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Abstract.  Based on a one-dimensional Smoluchowski equation we 
have developed the theory of concentration nonlinearity of a sus-
pension of transparent microspheres under the action of a gradi-
ent force in an interference laser field. The numerical solution of 
a system of recurrence equations resulting from the Smoluchowski 
equation after expansion of the microsphere concentration N(z, t) 
in the harmonic series has allowed us to determine the dependence 
of the concentration nonlinearity settling time on the intensity of 
the incident radiation. In the diffusion limit, we have derived the 
expression for the optical Kerr coefficient, which is found to be 8.5 × 
10–10 cm2 W–1 for an aqueous suspension of latex microspheres with 
a radius of 1.17 mm and a concentration of 6.5  × 1010 cm–3. 
Diffraction of a probe wave on a light-induced concentration grat-
ing is considered as a method for studying a nonlinear concentra-
tion response of an artificial highly efficient nonlinear medium for 
laser radiation of long pulse duration. 

Keywords: Smoluchowski equation, transparent microspheres, con-
centration nonlinearity, diffusion limit, optical Kerr coefficient, 
diffraction. 

1. Introduction 

In this paper, based on the Smoluchowski equation [1, 2] we 
have developed a theory of concentration nonlinearity of a 
suspension of transparent microspheres under the action of a 
gradient force in an interference laser field. Despite the fact 
that each suspension component (microspheres and liquid) 
exhibits no nonlinearity, this artificial heterogeneous medium 
is a highly efficient broadband nonlinear material for cw laser 
radiation [3, 4]. In the experimental study of four-wave mix-
ing (FWM) of argon laser radiation ( l = 5145 Å) in a suspen-
sion of latex microspheres of radius R = 1.17 mm and concen-
tration N0 = 6.5 × 1010 cm–3, the measured optical Kerr coef-
ficient n2 was found equal to 3.6 × 10–9 cm2 W–1 [3], which is 
105 times greater than that in carbon disulfide. In this case, 
the formation (tf) and decay (td) times responsible for FWM 
of concentration gratings were equal to tf = 320 ms (at a pump 
power of ~100 mW) and td = 200 ms. A long nonlinearity set-

tling time corresponds to a general law for nonlinear media – 
a linear increase in settling time with increasing n2 (see., e.g., 
[5]). The theory of FWM and stimulated concentration scat-
tering in an aqueous suspension of transparent microspheres 
was developed in [2, 4] and [6, 7], respectively. 

2. Basic relations 

2.1. Formulation of the problem

We will consider concentration nonlinearity of a suspension 
of transparent microspheres under the action of a gradient 
force FÑ in the field of two coherent waves of equal ampli-
tude, converging at an angle 2Q at the boundary of a cell with 
a suspension (Fig. 1). In this case, the intensity of radiation in 
the cell is 

( , ) ( ) 2cosI z t I t z10 p
L= + ` j8 B,	 (1)

where L = p/(ksinQ) is the modulation period, and k is the 
wave number. A laser pulse with an intensity of I0(t) is a rect-
angle and has a duration tp: 

I0(t) = I0[Y(t) – Y(t – tp)],	 (2)

where Y(t) is the Heaviside unit function; I0 = const; and t ³ 0.
To describe the evolution of the concentration N(z, t) of 

microspheres, we will use a one-dimensional Smoluchowski 
equation [8]
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Figure 1.  Scheme of excitation of a concentration grating. 
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where D0 = kBT/(6phR) is the diffusion coefficient of micro-
spheres in a liquid with a viscosity h at a temperature T; and 
kB is the Boltzmann constant. In the Rayleigh – Gans approx-
imation [9] taking into account the nonuniformity of radia-
tion (1) in a volume of a microsphere, V = 4pR3/3, the gradi-
ent force in (3) is defined by expression [4, 10]

2 ( ) 2cos dF c
n I t V

z V1
V

p pa
L

d=d ` jy ,	 (4)
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is the polarisability of a microsphere; and /m n n0=  is the 
ratio of the refractive indices of the microsphere material (n0) 
and the liquid (n) at a laser wavelength l (hereinafter we 
assume for certainty a > 0). 

2.2. Investigation of features of the gradient force

After integration in (4), we find

4 ( ) ( )sin sinF c
n I t U z F z2 22

0/p p pa
L

W
L L=- -d ` `j j,	 (6)

where
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/
/

3 2
3 2

pW W W= - 	 (7)

is a function, which takes into account the nonuniformity of 
radiation in the volume of a microsphere; J3/2(W ) is the Bessel 
function; and W = 2pR/L(Q). 

