significantly 
exceeds the size detuning of the plasmon resonance for a soli-
tary particle.

Next, we consider a resonant structure of Fabry – Perot 
interferometer type, representing a nanocomposite layer sand-
wiched between two dielectric Bragg mirrors. The maximum 
value of reflectivity of the mirrors is reached near the wave-
length lB satisfying the Bragg condition of resonant reflection:
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where L1,2 and n1,2 = ,1 2e  are thicknesses and real refractive 
indices of the layers being a part of the mirrors; and l1,2 are 
positive integers. The Fabry – Perot resonance condition for 
an unabsorbing structure is as follows:

,
l
L n2

0 0d
d

dl =  	 (8)

where Ld is thickness of the layer separating the dielectric mir-
rors; n0d = nd( l0d) is the refractive index of the separating 
layer at the wavelength l0d; and l = 1, 2, ... is the interference 
order. If the structure parameters are adjusted in such a way 
that the values of (7) and (8) are equal, the layered structure 
transmits light near the wavelength l = l0d = lB located in the 
region of the photonic bandgap of the mirrors, while reflec-
tion is suppressed (defect mode).

A defect mode can be split, which leads to the formation 
of multiple passbands within the photonic bandgap. One of 
the mechanisms of the mode splitting is associated with viola-
tion of the structure periodicity [35 – 37]. In the present work 
we investigate the splitting of the defect mode, caused by fre-
quency dispersion of the dielectric constant of the medium 
filling the space between the resonator mirrors.

In papers [13, 14] the behaviour of defect modes when 
varying optical characteristics of the resonant layer is inter-
preted in the frame of the Fabry – Perot model using the reso-
nance condition (8). However, the use of (8) in calculations of 
defect modes of the photonic structure with a resonant inclu-
sion generally leads to inaccurate results, since this relation is 
formulated without considering the dependence of optical 
characteristics of Bragg structures on the radiation wave-
length. Calculation of the wave number of a defect mode 
must be performed with allowance for the spectral depen-
dences of the amplitudes and phases of the waves on all inter-
faces, including those located in the region of Bragg mirrors.

In the absence of absorption, the defect modes of a struc-
ture can be found from the condition of vanishing of the 
reflection coefficient [first equation in (3)]:

(Q11 + neQ12)ne – (Q21 + neQ22) = 0. 	 (9)

After transformation of equation (9) with regard to expres-
sions (1) and (2), we obtain the condition for the defect mode 
(u = u) of the symmetric photonic structure placed into the 
medium with a refractive index ne = 1:
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Figure 1.  Dependences of the real (e'eff) and imaginary (e'’eff) parts of the 
nanocomposite effective dielectric constant on the wavelength l for 
nanoparticles with the radius a = ( 1 ) 2, ( 2 ) 10 and ( 3 ) 20 nm. The vol-
ume fraction of nanoparticles is h = 0.1.
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Figure 2.  Dependences of the real (e'eff) and imaginary (e'’eff) parts of the 
nanocomposite effective dielectric constant on the wavelength l for the 
volume fraction of nanoparticles h = ( 1 ) 10–2, ( 2 ) 3 ́  10–2 and ( 3 ) 0.1. 
The nanoparticle radius is a = 10 nm.
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md12(M2
11 – M2

21) – md21(M2
22 – M2

12) 

	 + 2md11(M11M12 – M22M21) = 0,	 (10)

where

md11 = cos jd,   md21 = nd2md12 = –ind sin jd 

are the transfer matrix elements for the central (defect) layer 
located between the dielectric mirrors;
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2 2
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Uj (r) = sin[( j + 1) arccos r] / 1 r- 2  are the Chebyshev poly-
nomials of the second kind with respect to the variable r = 
cos2j – 1/2 (n2 /n1 + n1/n2) sin2j; and jd = (2p/l)ndLd and j = 
(2p/l)n1L1 = (2p/l)n2L2 + pk (k = 0, 1, 2, ...) are the phase 
incursions in the central layer with a real refractive index nd 
and in the layers of Bragg mirrors, respectively. The 
Fabry – Perot condition (8) represents a particular solution of 
equation (10).

Equation (10) allows one to determine a defect mode of 
the resonant structure with regard to virtually all factors 
(except for the dissipative losses): spectral dependences of the 
phase incursions, amplitudes and phases of reflection and 
transmission coefficients at the interfaces between different 
media, which are conditioned both by a change in the rela-
tionship between the wavelength and thickness of the layers 
and the refractive index dispersion. Because obtaining an 
analytical expression for the wavelength of the defect mode 
from equation (10) represents a non-trivial problem, the anal-
ysis of resonance conditions in the frame of this work is con-
ducted by a numerical – graphical method.

