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Abstract.  We consider the possibility of generation of broadband 
terahertz (THz) radiation upon reflection of a p-polarised femto-
second laser pulse from the surface of a semi-metal. The hydro
dynamic model of an instantaneous quadratic response of metals is 
generalised, and analytical results and numerical simulation data 
are presented. It is shown that transition from highly conductive 
metals to semi-metals is accompanied by a significant increase in 
the efficiency of the THz signal generation due to the reduction 
of the effective charge carrier mass and attenuation of the shielding 
of optical and THz fields. 

Keywords: semi-metal, terahertz radiation, femtosecond laser pulses, 
nonlinear optics. 

1. Introduction 

Active mastering of the terahertz (THz) range of electromag-
netic waves has led to a marked development of the physics of 
nonlinear conversion of optical radiation into low-frequency 
radiation. In particular, at present, much attention is paid to 
the experimental and theoretical research of THz radiation 
generation in the interaction of femtosecond laser pulses 
with  surfaces of metals and other conductive media [1 – 9]. 
A detailed study of THz radiation generation upon its reflec-
tion from the boundary of a medium is aimed not only at 
enhancing the optical-to-terahertz conversion efficiency, but 
also at investigating, in conjunction with other electrody-
namic methods (generation of surface waves, harmonics of 
optical fields, etc. [10, 11]), the material itself [12]. 

Properties of THz generation upon reflection of femto
second pulses from highly conductive metal surfaces (gold, 
copper, aluminium, etc.) have been studied in sufficient detail 
[1 – 9, 12]; generation efficiency at typical experimental param-
eters is low, on the order of 10–7 (with respect to energy). 
Theoretical papers [7, 8] show that the low efficiency of con-
version of laser pulses is associated with a high concentration 
of free charge carriers: volume currents in a dense plasma 
almost completely shield radiation of a nonlinear surface 
current. 

The aim of this paper is to draw attention to a new class of 
materials, i.e. semi-metals. Below, we will generalise the hydro
dynamic model of THz generation, developed in [5, 7, 8], to 

the case of semi-metals, which have a relatively small concen-
tration of electrons in the conduction band. For an instanta-
neous quadratic response of such a medium to be obtained, it 
is fundamentally important to take into account interband 
transitions and significant anisotropy of the effective masses 
of charge carriers. 

The paper presents analytical results and provides numer-
ical simulation data within the framework of the full hydro-
dynamic model. We present a comparative evaluation for 
base metals and bismuth, whose linear electrodynamic char-
acteristics are experimentally investigated in detail over a wide 
frequency range [13 – 15]. It is shown that the transition from 
metal to semi-metals is accompanied by a marked increase 
in the efficiency of THz generation due to an instantaneous 
quadratic response of electrons. In addition, in accordance 
with the developed THz model, the bismuth response is 
expected to be sensitive to the orientation of a single-crystal 
sample due to a strong anisotropy of the electron effective 
mass tensor. Thus, the optical-to-THz-radiation conversion 
on surfaces of semi-metals may be of interest from the stand-
point of the study of their electromagnetic characteristics. 

In Section 2 we describe the characteristics of incident and 
reflected laser radiation within the framework of the linear 
model. The basic expressions presented there are used in 
Section 3 to derive a relationship for a longitudinal surface 
current, which is induced by a laser pulse at the sample sur-
face. In Section 4 we consider the problem of an electromag-
netic pulse generated by a surface current source moving 
along the surface with a phase velocity exceeding the speed of 
light in vacuum. Concluding remarks are given in Section 5. 
In the Appendix, we present clarifying information about the 
numerical methods used, with reference to the previous work. 

