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Abstract.  This paper examines for the first time the nature of an 
anomalous scatter in the birefringence beat length in an anisotropic 
silica fibre upon changes in its temperature. The effect has been 
studied by a conventional interferometric technique, using a spec­
trum analyser. The dispersion of the scatter in the beat length has 
been shown to be considerably higher at short fibre lengths, which 
is due to the effect of the protective coating. To interpret the 
observed effects, a physical model has been proposed which con­
siders random centres, such as microbends, which form and dis­
appear in the protective coating of the fibre in response to tempera­
ture changes. The random nature of such local centres may lead to 
unpredictable changes in the birefringence of anisotropic fibres 
and, hence, to changes in the sensitivity and accuracy of Faraday 
effect current sensors.

Keywords: optical fibres, birefringence, protective coating.

1. Introduction

Anisotropic optical fibres include fibres with a high built-in 
linear birefringence (BR), which are produced by drawing 
without spinning the preform (PM fibres), and fibres pro-
duced by drawing from a spinning preform (spun fibres). All 
such fibres have a protective coating – typically from urethane 
acrylates – several tens of microns in thickness. An important 
issue pertaining to the use of such fibres, e.g. in Faraday effect 
current sensors [1 – 3], is stability of their parameters to changes 
in ambient temperature [2, 4 – 6]. A key parameter that is mea-
sured in experimental studies of such fibres is the beat length 
Lb of the built-in linear BR, which is usually a linear function 
of temperature T:

Lb = Lb0 [1 + a(T – T0)],	 (1)

where Lb0 is the beat length at temperature T0 and a is the 
temperature coefficient, which ranges from 10–6 to 10–3 K–1, 
depending on the type of anisotropic fibre and the procedure 
used to produce artificial built-in BR. The largest coefficient 
a is offered by fibres containing various stress elements, which 
differ in thermal expansion coefficients from the fibre mate-

rial [7]. Microstructured fibres in which built-in BR is due to 
an elliptical core surrounded by air holes with a refractive index 
near unity have the smallest temperature coefficient [8, 9].

The beat length of built-in linear BR is often evaluated by 
analysing interference beat spectra of modes with orthogonal 
polarisations [10 – 13]. To this end, the fibre is placed between 
crossed polarisers. As a result, one obtains not the desired 
phase BR but group BR [11] in the case of PM fibres or a 
mixture of phase and group BR in the case of spun fibres 
[13]. However, the simple measurement procedure and low 
BR dispersion favour the conventional approach, in which BR 
dispersion is neglected. The beat length of built-in linear BR is 
then given by
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L L Z
2b tw

2

0

T
l
l

= 	 (3)

for spun fibre [12, 13], where D l is the spectral beat period; 
l0  is the operating wavelength; Z is the length of the fibre 
section; and Ltw is the spin pitch of its helical structure. In our 
studies, we also used this method.

Fibres fabricated at the V.A. Kotel’nikov Institute of Radio 
Engineering and Electronics, Russian Academy of Sciences, 
and by other manufacturers (FiberCore and Nufern) were 
studied in the temperature range from –60 to +60 °C. For all 
the fibres, we obtained a linear relation of the form (1) with 
slightly different temperature coefficients a. We were, however, 
interested by the large scatter in data (see Fig. 6a). Analysis of 
standard deviations averaged over the entire temperature 
range examined indicated that they depended on the fibre 
segment length Z, whereas calculated parameters Lb0 and a 
of the linear relation (1) were independent of fibre length to 
within the accuracy in our measurements. Stripping the 
coating caused a drastic decrease in scatter dispersion (see 
Fig. 6b), which led us to think that the scatter originated from 
the deformation of the fibre under the effect of the protective 
coating. The random nature of the scatter in measurement 
results suggests that temperature changes cause a spontaneous 
local transformation of polymeric properties in the coating, 
leading to the formation of random disturbing centres, which 
appear and disappear in the coating in response to tempera-
ture changes in the fibre and influence its BR.

In this paper, we present an experimental and theoretical 
study of the nature of the anomalous scatter in the measured 
beat length in an optical fibre with built-in linear BR in 
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response to temperature changes and interpret the observed 
effects in terms of a model proposed by us.

2. Theory

2.1. External influences on polarisation fibre

We consider in detail external influences on PM fibre, whose 
key features persist in the case of external influences on spun 
fibre. For spun fibre, however, relevant equations cannot be 
solved in quadratures [14], so no such solutions are presented 
here.