The results of the numerical solution of equation (10) are 
shown in Figs 3 and 4 in the form of dependences dn( l) = 
[nd( l) – n0d]/n0d. It is easy to see that the value of dn at the 
wavelength l0d = lB takes the integer values satisfying the 
Fabry – Perot resonance condition (8): dn( l0d) = 0, 1, 2, ... for 
a respective interference order l = 1, 2, 3, ... . The dielectric 
constants and thicknesses of the layers contained in the dielec-
tric mirrors are hereafter selected as follows: e1 = 2.25 (SiO2), 
e2 = 5.52 (TiO2), L1 = 70 nm, L2 = 44.7 nm, which corre-
sponds to the case of quarter-wave layers for a wavelength of 
lB = 4L1n1 = 4L2n2 » 420 nm. The number of binary layers 
in each mirror is equal to eight. The refractive index of the 
central layer at a wavelength of 420 nm is assumed to be equal 
to 1.5 (n0d = 1.5), which coincides with the refractive index of 
the composite matrix nm. The thickness of the layer separat-
ing the mirrors is Ld = 140 nm, which ensures fulfilment of the 
condition lB = 2Ldnm.

Figures 3 and 4 also show the dispersion curves dneff( l) = 
[neff( l) – nm]/nm for the nanocomposite materials differing in 
size and volume fraction of inclusions, calculated with the use 
of equations (4) – (6) 

Obviously, total radiation transmission (reflection sup-
pression) of the structure is attained at the points where the 
dispersion curve dneff( l) of the refractive index of the separat-
ing layer intersects the curves dn( l). If the parameters of mir-

rors are fixed, the number and coordinates of the intersection 
points are determined by the shape of the curve dneff( l). 
Ultimately, that means that the photonic structure’s defect 
modes depend on the size and volume fraction of nanoparti-
cles in the composite insert. In the case represented in Figs 3 
and 4, the number of defect modes is equal to three, but this 
number may increase if the wings of the resonance curve 
dneff( l) would have intersection points with the curves dn( l) 
for the second (l = 2) and subsequent interference orders, which 
may occur, for example, when the concentration of inclusions 
increases. Note that in the case of small-size nanoparticles, 

1
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Figure 3.  Photonic structure modes dn( l) = nd( l)/n0d – 1 (solid curves) ob-
tained by numerical solution of equation (10), and dispersion curves dneff( l) 
= neff( l)/nm – 1 for the nanocomposite material with a radius of nanopar-
ticles a = 2 nm (dashed curve) and 10 nm (dot-and-dash curve). Here and in 
Fig. 4 bold dots show the values satisfying the Fabry – Perot resonance con-
dition (8) for various interference orders l, while the vertical line corre-
sponds to the wavelength l = 420 nm. The volume fraction of nanoparticles 
is h = 0.1. The solution of equation (10) is obtained under conditions when 
energy dissipation in the nanocomposite layer is neglected.
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Figure 4.  Photonic structure modes dn( l) = nd( l)/n0d – 1 (solid curves) 
obtained by numerical solution of equation (10), and dispersion curves 
dneff( l) = neff( l)/nm – 1 for the volume fraction of nanoparticles h = 10–4 
(dotted line), 10–2 (dashed curve), and 10–1 (dot-and-dash curve). The 
nanoparticle radius is a = 10 nm. 
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the resonance curves are more flat (see Fig. 1), and, as a con-
sequence, the number of intersection points with the curves 
dn( l) [the number of solutions of equation (10)] can be equal 
to unity.

It should be noted that absorption is always present in 
real metal-dielectric composites, which affects the amplitude 
of defect modes. As shown by the numerical analysis of the 
functions R( l) and T( l) (3) for real media, the losses in the 
composite layer generally lead to a change in the spectral 
shape and additional frequency shift of defect modes. The 
modification of defect modes in this case is stipulated by a 
change in the amplitude and phase characteristics of partial 
waves, refracted and reflected at the interfaces with a nano-
composite layer which is characterised by the effective refrac-
tive index with a non-zero imaginary part. Nevertheless, the 
numerical – graphical method presented above can also be 
applied to real structures with an absorbing separating layer, 
but in the conditions when the losses per one passage of the 
absorbing layer are relatively small, i.e. at (2p/l)ZdLd << 1, 
where Zd is the extinction coefficient (the imaginary part of 
the complex refractive index) of the resonant layer.

4. Reflection and transmission spectra of the 
photonic-crystal structure with a resonant layer

Let us investigate the influence of the volume fraction and 
size of nanoparticles on the energy characteristics of a layered 
structure with the configuration and parameters given in the 
previous section of this paper. The reflection and transmis-
sion spectra of a photonic structure, calculated using expres-
sions (1) – (3), are presented in Figs 5 and 6.

At a low volume fraction of nanoparticles (h << 10–3), any 
nanocomposite is almost identical, in regard to its optical 
characteristics, to its own dielectric matrix for all wavelengths: 

eeff( l) » em = const, i.e. dneff( l) » 0. As is seen from Figs 3 
and 4, there is only one intersection point for dneff = 0. In this 
case, a single defect mode emerges in the photonic bandgap.