2. Reflection of a laser pulse from the surface 
of a semi-metal 

Let us consider a semi-metal sample on the surface of which 
monochromatic p-polarised optical radiation is incident. We 
introduce a coordinate system by directing the z axis along 
the surface in the plane of incidence, the x axis perpendicular 
to the surface, and the y axis perpendicular to the plane of 
incidence. Because the real part of the dielectric constant e 
at optical frequencies is large in absolute value and negative 
[15], the electric field E decreases exponentially inside of the 
sample: 

Ex = Ex0 exp(k0 e- x – ik0z cos a) ,	 (1)

Ez = Ez0 exp(k0 e- x – ik0z cos a) ,	 (2)
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where the angle of incidence a is measured from the z axis; 
k0 = w0 /c is the wave number of optical radiation in vacuum; 
and Ex0 and Ez0 are the wave amplitudes at the sample 
boundary. The reflection coefficient R can be represented as 
follows [16]: 

sin
sinR

e a e
e a e

=
+
- .	 (3)

Interference of incident and reflected waves leads to the 
fact that near the interface between two media (x = 0), the 
total field propagates along the surface with a phase velocity 
greater than the speed of light (see details in [7]). Thus, if the 
laser pulse length is sufficiently small compared to its trans-
verse dimensions, a superluminous light spot is formed in the 
region of the overlap of incident and reflected optical radia-
tion. As will be shown below, a low-frequency nonlinear cur-
rent can be excited in this spot on the surface of  the semi-
metal. Therefore, we need to generalise the electrodynamic 
model of the medium in order to determine this current.

The dielectric constant of bismuth is fairly well studied 
experimentally and interpreted theoretically [13, 14]. It is 
determined by the polarisation response of the crystal lattice, 
as well as by interband transitions and intraband electron 
motion. Below, we will use the phenomenological model of 
the linear response that contains only a small number of 
parameters. In their determination, we will focus on the 
experimentally observed dependence of the dielectric constant 
of bismuth on the frequency in the region under consideration 
[15]. The intraband motion of holes will not be taken into 
account in the derivation of the polarisation response, since 
their effective mass is much greater than the mass of the elec-
tron. 

The polarisation response of bismuth has a resonance 
behaviour near the frequency wb ~ 1015 s–1, caused by transi-
tions of electrons from the filled valence band or from the 
conduction band to the empty zone lying above (the charac-
teristic difference between the energies is 1 – 0.7 eV). We take 
into account this contribution by using a harmonic oscillator 
model to describe the dynamics of the medium polarisation: 

( ),P P P E tb b
2n w b+ + =p o 	 (4)

where wb is the eigenfrequency of the oscillator; P is the 
polarisation of the medium; nb is the effective loss rate; b is 
the coupling coefficient; E(t) is the electric field; and the dot 
above the letter denotes differentiation with respect to time. 

The motion of particles in the conduction band can be 
described based on the model of free electrons: 

,eMr r Ef f f f
1n=- - -p o t 	 (5)

where rf is the classical electron coordinate; e is the electron 
charge; Mf

t  is the tensor of the effective mass of a free electron; 
and nf is the effective collision frequency. The polarisation 
response associated with the intraband motion of electrons 
will be important below for obtaining a nonlinear current. 
Below we consider an optical field, polarised in the xz plane, by 
assuming that the corresponding sub-matrix Mf

t  is diagonal and 
has diagonal components mx and mz. In the case of bismuth, 
model (4) leads to the following approximation for the dielec
tric constant, which can be used in an optical frequency range: 

( )
( )

.
ib b

2e w
w w w n

b
=

- -
	 (6)

Formula (6) adequately reproduces the experimentally observed 
complex dielectric constant of bismuth [15] for wb = 1 ́  1015 s–1, 
b  = 9 ́  1015 s–1, nb = 1 ́  1015 s–1. 
In the first approximation the monochromatic field (1), 

(2) causes oscillations of free and ‘bound’ electrons at a fre-
quency w0. Because the movement of the surface carriers in 
a perpendicular-to-the-boundary direction is nonlinear, this 
leads to the formation of a low-frequency current. 