Let an external influence from some centre induce linear 
BR, whose major axes lie in a plane normal to the fibre axis 
and make an angle j0 with the respective axes of the built-in 
linear BR of the PM fibre. Since such centres appear at ran-
dom, the angle j0 is also random. Built-in and induced linear 
BRs add vectorially, so at a large number of centres the 
induced linear BRs would be expected to disappear by virtue 
of averaging over the angle j0.

Consider the effect of an individual centre on PM fibre. 
Let the fibre consist of two segments of length Z1 and Z2, 
both having built-in BR with a phase delay per unit length 
Db = 2p/Lb, and let induced linear BR, with a phase delay per 
unit length d = 2p/Lind, act only in segment Z1, with Z1 << Z2 
(Lb and Lind are the beat lengths of the corresponding BRs). 
The variations in fields Ex and Ey with orthogonal polarisa-
tions as the light propagates   along the fibre can be repre-
sented by a differential matrix, N  (see e.g. Ref. [14]):
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where A = Db + d cos 2j0. Integrating the differential matrix 
[15], we obtain a Jones matrix, ( )T Z1 1 , in segment Z1:
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where sin A22 2
0

2d jW = + . It follows from (5) that not only 
does the induced BR (at j0 ¹ 0 + mp) change the built-in 
linear BR, but it also leads to the intermixing of orthogonal 
modes due to off-diagonal matrix elements [15]. In the 
absence of induced BR (d = 0) in segment Z2, the Jones 
matrix ( )T Z2 2  reduces to the form
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If light passes first through segment Z1 and then through 
segment Z2, the fields of the orthogonal modes can be calcu-
lated using the matrix product
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In experiments, a fibre to be studied is placed between 
crossed polarisers so that the major axes of its built-in BR 
are at 45° to the transmission plane of the polarisers. In this 
simplest scheme, the output intensity is

I = [Ex(Z1 + Z2) + Ey(Z1 + Z2)] [Ex
*(Z1 + Z2) + Ey

*(Z1 + Z2)]/2

2
( ) ( ) ( )

sin
cos cos cosI Z A Z Z1

2
0 2

2 2
0

2 2 2 1T T
d j

b b
W W

W= + +;

( ) ( ) .sin sinZ Z2 1Tb
W

W-
A

E 	 (8)

In passing to the wavelength dependence, we take into 
account the following:

1. BR dispersion can be neglected near the operating wave-
length, i.e. we take nx – ny » const.

2. The wavelength dependence of Db takes the form Db = 
( l0 /l) (2p/Lb0), where Lb0 is the beat length of the built-in BR 
at the operating wavelength l0.

3. There is an analogous dependence for the linear BR 
induced by an external influence: d = ( l0 /l) (2p/Lind0).

4. The spatial frequency can be represented in the form
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5. We call attention to the fact that the coefficients of the 
sines and cosines in (9) are independent of wavelength l.

It is the wavelength dependence of intensity (8) that is 
observed on the display of a spectrum analyser in experiments. 
In the absence of external influences, we have d = 0 and there-
fore W = Db. Relation (8) then takes the form

I = I0 [1 + cos Db(Z1 + Z2)].	 (10)

To more accurately determine polarisation beat minima, 
let us present function (8) in a semilog plot, analogous to 
what is seen on the display of a spectrum analyser. For the 
same reason, the wavelength step is chosen to be 0.02 nm. 
Figure 1 shows beat spectra for different 2j0 angles (doubled 
j0 corresponds to representation on the Poincare sphere). 
It follows from Fig. 1 that, depending on the angle 2j0, the 
visibility of the interference pattern may decrease (with the 
lowest visibility at 2j0 = 45° and 135°), which will lead to an 
increased error in the determination of the wavelength dif
ference D l between two neighbouring minima, necessary for 
calculating the beat length of built-in BR by formula (2). Such 
a decrease in fringe visibility is indeed observed in experi-
ments. Relation (8) has three spatial dependences, on DbZ2, 
DbZ2 – WZ1 и DbZ2 + WZ1, which may result in ‘visibility 
resonances’ in the beat spectrum. For example, at Lb0 = 9 mm, 
Lind0 = 0.1 mm, Z2 = 2 m and Z1 = 0.347 mm, the beat visibility 
near the operating wavelength l0 = 1550 nm is nearly zero.

