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Abstract.  We have proposed and simulated optical schemes for 
producing reduced images by X-ray lasers or harmonic generators 
at a wavelength of ~14 nm. The mask in this case is placed at a 
small angle to the optical axis, corresponding to the angle of total 
external reflection of the material. We have determined the optimal 
position of the detector (resist) and the corresponding spatial resolu-
tion. The results can be used to solve problems in nanotechnology 
and nanostructuring of surfaces. 

Keywords: X-ray lithography, extreme ultraviolet, coherent optics 
and microscopy. 

1. Introduction 

Reduced-scale printing and photolithography are important 
methods for nanotechnology and nanoelectronics [1, 2]. In 
many cases, they pattern a reduced image of a mask by placing 
it on a photoresist layer atop a functional material. The quest 
for nanopattering actualises the use of radiation with increas-
ingly shorter wavelengths, which have now reached 13 nm 
[3 – 5]; in addition, a 6.7-nm EUV lithography source is dis-
cussed [6]. Due to high absorption, the use of transmission 
masks in this range and for shorter wavelengths is problem-
atic. At the same time, it is known that high-resolution images 
are obtained using normal incidence optics, when samples are 
illuminated at right angles to the surface, which results in fab-
ricating reflective multilayer-coated mask blanks [7]. 
However, the mirror reflectance at normal incidence decreases 
sharply with decreasing wavelength below 6 nm [8]. The pur-
pose of this work is to study the possibility of producing 
reduced images of reflective masks illuminated at grazing 
incidence angles that are close to the angles of the total exter-
nal reflection, including hard X-rays. 

2. Two-dimensional geometry 

X-rays are reflected from the sample surface at grazing angles 
that are smaller than the critical angle. Therefore, the optical 
system should provide, in addition to the similarity of the 
object and the image, a large enough angle of incidence on the 
detector (otherwise, light will be reflected from the detector) 
at a small angle of reflection from the object. 

If the object is inclined to the optical axis of the system, 
the image is also obtained on an inclined plane that is opti-
cally conjugated with the object. In particular, in a two-
dimensional geometry the object and the image are arranged 
on one ray passing through the optical system (ABC beam in 
Fig. 1). In the case of reduced-scale printing (lithography), the 
angle of incidence to the optical axis increases. Let us illus-
trate this in the language of the paraxial wave optics in the 
case of an ideal optical system in a two-dimensional geo
metry. To do this, we will carry out a wave theory analysis of 
imaging of an inclined object in the optical system*.

Let us consider the spatial harmonics exp(iqs) in the object 
plane (Fig. 1), described by the equations

x = s sin q,

z = – a – s cos q,	
(1)

and determine the field produced by it behind the lens, using 
a parabolic wave equation
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Its solution with the boundary conditions set on an 
inclined object is 
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Figure 1.  Scheme of the optical system: 	
q, q' are the angles of inclination of the object and image (detector) 
planes, respectively, to the z axis; a is the distance from the object to the 
lens; b is the distance from the lens to the image; k is the wave vector; 
S*(S' ) is the preimage of point S' ; d(S' ) is the distance from point S' to 
the x axis; d(S*(S' )) is the distance from point S*(S' ) to the x axis. 
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u1( x = s sin q, z = – a – s cos q ) = exp(iqs),	 (4)

where a(q) is defined by the equation 

a(q) sin q + 
( )
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2a
cos q = q.	 (5)

The action of an ideal lens can be described by a phase 
factor T (x) = exp[ – ikx2/(2f )], where f is the focal length, so 
that on the right side of the lens, the field has the form 

u2(x, z = 0) = u1(x, z = 0)T (x).	 (6)

Within the framework of the paraxial approximation, the field on 
the right side of the lens can be found using the Fresnel integral: 

u2(x, z) = ,
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Substituting (3) into (6), and then the result into (7), calcu-
lating the integral and performing elementary transforma-
tions, we obtain 
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We rewrite (5) as follows: 
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Substituting (9) into (8), we obtain 
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Expression (10) defines the field behind the lens in a form suit-
able for further consideration. 

Let us now find the image, i.e. the field on a plane opti-
cally conjugated with the object plane. As noted in Intro
duction, in the two-dimensional geometry this is the ABC 
beam (Fig. 1). Its equation behind the lens has the form: 

x – (z – b)tanql = 0,	 (11)

where
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The equation for the plane (11) can be written in the para-
metric form: 

( ) sinx s s q=-l l l,

( ) cosz s b s q= -l l l.	
(13)

Let us substitute the parametric equation (13) into (10); in this 
case, the coefficient at a2(q) in the exponent in (10) will be, 
with allowance for (12), equal to zero, and as a result we 
obtain 
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Thus, the field of the object, specified in the form of the 
harmonic exp(iqs), transforms into the field (14). Conse
quently, in the image plane the field of an arbitrary object 
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transforms into the expression 
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Formula (16) – the main result of this section – shows that 
the inclined object and its image are located on the same ray 
passing through the optical system. It is a direct result of the 
expression for the field behind the lens (10). 