3. Nonlinear current 

The transverse component of the electric field Ex induces a 
charge near the surface of a semi-metal. The electrons localised 
near the boundary are displaced by the longitudinal electric 
field of laser radiation and excite a nonlinear surface current. 
For a quantitative description of this process, we consider the 
hydrodynamic equations in the representation of complex 
amplitudes. The change in the electron density n by the action 
of the laser field is found from the equation of continuity 

iw0 edn = div j ,	 (7)

where  j = – iw0 en0 rf ; and n0 is the unperturbed concentration 
of conduction electrons. It should be noted that the transverse 
component of the current jx(x) has a discontinuity at the bis-
muth – vacuum interface, which corresponds to a charge 
induced on the surface. At the same time, both components of 
the current in the skin layer produce a charge disturbance. 
Thus, the expression for the concentration disturbance is 
written in the form: 
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1 	 (8)

where kx = k0 e- ; and kz = k0 cos a. A longitudinal low-fre-
quency current can be obtained by averaging the product of 
concentration and longitudinal velocity of the electrons with 
respect to the optical period. Below, we will consider only the 
longitudinal nonlinear current, because this current makes a 
major contribution to the emission from the surface of bismuth 
with configurations of effective masses (i.e., crystal orienta-
tions), corresponding to a maximum efficiency of THz genera
tion. 

Substituting the values of electric fields on the surface of 
bismuth in expression (8), after averaging we finally obtain 
the expression for the longitudinal current density in the skin 
layer: 
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Integrating (9) over the skin depth, we find an expression for 
the surface current: 
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In the case of a femtosecond laser pulse, whose wave-
length is much smaller than its transverse dimension, nonlin-
ear current will appear in the region of the overlap of incident 
and reflected optical radiation propagating along the surface 
of the semi-metal. The temporal current waveform (10) is 
determined by the envelope of the laser pulse. 

The surface current Jsurf, ‘running’ with a superluminal 
velocity along the vacuum – semi-metal interface (a medium 
with a large modulus for e) excites a system of volume low-
frequency currents inside the material. We assume that the 
current is produced by the obliquely incident laser pulse with 
a sufficiently large transverse dimension, so that the value of 
Jsur  f depends only on the running coordinate x = t – (z cos a)/c. 
This geometry corresponds to typical experimental condi-
tions in the generation of THz radiation on the surface of a 
metal [2 – 4, 8]. Because the speed of movement of the source 
is greater than the speed of light, the produced radiation is of 
Cherenkov type.

4. Electromagnetic radiation of the surface 
current 

Consider the solution of the problem of radiation of the found 
surface current. To describe the emission, we write Maxwell’s 
equations with a surface current source S(t): 

¶
¶ ,rot
t

cH E=- 	 (11)

¶
¶

¶
¶4 4 ,rot
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c
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Turning to the problem of finding the fields of the Cherenkov 
radiation, we make a substitution z ® z – Vt (c/cos a = V) and 
seek a stationary solution (¶/¶t = 0). Taking into account the 
value of the dielectric constant of bismuth, so as not to make the 
calculations cumbersome, we can neglect the left-hand side in 
equation (12). Then, we obtain a system of equations for the elec-
tromagnetic fields inside bismuth (–L < x < 0): 
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The system contains no equations for the transverse compo-
nents, i.e., by excluding the term (¶Ex /¶z) in equation (11), the 
system is closed. After calculating the radiation fields we go 
back to the conditions of applicability of the approximations 
made. 

On the bismuth surface (in the vicinity of x = 0), we have 
an expression for the current density 

¶
¶

( / ) ( ) .V
z

S z V xf
z
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Passing in (15) – (18) to the Fourier representation along 
the z coordinate and solving the resulting system with respect 
to the magnetic field, we obtain the equation 

¶
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where m0 is the mass of a free electron.
Boundary conditions in the case of a bismuth layer occu-

pying a region –L < x < 0 have the form: 

| | 4 ,H H c Jsurfy x y x0 0
p

- ==- =+ 	 (22)

| | .H H 0y x L y x L0 0- ==- + =- - 	 (23)

