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Abstract.  In the framework of classical electrodynamics we have 
obtained and investigated analytical expressions for the radiation 
linewidth of forbidden E2 transitions in an atom located near a 
dimer of spherical particles. It is shown that the material of parti-
cles, their location and size have a significant effect on the linewidth 
of the E2 transition in the atom. It is found that in the gap between 
metal spherical nanoparticles, the linewidth of E2 transitions in the 
atom can take on substantially larger values than in the case of an 
atom near a single metal nanoparticle. 

Keywords: linewidth, forbidden E2 transition, dimer of spherical 
particles. 

1. Introduction 

It is known that in the vicinity of material bodies the rate of 
spontaneous decay of atoms and molecules and correspond-
ingly the linewidth of emitted radiation can both increase and 
decrease (Purcell effect) [1]. Changing the linewidth is usually 
caused by electric dipole transitions [2]. However, atoms and 
molecules can be a source of a magnetic dipole, electric quad-
rupole and other types of multipole radiations, and the prob-
abilities of these transitions also significantly change in the 
presence of nanoparticles [3 – 9]. In general, the probability of 
spontaneous emission strongly decreases with increasing mul-
tipole order. For example, the ratio of intensities of quadru-
pole and dipole radiations in a vacuum is (a0 /l)2 ~ 10–6 – 10–8, 
where a0 is the linear dimension of a radiating system of 
charges, and l is the wavelength [10]. Because this relation-
ship is a small quantity, a study of quadrupole transitions 
(forbidden E2 transitions) is very complicated [11 – 13]. 
Nevertheless, quadrupole transitions are an important tool in 
ultra-high resolution spectroscopy (see, e.g., [14]). 

Moreover, if an atom is located close to a body that pro-
duces a large inhomogeneity of the electric field, the linewidth 
of the forbidden E2 transitions in the atom can be increased 
due to a large field gradient [15, 16]. Note that in laser beams 
it is possible to create conditions for the enhancement of the 

effects of interaction with a quadrupole [17 – 19]. On the basis 
of these effects, approaches are now being developed using 
nanostructured materials, which make it possible to signifi-
cantly improve spectroscopy of quadrupole transitions [20, 21]. 

To date, a theoretical investigation has been performed of 
a change in the linewidth of forbidden E2 transitions in an 
atom located near a spherical particle of a dielectric (metal) 
[3 – 5, 9], near a perfectly conducting cylinder [6], near a flat 
interface between a vacuum and a dielectric (metal) and in a 
plane gap between two dielectric (metal) media [7], near a 
structure in the form of metal nanostrips on a dielectric sub-
strate [22], and also near an infinite two-dimensional periodic 
lattice of metal nanospheres [23]. 

A dimer of nanoparticles has a more interesting geometry, 
because it serves as a nanoantenna, which can be used to con-
trol efficiently both the radiation and the detection of the 
field. For the first time, this geometry was considered in [24] 
for two nanorods of finite length and square cross section. 
For this geometry, there is no analytical solution, and there-
fore Kern and Martin [24] studied numerically only some par-
ticular cases. This, of course, does not allow one to establish 
the fundamental physical laws and their dependence on the 
parameters of the problem. To establish the fundamental 
physical laws it is extremely important to have an analytical 
solution for nanoantennas consisting of nanoparticles of sim-
ple shape. 

The purpose of this paper is to construct an analytical 
description of the influence of a dimer of identical spherical 
particles on the radiation linewidth of forbidden E2 transi-
tions in the atom in the framework of classical electrodynam-
ics. All analytical results in the work will be obtained for arbi-
trary sizes of particles and arbitrary distances between them, 
as well as for an arbitrary composition of the particles and 
arbitrary quadrupole moments of the atom. 

The paper is structured as follows. In Section 2 we con-
sider an electromagnetic field of an electric quadrupole source 
(atom) in the presence of a dimer of spherical particles. In 
Section 3 we derive an expression for the linewidth of the for-
bidden E2 transitions in the atom located near the dimer. In 
Section 4 we present the obtained results in graphic form and 
their discussion, and in Section 5 (Conclusions) we report the 
main results of the work. 