The expression for the intensity in the image plane I ( sl) = 
| u( sl) |2 will have the form 
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l
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where I0(s*( sl)) is the intensity in the object plane. 
It can be shown that S*(Sl) is a preimage of point S' on 

an  object, produced according to the laws of geometrical 
optics (Fig. 1). Let us also explain the geometric meaning of 
Q(sl). It is easy to show that Q( sl) is the ratio of two dis-
tances: 
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where d(sl) and d(s*(sl)) are the distances from point S' and its 
conjugated point S*(Sl) to the lens (Fig. 1). With the help of 
relations (12), (13) and (18), we can obtain the equation: 

( )
( ) / cos

Q s
s s f M

M

1 *
0

0

q
=

+
l

l6 @
.	 (20)

Let the distribution of the object intensity I0(s) be given 
near the optical axis for s Î (–s0, s0); in this case, it makes 
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sense to consider such sl, so that s*(sl) Î (–s0, s0). Then, when 
the condition 

f
s
M0 0  << 1	 (21)

is fulfilled, taking into account equality (20) and the first for-
mula in (17), we can estimate

Q( sl) » M0,   s*(sl) » 
/sin sinM
s

0 q ql
l .	 (22)

In this case, we can write (18) in the form
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I
M
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0
0 q

l
c m,	 (23)

where the magnification factor 

M(q) = M0 M( )cos1 10
2 2q+ - ,	 (24)

because, as can be easily found, using the second relation in (12),
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As can be seen from formula (23), the image is similar to the 
object. 

3. Three-dimensional case 

One can see that in a three-dimensional geometry (Fig. 2), the 
corresponding expression (18) has the form
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The derivation of (26) is presented in the Appendix. In expres-
sion (26), the distributions , )I y(sl l  and I0(s, y) correspond to 
the intensities in the image and object planes, and the quanti-
ties s*(sl) and Q(sl) coincide with those given in (17). 

If the object intensity distribution I0(s, y) is set near the 
optical axis for s Î (–s0, s0), then, when condition (21) is ful-
filled, our estimation (22) is valid and expression (26) can be 
written as 
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where M(q) is determined by (24). Thus, the magnification 
factor is equal to M(q) along the sl axis and to M0 along the 
yl axis. We also present a formula for M(q, y) – the magnifi-
cation factor in the direction specified in the object plane by 
the angle y (Fig. 2): 

M(q, y) = M0 M( )cos cos1 10
2 2 2q y+ - .	 (28)

Formulas (27) and (28) generalise expressions (23) and 
(24) to the three-dimensional case. 

4. Reduction imaging. Lithography 

Formulas and conclusions of Sections 2 and 3 can be applied 
to lithography [M(q) < 1] and microscopy [M(q) > 1]. The 
essential difference between them is the grazing angle of the 
beam relative to the recording medium. In lithography, it 
increases (ql > q), and in microscopy it decreases (ql < q). As 
noted above, this creates an additional problem. Indeed, radi-
ation is incident on the detector at angles smaller than the 
angles onto the object, and therefore, it will be reflected rather 
than absorbed. This problem requires special consideration. 
In our work, we restrict ourselves to the tasks of lithography 
and nanostructuring [M(q) < 1], referring to the use of coher-
ent sources at a wavelength of ~13 nm. This range is now 
mastered by laboratory X-ray lasers [12] and by harmonic 
generators of IR lasers [13], and we can talk about the experi-
mental testing of the proposed method. 

Let us present the results of calculation of the optical system 
providing us with the effective reflection of radiation at l = 13.9 
nm from the mask and at the same time close-to-normal inci-
dence of radiation on the detector, as well as find its resolution. 

The following parameters were used: the angle of incidence 
on the mask, q = 0.140 rad (the angle of reflection from the 
mask is the same); the focal distance of the lens, f = 1 mm; 
the distance from the lens of the mask centre, a = 16.341 mm; 
the distance from the lens to the image centre, b = 1.065 mm; the 
magnification factor M(q) = 0.01 in the direction of the s axis; 
the magnification factor M0 = 0.0652 in the direction of the 
y axis; the angle of incidence on the detector, ql = 1.14 rad; 
and the mask with the size 500 ́  500 mm consisting of five 
rectangular strips (Fig. 3 ) (s0 = 250 mm). 