In vacuum, for the Cerenkov radiation field we can write the 
expressions 
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Inside bismuth, in accordance with the approximation made, 
the electric field is related to the magnetic field by the expres-
sion: 

i¶
¶

.
x
H
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c

Ey

z
z

c
=- 	 (26)

Using boundary conditions (22), (23) and the relations 
between the magnetic and electric fields at the bismuth – vacuum 
interface (24) – (26), taking into account the continuity of the 
longitudinal electric field Ez we can obtain a linear system of 
equations for the coefficients of the general solution for the 
magnetic field 

Hy = Aexp(i c x) + B exp(– i c x) .	 (27)

Solving this system of equations, we obtain the expressions 
for the magnetic field above and below the layer of bismuth: 
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where
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Returning to the conditions of applicability of the approxi-
mation used in equation (11), we note that the expression 
for the transverse component of the vector equation (12), by 
analogy with (26), yields the relation 

Ex ~ 
c

.V
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c 	 (30)

It follows that 
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In the case of the half-space occupied by bismuth, the 
above solution corresponds, with an accuracy up to small cor-
rections, to the general solution from papers [7, 8] 
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where eTHz is the dielectric constant in the THz frequency 
range. The magnetic field above the metal surface (in vacuum) 
can be determined from Maxwell’s equations: 

.
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H E
y

z

a= 	 (32)

The low-frequency radiation energy flux per unit area (i.e. the 
normal component of the Poynting vector) has the form 
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For evaluation, we assume that the incident optical pulse 
has a Gaussian envelope along the radial coordinate and with 
respect to time, i.e. its intensity on the sample surface is pro-
portional to
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a
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where a is the transverse size of the laser beam; T is the laser 
pulse duration with cT << a; and az = a /sin a. In accordance 
with the condition of Cherenkov synchronism, the low-fre-
quency radiation will propagate in the direction of specular 
reflection of the laser beam. Integrating the energy flux (33) 
over time and surface area, we can calculate the total energy 
radiated in the form of a low-frequency pulse upon reflection 
of optical radiation from the semi-metal: 
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As can be seen from formula (35), the energy of the low-
frequency response must strongly depend on the single crystal 
orientation (which determines the value of the effective masses 
mz and mx). 

The above-obtained analytical results were compared with 
the numerical solution of the Cauchy problem describing the 
incidence and reflection of the laser pulse, the formation of 
low-frequency nonlinear currents and their radiation in the 
form of THz pulses. The simulation runs until a steady state 
corresponding to the Cerenkov radiation is reached. This 
allows one to exclude the switching/transition effects (for 
details, see the Appendix). The simulation results for the angle 
of incidence a = 33.5° are shown in Fig. 1. In the numerical 
simulation we used quite a thin layer of bismuth with a thick-
ness of l0 /3, where l0 is the wavelength of the optical pulse. 
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Figure 1.  Shape of the emitted THz signal from the upper and lower 
surfaces of a bismuth plate having a finite thickness for (a) m0 /mx = 
3.84, m0 /mz = 1000 and (b) m0 /mx = 200, m0 /mz = 1000. The solid curves 
show the results of numerical simulation of the complete system of non-
linear hydrodynamic equations, the dashed curves correspond to the 
analytic solution, and dot-and-dash curves – to numerical simulation 
with a given tangential current source (7).
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The best agreement of the numerical solution with the 
analytical one for the emitted low-frequency field is achieved 
at the greatest transverse effective mass of the electrons. In 
this case, radiation can be described only by longitudinal cur-
rents. Table 1 shows the calculated generation efficiency for 
different positions of the axes of the crystal with respect to the 
plane of incidence. It can be seen that the highest generation 
efficiency is achieved when the smallest effective mass of the 
electrons corresponds to the direction determined by the 
intersection of the plane of incidence with the sample surface. 