2. Electromagnetic field of an electric 
quadrupole source (atom) in the presence 
of a dimer of spherical particles 

To calculate the linewidth of the forbidden E2 transition, we 
first need to find the radiation field, which arises due to this 
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transition. To this end, the forbidden transition is simulated 
by an electric quadrupole source. To find the radiation field 
produced near a dimer of spherical particles, we use the 
T-matrix method. This method is often used to describe the 
scattering of electromagnetic waves by clusters of spherical 
particles. The method is accurate and based on Mie theory for 
each particle and the addition theorem for vector spherical 
harmonics [25 – 30]. The original method was developed by 
Waterman [31] and later was significantly improved in [32 – 36]. 
A bibliography on the T-matrix method is available in [37].

In the case of a dimer of spherical particles, the T-matrix 
method is reduced to the introduction of two local coordinate 
systems associated with each particle. For definiteness, we 
assume that the origins of the local Cartesian coordinate sys-
tems are located in the centres of the particles; the systems 
have parallel and equally directed axes and a common z axis 
(Fig. 1). The coordinates and all other quantities related to 
the sth (s = 1, 2) particle will be denoted by an additional 
index 1 or 2. Below, we consider a dimer of identical spherical 
particles of radius a, made of a material with a permittivity 
and permeability e and m, respectively. The dimer resides in a 
medium with unity values of permittivity and permeability. 
The case of a dimer of different spherical particles can be con-
sidered similarly. 

To solve the problem on emission of an electric quadru-
pole source near a dimer, it is necessary to write general 
expressions for the fields outside the particles with allowance 
for the quadrupole and general expressions for the fields 
inside the particles. Then, using boundary conditions on the 
surface of the particles, it is needed to find the unknown coef-
ficients of expansions. 

Using the representation of the field of a quadrupole 
source in spherical coordinates [9], for the intensities of the 
electric and magnetic fields of the source in local spherical 
coordinates associated with the sth particle, we write the 
expressions [the factor exp(–iwt), characterising the time 
dependence of the fields, is hereinafter omitted]: 
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are the vector spherical harmonics and expansion coefficients 
[9], respectively, written in the sth local coordinate system;  sr 
and sr0 are the radius vectors of the observation points and 
locations of the quadrupole, respectively; k0 = w/c is the wave 
number; w is the frequency; and c is the speed of light (in vac-
uum). Expressions for the coefficients for (1) can be written as 
follows [9]: 
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Dab are the components of the matrix element of the quadru-
pole moment in the E2 transition; dal  is the Cartesian compo-
nent of the gradient operator dl over the coordinates of the 
point defined by the radius vector ;rs l  aL

s lt  and aK
s lt  are the 

Cartesian components of the operator  )(i r # d=-L ss l l lt  and 
# d )i L=- (Ks sl l lt t , respectively; 0 G r < 3s l , 0 G  G pqs l  and 

0 G  2< pjs l  are the spherical coordinates of the point defined 
by the radius vector rs l; Pn

m(x) is the associated Legendre 
function [38]; and yn(x) and zn(x) are the Riccati – Bessel func-
tions [38] related to the Bessel and Hankel functions by the 
expressions yn(x) = (px/2)1/2Jn+1/2(x) and zn(x) = (px/2)1/2

( )H x/
( )
n 1 2
1
+ . Note that in writing (2), as well as hereinafter we 

take into account the fact that the components of the electric 
quadrupole moment tensor and the components of the gradi-
ent operator do not change in the transition from one local 
Cartesian coordinate system to the other, because the axes of 
the considered local systems are parallel and equally directed 
(Fig. 1). Details of deriving expression (2) are given in [9]. 

The electric and magnetic field strengths induced outside 
of a dimer, i.e. strengths of the reflected fields, can be repre-
sented as the sum of the partial field strengths reflected from 
each of the particles, and written in the local coordinates [39]: 
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and the coefficients C ( )
mn
1s  and D ( )

mn
1s  are found with the help of 

boundary conditions. The strengths of the total field outside 
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Figure 1.  Geometry of the problem on an electric quadrupole source 
(atom) located near a dimer of identical spherical particles. 
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of the particles are thus determined by the sum of expressions 
(1) and (4). 