Figure 2 shows angular dependences of the function U(Q) 
at various radii R of microspheres. One can see that the inclu-
sion of nonuniformity of the radiation intensity in the volume 
of a microsphere with increasing ratio R/L(Q) leads to a 
decrease in the amplitude of the gradient force F0 (Q = p/2 
corresponds to the counterpropagation of waves, i.e. to a 
minimum modulation period L = p/k). Because the function 
U(W ) ~ J3/2(W ) is sign alternating, then for certain values of W 
the dependence F0(W ) changes its sign, and hence micro-
spheres with a > 0 can be localised in the nodes in the interfer-
ence pattern of the field. At W  = Wi (where Wi are the roots of 

the Bessel function, i = 1, 2, 3 . . .), regardless of the position 
of a microsphere, the gradient force incident on it is F0(W ) = 0. 
The so-called zero-force effect [4, 6] is caused by the same 
influence of its components on the corresponding elements 
of the microsphere volume in the region of its overlap by 
two neighbouring maxima (anti-nodes) of the interference 
pattern of the field. In particular, for the first root of the 
Bessel function J3/2(W 1 = 4.493), the zero-force effect is 
achieved at R/L(Q) = 0.3576. In the region W 1 < W < W 2, the 
amplitude is F0 < 0, and therefore the microsphere will 
behave like a particle with a < 0. The estimates show that the 
condition for manifestation of the zero-force effect in the 
Rayleigh – Gans approximation used here can be realised at 
| |m 1-  << 1 [4]. 

Using the well-known [11] relation

( ) sin cosJ 2
/3 2 pW

W W
W W= -c m,	 (8)

it can be shown that at W << 1 taking into account the first 
non-vanishing term, we have 

U(W ) » 1
10

2W
- .	 (9)

It is obvious that the influence of nonuniformity of radia
tion in the volume of a microsphere can be neglected only at 
R/L << 1. 

2.3. Analysis of the Smoluchowski equation

Introducing the variable x = 2pz/L, equation (3) for the func-
tion N (x, t) = N(x, t)/N0 can be written in the form
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We seek the solution to equation (10) as an expansion

( , ) ( ) ( )exp iN t N tx kx=
3

3

k
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/ ,	 (11)

in which the Hermiticity condition N N *
=k k-  is met. With the 

help of (11), equation (10) is reduced to an infinite system of 
recurrence equations of the form

( )
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with the initial conditions ( )N t 0 10 = =  and ( 0) 0,N t0 = =!k  
where tk = 3L2Rh/(2pk2kBT ) is the time of the diffusion decay 
of the kth harmonic. It is obvious that in (12) odd harmonics 
are coupled with even harmonics and even harmonics – with 
odd ones. At the same time due to the fact that their ampli-
tudes ( )N tk  are real, it is sufficient to consider only nonnega-
tive values of k (k = 1, 2, 3 . . .).

With (11) taken into account, the solution to equation (3) 
is given by

( , ) ( )cosN z t N N t z1 2 20
1

pk
L= +

3

k

k=
` j; E/ .	 (13)

For the numerical solution, it is convenient to write sys-
tem (12) in the form
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Figure 2.  Angular dependences of the function U(Q) at various values 
of R. 
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where G0 = F0L/(4pkBT ); t = t/t1; and k = 1, 2, 3 . . .. Note that 
at W << 1 the amplitude  F0 ~ 1/L, then the coefficient G0 is 
independent of L.

In the steady state (at t >> 1), expression (14) yields a sys-
tem of algebraic equations

( )N G N N0
1 1k= -k k k- + .	 (15)

Obviously, in the steady state with increasing k, the 
amplitudes of the harmonics decrease with a simultaneous 
weakening of their relationship with neighbouring ampli-
tudes. At G0 < 1, we can obtain from (13) and (15) 

N(z) » 
k

!
2cosN G z1 20

0
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k
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3

k=
` j; E/ .	 (16)

Figure 3 shows the results of the numerical solution to sys-
tem (14) for the maximum concentration response

( ) ( )N N2
1

t tD =
3

k

k=

/  

[in intensity antinodes, at cos(2pkz/L) = 1] as a function of the 
coefficient G0 at L(Q = p/2) = p/k. From the numerical solu-
tion (see Fig. 3) using the exponential approximation

( ) [1 ( / )]expN N t tf0tD D= - - 	 (17)

we obtain the dependence of the time tf on the coefficient 
G0 ~ I0 (Fig. 4).

One can see from Fig. 4 that with increasing intensity I0 
the time tf  decreases, and accordingly with decreasing I0 the 
time tf ® t1. A decrease in tf  with increasing I0 was observed 
in the experimental study of FWM in an aqueous suspension 
of latex microspheres [3].

2.4. Diffusion limit

In the diffusion limit G0 << 1 [2, 4], when it is possible to take 
into account only one harmonic ( )N t1 , from (14) we find

( ) [ ( / )]expN t G t t11 0 0= - - ,	 (18)

where t0 = tf = t1.
In this case (13) takes the form

( , ) [ ( / )] 2exp cosN z t N G t t z1 2 10 0 0 p
L= + - - ` j$ ..	 (19)

Estimates show that in an aqueous suspension of latex 
microspheres with R » 10–5 cm, formula (19) is valid at I0 < 
102 W cm–2. When the radiation is turned off, the process of 
relaxation of the main grating is described by the expression 

( ) 2 [1 ( / )] [ ( ) / ]exp expN t G t t tp p1 0 0 0t t= - - - -  at t ³ tp.	 (20)

3. Raman – Nath diffraction on the main concen-
tration grating

Taking into account (19) and the expression for the polarisa-
tion of a weak diffracting wave Ecexp[i(kcr – wt)]