Figure 2 shows a ‘correction’ DLb due to an external influ-
ence with a beat length Lind, acting over a length Z1, to the 
beat length Lb, determined over a length Z2, as a function of 
angle 2j0. Where possible, we avoided visibility resonances. 
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Note that the change in Lb reaches several percent. At 2j0 » 
90°, the additional contribution to Lb is zero. Moreover, this 
contribution changes sign at 2j0 = 90°. Thus, the contribu-
tions of centres at 2j0 < 90° can be compensated for by those 
at 2j0 > 90°.

In the case represented in Fig. 3, a fibre bend was chosen as 
an external influence. It is seen that increasing the fibre length 
Z1 over which it acts or the local influence itself (reducing 
Lind0) leads to an increase in the contribution |DLb| to the net 
Lb. At a beat length Lind0 = 1 mm, the contribution to Lb 
exceeds 0.1 mm even at Z1 = 4 mm.

Thus, strong external influences (exceeding built-in ones) 
acting on short lengths of fibre and separated by considerably 
longer sections (Z2 = 2 m) may make appreciable contribu-
tions to the measured net beat length Lb of built-in BR. Their 
contributions at 2j0 < 90° can be compensated for by those 
at 2j0 > 90°.

2.2. Random centres. Poisson distribution

We are interested in the probability that a fibre segment of 
length x contains r centres capable of changing the average 
BR of the segment. The following assumptions are thought 
to be true:
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Figure 1.  Calculated polarisation beat spectra for built-in and induced BR in PM fibre at Lb0 = 9 mm, Lind0 = 0.3 mm, Z1 = 1 mm, Z2 = 2 m and 
2j0 = (a) 0, (b) 45°, (c) 90° and (d) 150°.
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Figure 2.  Calculated microbend contribution DLb to the beat length Lb 
as a function of angle 2j0 at Lb0 = 9 mm, Lind0 = 0.1 mm, Z2 = 2 m and 
Z1 = ( 1 ) 1 and ( 2 ) 0.694 mm.
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Figure 3.  Calculated contribution |DLb| to the beat length as a function 
of bend (external influence) length Z1 for a PM fibre of total length 
Z1 + Z2 (Z2 = 2 m) at induced beat lengths Lind0 = ( 1 ) 0.1, ( 2 ) 0.3 and 
( 3 ) 1.0 mm.
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1. The formation of a centre in a fibre segment of length x 
is  independent of whether such centres were present there 
before.

2. The probability that a centre is present in a short seg-
ment of length dx is proportional to this length. In other 
words, the probability that a centre is present in a segment 
from x to x + dx is hdx + o(dx), where o(dx) has a higher order 
of smallness than does dx.

3. The probability that two or more centres are present in 
a given fibre segment is 0 + o(dx), i.e. zero.

It is easy to see (see e.g. Hudson [16]) that these assump-
tions lead us to the Poisson distribution. If the probability 
that an event occurs in an interval (of space, time etc.) Dx is  
hdx, where h is a constant, the probability P that, in a final 
interval of length x, the event will occur independently k times 
follows the Poisson distribution [16]

( )
!

( ),expP k
k
K K
k

= - 	 (11)

where K = hx is the mean number of events in an interval of 
length x. The mean number of events is K and the standard 
deviation is K . An estimate of the parameter h is k/x, with a 
standard deviation /k x . The Poisson probability distribution 
allows one to calculate probabilities of rare events.

Let Dx be the length of a fibre segment containing on 
average one centre, i.e. hDx = 1. Let us determine the proba-
bility that N centres are present in a segment of length x = 
NDx; k = x/Dx = N. From (11), we obtain
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The factorial in the denominator of (12) can be expressed 
through the gamma function (Sonin’s formula) [16]:
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This formula can also be used in the case of half-integer N 
values. Substituting (13) into (12), we obtain
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Thus, at a long length of fibre, the probability of the presence 
of N centres is inversely proportional to the square root of the 
fibre length.

The probability that one more centre (k = N + 1) appears 
in a segment of length x containing on average K = N centres is
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Substituting (13) for the factorial, we obtain
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The formation of an additional centre with probability (16) 
at a mean number of centres K = N can be realised in our 
experiments at a long length of fibre.