As a result of numerical simulation we obtained an image, 
shown in Fig. 4, which does not contain noticeable distortions 
of the object shape and intensity distribution. x
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Figure 2.  Scheme of the optical system for the three-dimensional case. 
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For a quantitative estimate of the resolution, we use the 
90 % – 10 % method. The intensity distribution in Fig. 5 cor-
responds to the vertical line in Fig. 4. Also, Fig. 5 shows two 
levels corresponding to the intensities of 10 % and 90 %. There 
are ten points of intersection of the intensity line with each 
of these levels. We denote the coordinates of these points by  

%i10sl and %i90sl , where i = 1 – 10. Next, we plot the dependence 
of D on sl by ten points (Fig. 6), corresponding to the ‘sides of 
the steps’ in Fig. 5 (two ‘sides’ in each of the five ‘steps’); in 
this case, Di = | %i10sl  – s %i90l |, а isl = (s %i10l  + s %i90l )/2. The inten-
sity in Fig. 5 is normalised to the doubled value of the average 
intensity. 

The value of D stands for resolution in this method. Thus, 
for the sl axis the resolution is D » 20 nm at a value of the 
aperture NA = 0.3, about 30 nm at NA = 0.2 and about 60 nm 
at NA = 0.1, which agrees well with the known law D µ 1/NA 
(as in all three cases D · NA » 6). 

Similarly, we calculate the resolution of the scheme along 
the y axis (Fig. 7). For the y axis the resolution is D » 20 nm 
at NA = 0.3, about 30 nm at NA = 0.2 and about 50 nm at 
NA = 0.1, which correlates well with the above expression 
D µ 1/NA. 

Distortions introduced by a finite aperture lens may be 
divided into two types: firstly, uniform image blurring of an 
ideal lens, and secondly, a geometric shadow of the finite aper-
ture. Figure 6 demonstrates only a uniform blur, while Fig. 7 

presents both types of distortions. The analysis showed that 
the use of coherent radiation at a wavelength of 13.9 nm pro-
duces reduced images with the masks illuminated at grazing 
angles. In this case, it is possible to fabricate nanostructures 
with sizes down to 20 – 30 nm. Diffraction and inclination of 
the object do not introduce any visible distortions in the mask 
image. 

5. Conclusions 

Thus, we have proposed a new method of reflective mask 
lithography. It allows oblique illumination of a mask by a 
coherent beam at an angle that is less than a critical angle. 
The advantage of this method is the use of inclined masks 
in a wide range of wavelengths, in particular where normal 
incidence multilayer X-ray optics is not applicable; for example, 
in using a free electron laser in the wavelength range of 
4 – 0.1 nm [14]. 
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Appendix 

Acting similarly to the two-dimensional case, we consider 
the three-dimensional case. We define, as a product of the 
harmonics u0(s, y) = exp(iqs + ipy), the field in the object plane 
(see Fig. 2)

x = s sin q,

z = – a – s cos q	
(A1)

and determine the field produced by them behind the lens, 
using a parabolic wave equation, which in the three-dimen-
sional case has the form
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It is easy to verify that the solution of (A2) with the boundary 
conditions set on an inclined object is
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u(x = s sin q, y, z = – a – s cos q) = exp(iqs + ipy),	 (A4)

where the quantities b and a = a(q, p) are defined by the equa-
tions 

b = p,   a(q, p) sin q + 
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The behaviour of an ideal lens in the three dimensional case 
can be described by a phase factor T(x, y) = exp[–ik(x2 + y2)/(2f )], 
where f is the focal length, so that on the right side of the lens, 
the field has the form 

u2(x, y, z = 0) = u1(x, y, z = 0)T(x, y).	 (A6)

Within the framework of the paraxial approximation, the field 
on the right side of the lens can be found using the Fresnel 
integral: 
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Substituting (A3) into (A6) and (A7), after performing the 
appropriate calculations and elementary transformations we 
obtain 
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We rewrite (A5) in the form: 
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Substitute (A9) into (A8), we obtain 
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Expression (A10) defines the field behind the lens in a form 
suitable for further consideration. 

We now find the desired image, i.e. the field on a plane 
optically conjugated with the object plane. The equation of 
this plane is 

x – (z – b) tan ql = 0,	 (A11)

where
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The equation for the plane (A11) can be written in the para-
metric form: 

x( sl) = – slsin ql,

y( yl) = – yl,	 (A13)

z( sl) = b – slcos ql.

Let us substitute the parametric equation (A13) into (A10); 
in this case, the coefficient at a2(q, p) + p2 in the exponent in 
(A10) will be, with allowance for (A12), equal to zero, and as 
a result we obtain 
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Thus, the field of the object, specified as the product of the 
harmonics ( )exp i iqs py+ , transforms into the field (A14). 
Consequently, the field of an arbitrary object 
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transforms in the image plane in the field having the form 
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This immediately implies relation (26) for the image field 
intensity , ) | , )|I y u y 2

= (s(sl l l l : 
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