[ ( , )] [ ( )]iP N z t E t k rc c c0e a w= + - - 	 (21)

for the amplitude Ec we can obtain an equation 
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L

H = - - ` j ,	 (22)

where e0 is the dielectric constant of the liquid; Qc is the angle 
between the vector kc and the normal to the layer of the sus-
pension;

(2 )
( )

n N
ck T
U

B
2
0 2

0pa
W

= 	 (23)

is the optical Kerr coefficient, which in the general case 
depends not only on the suspension parameters (a, N0, T ), 
but also on the modulation period L of laser radiation. Note 
that at U(W ) » 1, regardless of the sign of a, the coefficient 
is n2

0  > 0 and determined only by the parameters of the sus-
pension, similarly to media with a cubic nonlinearity. For 
latex microspheres in water at room temperature and argon 
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Figure 3.  Time dependences of the concentration response at L = p/k 
and different values of G0.
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laser radiation with l0 = 5145 Å under the experimental con-
ditions [3] (N0 = 6.5 ´ 1010 cm–3, n0 = 1.59, n = 1.33, R = 1.17 
´ 10–5 cm, kBT = 4.05 ´ 10–14 erg) of (23), from (23) at U(W ) 
» 1 we find n2

0  = 8.5 ´ 1010 cm2 W–1, which is 2.8 ´ 104 
times greater than n2

0  in carbon disulfide (n2
0 (CS2) = 3 ´ 

10–14 cm2 W–1 [5]). The experimentally measured value 
of n2

0  in the study of the concentration FWM was 3.6 ´ 
10–9 cm2 W–1 [3]. This difference in the values of the Kerr 
coefficient n2

0  is probably associated with the use of the plane 
wave approximation in this paper. For the above parameters 
at L = p/k and h = 10–2 P, t1 = 0.5 ´ 10–3 s. 

From the solution to equation (22)

Ec(L) = Ec(0)exp[id(t)cos(2pz/L)]	 (24)

using a known relation

[ (2 / )] ( ) ( 2 / )exp sin expi iz L J m z Lm
m

p pd d=
3

3

=-

/

for the diffraction efficiency of the mth order we find (see, 
e.g., [12])

( )Jm m
2h d= ,	 (25)

where 0( ) ( / ) [1 ( / )] ( ) /exp cost n c t t I t L c2 0 0d w H= - - ; and L is 
the thickness of the suspension layer.

In this case, the direction in the diffraction maxima will be 
determined by the grating equation [5]

cos cosm cm
lQ
L

Q= + ,	 (26)

where m = 0, ±1, ±2 . . . . Note that from the identity

J 1m
m

2

0

=
3

=

/

follows the law of conservation of energy for the diffracted 
wave. The diffraction efficiency hm can be used to experi-
mentally measure the time t0 of formation and decay of the 
concentration grating as a function of the period t0 and opti-
cal Kerr coefficient n2

0 . In the case of high intensities I0 (at 
G0 ³ 1) one can also measure the dependence of the nonlin-
earity settling time on the modulation period L and the inten-
sity of the incident radiation.

4. Conclusions 

We have developed the theory of concentration nonlinearity 
of a suspension of transparent microspheres under the action 
of a gradient force FÑ in a periodically modulated laser field. 
We have studied the gradient force, taking into account the 
nonuniformity of radiation in the volume of a microsphere. 
The conditions have been determined for observing the zero-
force effect, when, regardless of the microsphere position, the 
force acting on the microsphere is equal to zero: FÑ = 0.

Based on a one-dimensional Smoluchowski equation rep-
resented as a superposition of harmonics of the concentration 
of microspheres with multiple periods, we have analysed the 
kinetics of concentration nonlinearity of a suspension. The 
resulting system of steady-state recurrence equations has been 
solved numerically. As a result, we have determined the 
dependence of the concentration nonlinearity formation time 

tf on the intensity of the incident radiation. A decrease in tf 
with increasing intensity is associated with an increase in 
velocity u ~ FÑ of microspheres (tf ~ L/u). It is shown that in 
the diffusion limit the time tf coincides with the diffusion 
decay time of concentration nonlinearity, tf = t0. In this 
approximation, we have obtained an expression for the opti-
cal Kerr coefficient n2

0  ~ a2N0U(W )/(kBT ), from which it fol-
lows that at W = 2pR/L << 1, irrespective of the sign of the 
polarisability a, n2

0  > 0. It is shown that for the suspension 
parameters used for the study of FWM [3], n2

0  = 8.5 ´ 
10–10 cm2 W–1, which is 3 ´ 10–4 times greater than n20  in car-
bon disulfide. Thus, the suspension of transparent micro-
spheres – an artificial heterogeneous medium, whose each 
component alone does not exhibit nonlinear optical proper-
ties, may serve as a promising broadband nonlinear material 
for low-intensity laser radiation of long pulse duration.

To study the kinetics of concentration nonlinearity we 
present expressions for the diffraction efficiencies of arbitrary 
orders of a weak wave on a concentration grating of micro-
spheres induced by periodically modulated laser radiation.
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