At a short length of fibre, we can take that N = x /Dx, as 
above, but the segment length Dx corresponding on average 
to one centre here exceeds the length of the fibre segment 
under consideration: Dx > x, i.e. N < 1. Let us find the prob-
ability that a single centre is present in a segment of length x. 
The mean number of centres is K = hx = hNDx = N (k = 1). 
Relation (11) takes the form

P(1) = N exp (–N).	 (17)

At low N values (N < 1), the probability P(1) scales linearly 
with N and, hence, with the fibre length x. Similarly, at a 
mean number of centres K = N, the probability that there are 
two centres (k = 2) is

P(2) = (N2/2) exp (–N),	 (18)

and the probability of three centres (k = 3) is

 P(3) = (N3/6) exp (–N).	 (19)

With increasing fibre length, the measurement error 
changes from (17) to (16), with a maximum at N » 1. For 
N < 1 (Dx > x), increasing the fibre length leads to an increase 
in the observed standard deviation of the beat length Lb in 
proportion to the fibre length. At long lengths of fibre 
(N >> 1, Dx << x), increasing the fibre length reduces the 
standard deviation in accordance with (16). Moreover, the 
effects of centres compensate for each other (the mean effect 
is zero because of the averaging over the azimuth).

3. Experimental

3.1. Experimental setup and data processing techniques

Figure 4 shows a schematic of the experimental setup. As a 
broadband light source ( 1 ), we used an ESS-30-M-01 super-
luminescent erbium-doped fibre oscillator, which allowed light 
of 5 – 7 mW power with a –60 dBm bandwidth of about 90 nm 
and wavelength near l = 1550 nm to be coupled into single-
mode fibre. The light from the source ( 1 ) was directed to a 
fibre-optic polariser ( 2 ) with an extinction of at least 35 dB 
throughout the band. The linearly polarised light passed 
through a fusion splice ( 3 ) and entered the fibre under study 
( 4 ), enclosed in a thermal chamber ( 5 ). Next, after passing 
through another fusion splice ( 6 ) and a fibre-optic analyser 
( 7 ) similar to the polariser ( 2 ), the light was fed to a Yokogawa 
AQ6370C spectrum analyser at the minimum adjustable spec-
tral resolution g1 = 0.017 nm. The fusion splices ( 3, 6 ) were 
made so that the polarisation axes of the two fibres made an 
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Figure 4.  Schematic of the experimental setup: 	
( 1 ) broadband optical source; ( 2 ) fibre-optic polariser; ( 3, 6 ) fusion 
splices; ( 4 ) fibre under investigation; ( 5 ) thermal chamber; ( 7 ) fibre-
optic analyser; ( 8 ) spectrum analyser.
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angle of 45°. The thermal chamber ( 5 ) allowed the tempera-
ture to be controlled and maintained with an accuracy of 
±0.2° in the range from –60 to +60 °C.

Figure 5 shows a typical experimental spectrum as observed 
on the display of the spectrum analyser. We see an interference 
spectrum on a semilog scale, superimposed over the emission 
spectrum of the superluminescent erbium-doped fibre source 
( 1 ). The boxes in the bottom part of the screen indicate the 
boundary and centre wavelengths of the range under investi-
gation (1530, 1560 and 1590 nm, respectively) and the divi-
sion value on the horizontal axis of the screen (6 nm div–1). 
Displayed in the top part of the screen are the division value 
on the vertical axis of the screen (10 dB div–1), the spectral 
resolution along the horizontal axis (RES, 0.02 nm), the aver-
aging time (AVG, 1 s) and the number of data points in the 
sample (SMPL, 15 001). Settings specify a spectral resolution 
of 0.017 nm, and the 0.02-nm resolution indicated on the 
screen seems to be a rounded value.

In our measurements, the spectral resolution g1 of the 
spectrum analyser is also instrumental uncertainty g1( l) in the 
wavelength measured by this instrument, which determines its 
relative accuracy. Samples (data points of the spectrum) are 
0.004 nm apart and might ensure a better spectral resolution. 
The marker that is used to measure wavelengths moves across 
the spectrum with a step of 0.002 nm. Note that the calculated 
interference beat spectrum presented in Fig. 1c is very similar 
to the experimental spectrum in Fig. 5.