Expressions for the electric and magnetic field strengths 
induced inside the sth particle of the dimer, i.e. for the 
strengths of the transmitted fields, can be written in the form 
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where k k fn= 0 ; /Z n f=  is the impedance; M ps
mn}  and 

s
N p

mn}  are the vector spherical harmonics [9] written in the sth 
local coordinate system; and A ( )

mn
2s  and B ( )

mn
2s  can be found 

using the boundary conditions.
In order to determine the unknown coefficients in expan-

sions (5) and (6), it is necessary to use the boundary condi-
tions of continuity of the tangential components of the elec-
tric and magnetic field strengths on the surface of a sphere 
[40]. In this case, one should employ the addition theorem of 
the vector spherical harmonics (see., e.g., [41]), which allows 
the vector harmonics describing the field outside of a dimer 
and written in some local coordinates (for example, for s = 2) 
to be represented in the form of expansions in harmonics 
written in other local coordinates (s = 1). Substituting the 
data of the expansion in (5), we obtain expressions for the 
strengths   E1

2  and H1
2  (s = 2) in the form of series over the 

vector spherical harmonics in the coordinates of the first 
sphere (s = 1). The thus found expressions are added to the 
expressions for the strengths   E1 1  and H1 1 (s = 1) [see (4)] and 
can already be used to match the fields on the surface of the 
first particle. Similar actions are performed by using the 
boundary conditions on the surface of the second particle. 

Since the atom in question resides outside of the spherical 
particles, we will not need explicit expressions for the coeffi-
cients entering into the equations for the fields inside the 
sphere to find the radiation linewidth, which is expressed in 
terms of the energy flux at infinity. For the coefficients C ( )s

mn
1  

and D ( )
mn
1s , which describe the reflected field, we can obtain the 

equations: 
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where the lower limit of the summation over q should be 
assumed equal to 1 if m = 0, and equal to |m| if m ¹ 0; func-
tions Vmnq and Wmnq are given in [41]; the scattering coeffi-
cients an и bn have the form 
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and the prime in the function denotes its derivative. If the par-
ticles of the dimer are located at a large distance from one 
another, we can be put Vmnq » 0 and Wmnq » 0 in (7) [41], 
which leads to the relations 
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which express the solution for the field scattered by the sth 
spherical particle [9] and written in the sth local coordinate 
system. This confirms the correctness of equations (7). 

As is clear from (7), the structure of the resulting equa-
tions is such that the subscript n in them is changed, while 
the subscript m can be fixed. To solve numerically expres-
sion (7), we use truncated equations with n G nmax. The 
greater the nmax, the more accurate the results for the coef-
ficients C ( )

mn
1s  and D ( )

mn
1s , which is due to their tendency to 

zero at  n ® ¥ [42]. We should also take into account the 
mutual configuration of spherical particles: the closer they 
are to each other, the greater nmax is required to achieve a 
given accuracy [42]. 

3. Linewidth of E2 transitions in the atom 
located near a dimer of spherical particles

The relative radiation linewidth of forbidden E2 transitions in 
the atom located near a dimer of spherical particles can be 
calculated in the framework of classical electrodynamics as 
the ratio of the total radiation power Pr of the system consist-
ing of a quadrupole source and a dimer to the radiation power 
P0 of a source in the absence of a dimer. The power P0 is 
found from the known expression [43]: 
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To find Pr, we will use the formula [40] 
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where the integration is performed over a closed surface S, 
covering the atom and the dimer; n is the external normal to 
this surface; and the asterisk in (110 denotes complex conju-
gation. As the surface S it is convenient to take a sphere of 
infinite radius with a centre at any of the local coordinate sys-
tems. For example, performing calculations in the local coor-
dinates of the first particle (s = 1) and normalising to the 
radiation power in free space, we find the expression:
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for the relative linewidth gr/g0 of the E2 transition in the atom, 
where g0 = 4P0 /('~ ) is the linewidth of the E2 transition in 
the atom in the absence of a dimer [7]; 
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the lower limit of the summation over q should be assumed 
equal to 1 if m = 0, and equal to |m| if m ¹ 0; and functions 
Vmnqu  and Wmnq

u  are given in [40]. 
It should be noted that expression (12) corresponds to the 

case of a two-level atom. In this case, Dab = (Dab)fi  should be 
considered as an electric quadrupole moment of the i ® f tran-
sition with frequency wfi » w [7]. To take into account the 
possibility of transition into several states, it is necessary to 
sum the corresponding partial linewidths over the final states. 

It should also be noted that the use of the classical and 
quantum theories to calculate the rates of the spontaneous 
decay of the electric quadrupole source near a material body 
leads, strictly speaking, to different results. Klimov and 
Ducloy [7] have shown the equivalence of the classical and 
quantum approaches only in the description of the total rate 
of the spontaneous decay of the quadrupole near the material 
body in the case of weak interaction, when the spontaneous 
decay can be described by the decay rate and a single transi-
tion frequency. If the interaction between the atom and the 
body is strong, there arise complex effects, for the description 
of which it is needed to make use of quantum electrodynamics 
[44, 45]. In addition, there is no exact equivalence of the quan-
tum and classical approaches in calculating the radiative rate 
of the spontaneous decay of an atom near an absorbing body. 
The situation is further complicated by the fact that in the 
framework of the quantum theory one should use a nonstan-
dard quantization scheme [46 – 49]. 