Let us compare the energy of low-frequency radiation (35) 
for bismuth with the energy of radiation from the the surface 
of a highly conductive metal (gold, copper, aluminium, etc.). 
At an optimal angle of incidence of the laser pulse on the metal, 
the total energy of the THz response caused by the instanta-
neous quadratic nonlinearity is described by the expression [7]: 

/ ,W
m
e

cT
a E

32
9 2m

m0
2

2

0
2 2

2

0
4p

w w
= 	 (36)

where wm is the plasma frequency of the electrons in the metal. 
The ratio of energies (35) and (36) for the characteristic 
plasma frequency of the metal, wm –~ 20 – 30 fs–1, at a laser 
pulse duration of 50 fs is 

W

m

Bi

W  –~ 104.	 (37)

Thus, one should expect a significant increase in the 
energy of the generated low-frequency radiation in the transi-
tion to semi-metals due to a significant decrease in the effec-
tive mass of an electron in the crystal. In addition, the degree 
of shielding of optical and low-frequency radiation inside a 
semi-metal (proportional to |e|–3|eTHz|–1) may be less than 
in a normal metal [where it is proportional to (wmT )–2]. 

5. Conclusions 

In this paper we have proposed a theoretical model of genera-
tion of THz radiation when the surface of the semi-metal is 
irradiated by a femtosecond laser pulse. The mechanism in 
question is a generalisation of the mechanism of an instanta-
neous quadratic response of a metal, analysed in [5, 7]. 

It is shown that the transition from highly conductive 
metals to semi-metals can be accompanied by a significant 
increase in the amplitude of the low-frequency response (37) 
due to a reduction in the effective mass of the charge carrier 
and weakening of shielding of electromagnetic fields. In addi-
tion, the model predicts a strong dependence of the THz signal 
energy on the effective masses of the electron in x and z direc-
tions (35), i.e. on the orientation of the single-crystal sample. 
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Appendix. Numerical simulation 

For the numerical calculation of the problem of THz pulses, 
we have modified the approach previously developed for met-
als in [7]. In this approach, the Cauchy problem is calculated 
with a source simulating the incidence of an optical plane 
wavefront pulse onto the surface. The calculation is per-
formed until the Cherenkov radiation reaches a steady state. 
In numerical simulations, account is taken of both the hydro-
dynamic nonlinearities emerging from the term (uÑ) u and the 
nonlinearities associated with the magnetic field and with the 
inhomogeneity of the concentration of free charge carriers 
arising under the action of the laser field. In this case,  the 
presence of the electron gas temperature T0 eff corresponding 
to the Fermi energy in bismuth is also taken into account. For 
the influence of bound electrons to be taken into account, the 
model [7] has been supplemented with the equation describing 
the polarisation: 
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where u is the velocity of the ordered motion of free electrons. 
The second equation of hydrodynamics for the current of 

free electrons has been modified by introducing an anisotropic 
mass of free carriers described by the effective mass tensor 
Mf
t . The system was solved in the same manner as in [7]. The 
equation for the polarisation was integrated implicitly. Re- 
writing (4) in the form of an ordinary differential equation 
of first order for the vector (P, Q), where Q = Po , and using 
the values of these quantities at different times: pi = P(ti), qi = 
Q(ti – dt/2), we obtain the algebraic system: 

qi + 1 – qi + 2
bn (qi + 1 + qi)dt = (– wb

2 pi + bEi)dt,

pi + 1 – pi = qi + 1dt.

One can see that the quantities pi + 1 and qi + 1 can be explicitly 
calculated from the values of pi and qi. The calculation of qi + 1 
was conducted before calculating the electric field Ei + 1 = 
E(ti + dt). 

Table  1.  THz radiation energy (in rel. units) for various combinations 
of effective masses of the electron in the x and z axes, obtained by 
numerical simulation within the framework of the complete system of 
hydrodynamic equations of the electron gas. A plate of finite thickness 
is considered, and THz signals from the upper and lower surfaces are 
summarised.

m0 /mz

m0 /mx

3.84 200 1000

3.84 – 1.15 ́  10–5 2.15 ́  10–3

200 3.3 ́  10–3 – 3.12 ́  10–1

1000 1.88 2.25 –
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