The beat length was measured as follows: First we mea-
sured the wavelength difference D l between two minima in 
the spectrum at wavelengths l1 and l2 in the vicinity of the 
operating wavelength (1550 nm). Next, we calculated the beat 
length Lb

ex by formulas (2) and (3) for PM and spun fibres, 
respectively. The wavelength l0 in these formulas was taken 
to be the average

l0 = ( l1 + l2)/2.	 (20)

In the thermal chamber, fibre was either placed as a free 
coil (in the case of short pieces) or inserted into a thin quartz 

tube bent to a 20-cm-diameter ring. The temperature in the 
thermal chamber was varied at a rate of 40 °C h–1. The mea-
surements were performed either during constant variations 
in temperature or at fixed temperatures for 10 – 15 min per 
data point. No drastic differences were detected between the 
results obtained by these two procedures. The temperature 
was scanned first in one direction (for example, from +60 
to –60 °C) and then always in the opposite direction. No 
hysteresis was detected.

The measured beat length Lb
ex(Ti ) was presented in a figure 

together with a graph of function (1), which had the form of 
a straight line. The number of data points (i = 1, ..., M) was 
M = 25 – 50. The parameters Lb0 and a in the linear relation 
were extracted from experimental data by least squares fitting. 
For each data point, we calculated the square of the devia-
tion from function (1), Lb(Ti ), at the same temperature: 
[Lb
ex(Ti ) – Lb(Ti )]2. All the squares of the deviations were 

added up. Varying the parameters Lb0 and a, we minimised 
the sum of the squares of the deviations. From this sum, we 
obtained the standard deviation gex for an individual beat 
length Lb measurement,

[1/( 1)] [ ( ) ( )]M L T L T
/

ex b
ex

b ii
i

M
2

1

1 2

g = - -
=

) 3/ 	 (21)

(since the number of data points is comparatively small, the 
average is taken over M – 1 data points) and relative uncer-
tainty of the measurement:

sex = gex /Lb0.	 (22)

The indicated relative uncertainties as functions of fibre length 
for various fibres were represented in a figure.

Relative measurement error sex is contributed by instru-
mental error, sap = g1(Dl)/Dl, and the relative error sin due to 
an external perturbation centre:

.ex in ap
2 2 2s s s= + 	 (23)

Therefore, the latter relative error can be found as

.in ex ap
2 2s s s= - 	 (24)

3.2. Experimental results

Figure 6 illustrates the effect of the protective coating of fibre 
on the scatter in the beat length as a function of temperature. 
In a 2.5-m length of a PM silica fibre with a temperature-com-
pensated cladding, the beat length Lb was a relatively weak 
function of temperature (a » 2 ́  10–4 K–1), but the measure-
ment results showed a large scatter (Fig. 6a). Using least 
squares fitting, we obtained a straight line with parameters 
Lb0 = 4.413 ± 0.042 mm and a = 2.5 ́  10–4 K–1. Relative error 
was determined to be sex = 0.0096, whereas the relative instru-
mental error of the spectrum analyser, evaluated from manu-
facturer data, was sap = 0.0056.

After the measurements, the fibre was stripped of its 
coating and the measurements were repeated using a 2.25-m 
length of the fibre. The results are presented in Fig. 6b. We 
obtained Lb0 = 4.397 ± 0.011 mm and a = 2.05 ́  10–4 K–1, with 
a sharp decrease in scatter. Relative error, sex = 0.0024, is a 
factor of 4 smaller than that in the case of the coated fibre, 
and is even smaller than sap = 0.0056. This finding led us to 
assume that the true spectral resolution g1(Dl) of the spectrum 

Figure 5.  Typical experimental polarisation beat spectrum as observed 
on the display of a spectrum analyser.
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analyser was even better than that specified by its manufac-
turer. Indeed, the relative instrumental error s'ap can also be 
estimated from above in a similar way [see Eqn (23)] from 
experimental error for stripped fibre, which has sin = 0. Rela
tive error sex » s'ap in this experiment is 0.0024. At a differ-
ence D l = l1 – l2 = 3.03 nm, this corresponds to uncertainty 
in wavelength (or spectral resolution) g1(D l) = 0.0073 nm. 
Subsequently, we used the estimated error in the wavelength 
difference between neighbouring spectral minima in calculating 
relative error sap for other experimentally determined D l and 
sin values by Eqn (24).