In this paper we consider only the radiative rate of the 
spontaneous decay (i.e. the radiation linewidth), because this 
value is measured in the experiments. The nonradiative chan-
nel of the spontaneous decay, i.e. the channel associated with 
the Joule loss in the material of the spheres, will be discussed 
in a separate publication. 

4. Analysis of the results and graphic 
illustrations 

The linewidth of the E2 transition in the atom near a dimer of 
spherical particles depends on many parameters and its over-
all description is very complex. Below, we will present, for 
clarity, a graphic illustration of some specific regimes of inter-
action of the atom with dimers of different composition. In 
the present paper we restrict ourselves to only the most inter-
esting case of the atom in the gap between the particles on a 
common z axis passing through the centres of the particles 
(Fig. 1), because in this case, the local fields are maximal. In 
this geometry, the expression for the coefficients As mn

( )0 ,
,B Cs

mn
s

mn
( ) ( )0 0  and D ( )s

mn
0  are greatly simplified [9], and so different 

from zero are only the coefficients C ( )s
mn
1  and D (1)s

mn  with m = 0, 
±1, ±2. 

Next, let us consider some special cases of the atom with a 
given quadrupole moment. It should be noted that in the 
experiment it is difficult to contemplate a situation with a 
strictly predetermined orientation of the quadrupole moment. 
However, consideration of the atoms with the average orien-
tation of the quadrupole moment leads to a drastic weakening 
of all the effects. Therefore, below we consider atoms with a 

fixed orientation of the moments. Here we confine ourselves 
to the cases of the atom with a radially oriented quadrupole 
moment with Dxx = Dyy  and Dxy = Dxz = Dyz = 0, located on 
the z axis [4], as well as the atom with a tangentially oriented 
quadrupole moment with Dxx = Dzz (or Dyy = Dzz) and Dxy = 
Dxz = Dyz = 0 [4]. Other cases with different values of the 
quadrupole moments, including averaged ones, can be con-
sidered using the general expressions found in this work. 

Figure 2 shows the relative linewidth of the forbidden E2 
transition in the atom located in the gap of the dimer of the 
dielectric spheres near the surface of the first sphere and near 
the surface of a dielectric sphere as a function of k0a. 

One can see from Fig. 2 that at k0a ® 0 the linewidth of the 
E2 transition in the atom increases. The asymptotic expres-
sion for the linewidth in the case of an atom located on the 
surface of a dielectric nanosphere (k0a << 1) can be found and 
has, for radially (rad) and tangentially (tan) oriented quadru-
pole moments of the atom, the form [4]: 
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As follows from (14), at k0a ® 0 the linewidths for atoms with 
radially and tangentially oriented quadrupole moments 
increase indefinitely. The asymptotic expressions for atoms 

gr/g0

100

101

102

103

0 1 2 3 4 k0a

k0a

a

gr/g0

100

101

102

103

0 1 2 3 4

b

l
2a  = ¥

l
2a  = ¥

1.1

1.1

Figure 2.  Relative radiation linewidth of the forbidden E2 transition in 
an atom having (a) radial and (b) tangential orientations of the electric 
quadrupole moment and located near the first sphere of the dimer (1r0 = 
a and 2r0 = l – a ) on the z axis as a function of k0a for a given l /(2a). 
Permittivity and permeability of the dimer particles are e = 6 and m = 1. 
The case of a single sphere corresponds to l /(2a) = ¥. 
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with other orientations of the quadrupole moment are given 
in [9]. One can see from Fig. 2 that when the spheres of the dimer 
are closely located, relationship (14) is changed: at k0a ® 0 
the rate of an increase in gr/g0 in the case of an atom in the gap 
between two nanospheres increases as compared with the case 
of an atom near a nanosphere. 

With increasing k0a, the dependence of the relative line-
width of the forbidden E2 transition in the atom located in 
the gap of the dimer of dielectric spheres becomes more com-
plex. One can see from Fig. 2 that there appears an oscillatory 
dependence of the linewidth on k0a at a large number of peaks 
corresponding to one or another of the whispering gallery 
modes, which are excited by the atom in the dimer. In this 
case, the proximity of the second sphere leads to a shift and 
splitting of the peaks, corresponding to one particle, due to an 
excitation of a large number of modes in the dimer. 