With increasing volume fraction of inclusions (h ~ 
10–2 – 10–3) , the difference in dispersion characteristics of the 
composite medium and matrix material is increased, which is 
most noticeable in the plasmon resonance region of particles 
(see Fig. 2). An increase in the resonance amplitude neff( l) 
generally leads to an increase in the number of solutions of 
equation (10) from one to three (see Fig. 4). This leads to 
splitting of defect modes, herewith the frequency shifts 
between the central and lateral modes turn out the stronger 
the greater is the volume fraction of nanoparticles in the com-
posite insert. 

Splitting of modes is clearly seen in Fig. 5, which corre-
sponds to the case of particles having a radius of 10 nm. 
However, only two extreme modes out of the three possible 
ones are observed in this case, since the central mode fre-
quency is close to the plasmon resonance frequency, and 
therefore this mode is efficiently absorbed by the nanocom-
posite layer. It should be noted that the particle size has a 
significant impact on the number of defect modes in the spec-
tra of the structure. For example, in the case of nanoparticles 
with a radius of 2 nm, a single defect mode is formed (Figure 
6). As mentioned above, this is due to a more flat shape of the 
resonance curve dneff( l), which corresponds to a unique root 
of equation (10).

In the case of a nanocomposite layer with a relatively large 
fraction of inclusions (h > 10–2), the dissipative losses and 
modification of the amplitude – phase characteristics of reflec-
tion from the resonance layer interfaces affect significantly 
the formation of the spectrum of the photonic structure. An 
increase in the concentration and a decrease in the size of 
nanoparticles lead to an increase in the dissipative losses in the 
composite layer and, as a result, to smoothing the lines of 
defect modes in the transmission spectrum. Thus, if the defect 
mode corresponds to the region of resonance absorption in 
the nanocomposite, it can be completely suppressed in the 
transmission spectrum [see T ( l) in Fig. 6]. With increasing 
volume fraction of inclusions, the spectral width of the plasmon 
resonance increases, which causes a shift of defect modes 
toward the edges of the photonic bandgap of the structure 
(this fact is well illustrated by Fig. 5).

5. Conclusions

In the present study, we have investigated the spectral charac-
teristics of a one-dimensional photonic-crystal structure, one 
of the layers of which possesses the resonance properties. The 
resonant layer is made of a nanocomposite material, with 
metallic nanoparticles possessing plasmon resonance in the 
optical spectrum range. These results are obtained on the 
basis of the transfer matrix method and approximation of 
the effective medium. 

The layered structure we have considered is similar to the 
Fabry – Perot interferometer, in which a role of the layer sepa-
rating the dielectric mirrors is played by a heterogeneous 
nanocomposite having the properties of a strongly dispersive 
medium with an absorption peak in the region of plasmon 
resonance inclusions. Optical characteristics of the nano
composite, in particular the resonant frequency of the effec-
tive dielectric constant are determined by the size and volume 
fraction of metallic inclusions. Because of this, a change in the 
nanocomposite structural parameters results in a modifica-
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Figure 5.  Transmittance T and reflectance R as functions of the wave-
length l and the volume fraction h of metallic nanoparticles. The nano
particle radius is a = 10 nm. The structure parameters are given in the 
text.
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Figure 6.  Same as in Fig. 5, but for the nanoparticle radius a = 2 nm.
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tion of the defect modes of the photonic-crystal structure. It is 
shown that varying the volume fraction and nanoparticle size 
causes the splitting and shift of the structure modes near the 
nanocomposite layer’s resonance. Calculation of the spec-
trum of defect modes requires taking into account the spectral 
dependences of amplitudes and phases of all partial waves 
arising from reflections at the interfaces of the photonic struc-
ture, superposition of which results in the formation of the 
reflection and transmission spectra. In the case of small losses 
in the nanocomposite layer (Zd << l /(2pLd)), the defect modes 
can be found by means of numerical – graphical solution of 
equation (9). 

Splitting and shift of defect modes are typical for pho-
tonic-crystal structures with a resonant layer of any nature. 
If a nanocomposite material is used, it becomes possible to 
control the spectral characteristics of photonic structures by 
varying the volume fraction, shape and size of nanoparticles. 
In this paper, a model of a nanocomposite medium based on 
silicon dioxide is considered. The nanocomposites with a 
glass matrix having a uniform distribution of metallic nano
particles can be prepared, for example, by means of ion 
implantation [31, 32] or high-temperature melting of opals 
with implanted metallic nanoparticles (described, for example, 
in [38]). It should be noted that from the viewpoint of the 
theory laid down in this paper, the material of a nanocompos-
ite matrix is of no principal importance (restrictions may only 
be imposed due to peculiarities of the technology of nano-
composite manufacturing), while the effect of the defect mode 
splitting may also be observed for other materials, provided 
that the thicknesses of photonic structure layers are chosen to 
ensure matching of the defect mode frequency with the nano-
composite plasmon resonance frequency. In practice, any 
light-transmitting material with a positive dielectric constant 
may be used as the nanocomposite matrix, i.e. a nanocompos-
ite on the basis of gas (aerosol), liquid, or liquid-crystal media 
(colloidal systems), as well as any other solid medium, for 
example PMMA [39], can be applied.
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