From the data presented in Fig. 6a, we can also determine 
the random relative error sin due to the protective coating of 
the fibre:

ap ( . ) ( . ) . .0 0096 0 0024 0 0093in ex
2 2 2 2s s= = - =- sl

Figure 7 illustrates the above data processing techniques. 
It shows temperature dependences of experimentally deter-
mined beat lengths for two different lengths (Z = 20 and 4 m) 
of spun fibre. Comparison of Figs 7a and 7b indicates that 
reducing the fibre length Z leads to an increase in the scatter 
of the data about a straight line of the form (1) with parame-
ters Lb0 and a determined by least squares fitting.

The experimental relative errors sex were determined by 
formulas (21) and (22) for a large number of fibre samples 
differing in both length Z and Lb0.

Figure 8 shows relative error sex as a function of fibre 
length Z for all the samples studied. We investigated three 
types of PM fibre, differing in beat length Lb0, and spun fibres 
similar in beat length (Lb0 » 9 mm). Using the experimentally 
determined instrumental error g1(D l) = 0.0073 nm in D l mea-
surements, we evaluated relative instrumental error as a func-
tion of Z for these four types of fibre (Fig. 8, straight lines).

In Fig. 8, random variations in beat lengths are seen to 
increase with decreasing fibre length in the range Z » 1 – 3 m 
and to gradually decrease in proportion to Z  with increasing 
fibre length in the range Z » 7 – 20 m (approaching instru-
mental error).

4. Discussion

One important parameter in measurements of the beat length 
in anisotropic fibres is the length of the fibre segment Z. 
According to (2) and (3), the measured interference beat 
interval D l is inversely proportional to Z. With decreasing 
fibre length, D l increases and relative measurement error sap 
decreases. This would be expected to lead to a reduction in 
relative error sex. However, reducing the fibre length Z upon 
changes in temperature, we encountered an increase in sex. 
We assume that the main cause of this effect is the formation 
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Figure 6.  Temperature dependences of the experimentally determined 
beat length of linear BR in (a) a Z = 2.5 m length of a coated PM fibre 
and (b) a Z = 2.25 m length of stripped fibre.
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Figure 7.  Temperature dependences of experimentally determined beat 
lengths Lb for two spun fibres: (a) Z = 20 m, Lb0 = 9.24 ± 0.04 mm, 
a = 7 ́  10–4 K–1, sex = 0.0043, sap = 0.0017, D l = 4.414 nm; (b) Z = 4 m, 
Lb0 = 9.28 ± 0.06 mm, a = 6.8 ́  10–4 K–1, sex = 0.0062, sap = 0.0003, D l 
= 22.248 nm.
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Figure 8.  Experimentally determined relative error sex in beat length 
(Lb) measurements (data points) and relative instrumental error (lines) 
as functions of sample length Z for PM fibre with Lb0 = 2.3 ( , 1 ), 4.8 
( , 2 ) and 6.8 ( , 3 ) mm and spun fibre with Lb0 = 9 mm ( , 4 ).
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of perturbation centres in the fibre coating, which induce 
additional linear BRs whose axes are oriented at random with 
respect to the built-in BR axes. The estimates in Section 2.1 
indicate that the induced BRs should be sufficiently high 
(Lb < 1 mm) if they act in short pieces of fibre.

The random azimuthal orientation of perturbation centres 
at a sufficiently large number of such centres leads to mutual 
compensation of their effects. Because of this, their influence 
decreases with increasing fibre length. The assumptions pre-
sented in Section 2.2 lead us to conclude that the centres 
follow the Poisson distribution. At a large number of centres, 
the probability of their formation is inversely proportional to 
the square root of the average number of centres, i.e. inversely 
proportional to the square root of the fibre length Z. At the 
same time, at fibre lengths with average N » 1 – 3, deviations 
from this relationship are possible. Indeed, the Poisson distri-
bution (11) allows one to calculate the probability of the for-
mation of just one centre (or two centres) in a segment with 
a  mean number of centres e.g. N = 3. These probabilities 
approach that of the formation of three centres and hence can 
be realised in experiments.

Figure 9 shows relative induced error sin calculated by for-
mula (24), i.e. relative error without instrumental error. In 
addition, the solid lines in Fig. 9 represent functions propor-
tional to the probabilities of the formation of just one new 
centre [see Eqn (17)], two centres [see Eqn (18)], three centres 
[see Eqn (19)] and N + 1 centres [see Eqn (16)] in a segment of 
length Z at a mean number of centres N. The mean number 
of centres N can be calculated as

N = Z/Dx,	 (25)

where Dx is the length over which on average one centre 
appears. For dependences proportional to probabilities, Dx 
is adjusted as a parameter.