It follows from Fig. 2 that a significant difference in the 
linewidths of forbidden E2 transitions in the atom near one 
sphere and in the gap of a dimer of two spheres is observed in 
the case of nanospheres (k0a << 1). This difference is even 
more enhanced for metal nanospheres (e< 0, m > 0), because in 
the gap between closely located metal nanoparticles the local 
field increases.

Figure 3 shows the relative linewidth of the forbidden E2 
transition in the atom with a radially oriented electric quadru-
pole moment, which is located in the gap of a dimer of two 
metal nanospheres and near the surface of a metal nano-
sphere, as a function of the permittivity. 

One can see from Fig. 3a that the linewidths for a nanodi-
mer and a nanosphere are different. The relative radiation 
linewidth of the E2 transition in the atom located in the gap 
between the nanospheres can take substantially higher values 
than in the atom near a nanosphere. In the case of the dimer, 
the dependence of the relative linewidth on the permittivity 
has many peaks due to a large number of plasmon modes 
excited in a nanodimer than those excited in a nanoparticle. 
With decreasing distance between the nanospheres the num-
ber of excited modes increases. For an atom with a radially 
oriented quadrupole moment, which is located in the gap of a 
dimer near the surface of one of the nanospheres (Fig. 3a), 
L- and M-modes are excited [50, 51], and for the atom located 
in the centre of the gap (Fig. 3b), T- and M-modes are excited 
[50, 51]. 

Note that the surface charge in the case of L- and M-modes 
is concentrated near the gap between the nanoparticles 
[50, 52], and so these modes are effectively excited by a local 
source (atom). It follows from Fig. 3a that with the approach 
of the nanospheres, the relative linewidth of the E2 transition 
in the atom for the L- and M-modes increases. With the sepa-
ration of the nanospheres, M-modes disappear faster than 
L-modes, because they occur only at l /(2a) < 1.2 [50, 51]. Note 
that in their properties M-modes are ‘dark’ modes. 

The third type of modes in a dimer is T-modes. They have 
a charge distribution mainly outside of the gap between the 
nanoparticles [50,  52] and are therefore most effectively 
excited by a plane electromagnetic wave. One can see from 
Fig. 3b that with the approach of the nanospheres, the rela-
tive linewidth for the T-mode decreases.

Therefore, the electric quadrupole source can excite all 
types of plasmon modes arising in a dimer of metal nanopar-
ticles. A large number of plasmon modes allow one to control 
the spontaneous decay of an atom located in the gap of a 
dimer if we change the distance between the nanoparticles. 

5. Conclusions 

Thus, within the framework of classical electrodynamics we 
have obtained and studied analytical expressions for the 
radiation linewidth of the forbidden E2 transitions in the 
atom, which is located near a dimer of identical spherical 
particles of arbitrary material, size and mutual position. We 
have studied the features of the emission of atoms with dif-
ferent values of the quadrupole moment for the dielectric 
and metal dimer. 

It is shown that in case of an atom in the gap of a dimer of 
spherical metal nanoparticles, the radiation linewidth of the 
forbidden E2 transitions can take values that are substantially 
greater than in the case of a quadrupole source near a single 
metal nanoparticle. We have also shown that such an atom 
can excite all types of plasmon modes that exist in the dimer 
of metal nanoparticles. 
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Figure 3.  Relative radiation linewidth of the forbidden E2 transition in 
an atom having a radially oriented electric quadrupole moment and lo-
cated on the z axis (a) in a gap of the dimer near the first nanosphere  
(1r0 = a and 2r0 = l – a) and (b) in the centre of the gap between the 
nanospheres (1r0 = 2r0 = l/2) as a function of the real part of the permit-
tivity of the nanospheres e = e' + i0.01 for m = 1, k0a = 0.1 and a given 
l/(2a). The case of a single nanosphere with an atom located near the 
surface corresponds to l /(2a) = ¥. The letters L, T and M denote the 
peaks corresponding to the excitation of L-, T- and M-modes in the di-
mer of the nanospheres [50, 51].
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The results obtained can be used to calculate the linewidth 
of the forbidden E2 transitions in atoms located near a dimer 
of spherical particles and to interpret the experimental data 
on the interaction of nanoparticles with atoms and molecules, 
including the design of nanolasers and spasers. 
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