For all the dependences presented in Fig. 9, we chose the 
same value Dx = 1.4 m and a single proportionality coefficient 
0.037 between probabilities of the formation of centres and 
relative errors sin. A change in Dx by 0.05 m or in the propor-
tionality coefficient by 0.005 leads to a dramatic discrepancy 
(by several times) between theoretical and experimental data. 
It is seen from Fig. 9 that the minimum and maximum values 
of sin are well represented by curves ( 1 ) and ( 4 ), and the 
other experimentally determined sin values can be accounted 

for with allowance for the probabilities of the formation of 
several centres in a number less than the average number N. It 
should be emphasised that we deal with relative errors in BR 
measurements due to random events, so the degree of uncer-
tainty in measurements is proportional to / N1  and, hence, 
increases sharply for N ® 1. The above estimates do not take 
into account that the magnitude of an effect depends on 
its azimuthal orientation. For example, in Fig. 9 three data 
points with low sin values (~0.001) may be related to the 
orientation near 2j0 » 90° (see Fig. 2) or the simultaneous 
formation of two centres that have opposite effects and com-
pensate for each other.

The most likely cause of changes in linear BR in aniso-
tropic fibres is bends. The major axes of bend-induced linear 
BR lie in the plane of the bend along its radius and along the 
normal to this plane. The axes intersect on the fibre axis. One 
possible cause of bending is the thermal expansion mismatch 
between the silica fibre and protective coating. The effect of 
coating-induced bends on the loss in fibres was investigated 
by Yeung and Johnston [17]. The effect can be aggravated by 
axial misalignment of the coating and fibre or inhomogeneity 
of the coating, in particular by the formation of crystals in the 
coating material [18]. It is worth noting that minimum relative 
errors were obtained at room temperature, without scanning 
the temperature. It seems likely that any temperature changes 
are favourable for the formation of centres responsible for 
additional BR. At low temperatures (from about –50 to –60 °C), 
we often observe significant differences in length between two 
neighbouring beats, which can be interpreted as evidence that 
a centre can form or disappear even during scanning between 
two minima at l1 and l2 (10 – 20 s).

The formation of local centres capable of inducing addi-
tional BR upon temperature changes may lead to unpredictable 
changes in the sensitivity of Faraday effect sensors despite the 
monotonic, linear variation of the beat length with tempera-
ture, especially in the case of short pieces of magnetically 
sensitive spun fibre.

5. Conclusions

We have studied the nature of an anomalous scatter in the 
beat length in an optical fibre with built-in linear BR upon 
temperature changes and proposed a physical model for 
random centres that explains effects observed in experiments.

A slow, monotonic variation in the temperature of aniso-
tropic silica fibres has been shown to be accompanied by 
random variations in BR, detected in measurements of the 
polarisation beat length by a conventional technique, using 
a spectrum analyser. The magnitude of the variations in BR 
depends on the fibre length, reaching several percent at a 
small fibre length and dropping to zero at a long length. When 
a constant temperature is reached, the BR of the fibre returns 
to its original level, i.e. variations do not accumulate. We have 
demonstrated that no such variations occur in stripped fibre. 
One possible cause of the observed effect is the formation of 
random local centres in the protective coating of the fibre, 
such as temperature-induced microbends, which influence the 
parameters of the fibre. Local effects may compensate each 
other, so the net effect decreases with increasing fibre length. 
The effects in question produce significant changes in the 
built-in BR of the fibre, which, in particular, influences the 
magneto-optical sensitivity of spun fibres that are used as 
sensing elements in Faraday effect fibre-optic current sensors. 
The random nature of the observed effects may lead to unpre-
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Figure 9.  Experimentally determined relative error sin (data points) in 
measurements of the length of beats induced by the protective coating 
vs. fibre length Z for spun fibre ( ) and PM fibre ( ). The solid lines 
represent functions f = 0.037P proportional to the probabilities of the 
formation of ( 1 ) just one centre, ( 2 ) two centres, ( 3 ) three centres and 
( 4 ) N + 1 centres in the coating at a mean number of centres N.
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dictable changes in the sensitivity and accuracy of such cur-
rent sensors.
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