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Abstract.  We propose a method for calculating the capacity of a 
finite-memory channel up to the square of the nonlinear memory 
parameter. A comparison with a regular Gaussian model is per-
formed, in which the Kerr nonlinearity is considered as an addi-
tional Gaussian noise. The estimate by the regular Gaussian model 
is shown to yield a greater capacity as compared with the estimate 
obtained by the nonlinear memory model. The optimal signal pow-
ers, providing the maximum mutual information, are found to be 
equal. 

Keywords: fibre-optic communication lines, capacity, nonlinear 
noise, Shannon limit. 

1. Introduction 

Despite the active development of fibre optics since the 1960s, 
the problem of assessing the capacity of optical communica-
tion lines still remains unsolved. The complexity of the prob-
lem is due to the influence of nonlinearity, which is inevitably 
present during the propagation of pulses through fibre-optic 
systems. The main reasons of optical signal degradation are 
the Kerr nonlinearity and amplifier noise. The Kerr nonlin-
earity prevents the achievement of an arbitrarily large signal-
to-noise ratio, in contrast to the case of a linear channel. This 
fact is often called ‘nonlinear Shannon limit’.

In statistical communication theory, a link, wherein each 
symbol of an output sequence depends not only on the respec-
tive signal at the input but also on transmitted input and 
detected output signals, is called a channel with memory. If 
the probability of detection depends on 2L + 1 symbols, i.e. 
on the signal itself, on L symbols before and L symbols after, 
then one speaks of a channel with finite memory. A regular 
channel is a limiting case at L ® ∞. 

With selecting an optimal distribution of input symbols, 
one can in principle reduce the probability of an error during 
the signal detection at the receiver. This search of the alpha-
bet would allow one to partially compensate for the intersym-
bol interference, or pattern effect. However, to date, due to 
the high computational complexity of the problem, the calcu-
lation methods of the capacity of a channel with memory are 

absent. In this paper, we have developed and implemented 
such a method in the simplest Gaussian noise model. 
Neighbouring bits are considered to be an additional random 
noise. The channel nonlinearity is treated as a conditional 
probability: the distribution dispersion increases as the cube 
of an average power of the signal. The signal detection prob-
ability is most strongly influenced by two neighbouring bits, 
and therefore the calculations are performed in the approxi-
mation of memory of three symbols in length (L = 1). 

In this paper, we have proposed an estimate of the capac-
ity of a communication link with nonlinear finite memory 
with an accuracy of O( m2), where m is the memory parameter. 
We have also compared numerically the dependences of the 
capacity of a finite-memory channel and a channel with aver-
age nonlinear noise on the signal power. It is shown that the 
channel with nonlinear averaged noise has a higher band-
width capacity in the region of the optimal signal power. In 
this case, the optimal signal powers for both models are iden-
tical. 

2. Regular Gaussian-noise channel 
and finite-memory channel 

Mutual information [1] of a discrete time-invariant channel 
with memory is given by the expression 

( ; ) ( , ..., ; , ..., )limI X Y N I X X Y Y1
N N N1 1= "3 ,	 (1)

where ( , ...,X XN1 ) и ( , ...,Y YN1 ) are the input and output sym-
bol sequences, respectively. For each index i, the value of Xi is 
a random variable taking values from a set of numbers, called 
the input alphabet. The values measured at the end of the link 
are also the values of the random variable Yi and called the 
output alphabet. 

The authors of papers [2, 3] consider the nonlinear signal-
distorting interaction as the Gaussian noise, which cubically 
depends on the signal power. Mathematically, this is written 
as follows: 

,Y X Z Z Z PASEk k k k k
2 3s m= + = +u .	 (2)

Here, Xk is the symbol transmitted in a time interval with the 
number k; Yk is the value detected by the receiver;  Zku  is the 
random Gaussian variable with a zero mean and variance 
equal to unity;  s 2ASE and m are the positive constants; and P is 
the average signal power. The constant  s 2ASE corresponds to 
the amplified spontaneous emission noise. 

Agrell et al. [4] proposed a finite-memory Gaussian chan-
nel model, in which the average signal power P in (2) is 
replaced by the empirical power, i.e. by the averaged power of 
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the Xk symbol and 2L symbols around. Mathematically, it is 
given by the expression 
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L

X
2 1
1

k k ASE i
i k L

k L
2 2

3

s m= +
+

= -

+
u e o/ .	 (3)

According to the Shannon theorem, the capacity of a 
channel without memory is given by the formula 

C = sup I(X, Y),	 (4)

where the maximisation of I (X, Y) is performed over all distri-
butions pX of the input alphabet; in this case, | | dx p x PX

2
=y .

The throughput capacity of a regular channel with 
Gaussian noise (2) is given by 

lgC
P

P1
ASE
2 3s m

= +
+

c m	 (5)

in the case of a complex channel and complex Gaussian noise. 
If the Gaussian noise in the Zk channel and the value of Xk are 
real, then 

lgC
P

P
2
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ASE
2 3s m

= +
+

c m,	 (6)

and the maximum mutual information is reached on the dis-
tribution 

2
expp
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p
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The lg function in equations (5) and (6) is the base 2 loga-
rithm. 

Infinite input and output alphabets cannot be realised in 
the numerical calculation. Next, we describe how to switch 
from a continuous channel to a discrete one. Instead of a real 
infinite alphabet xd (– ∞, ∞), we consider the finite input 
alphabet: 

( 1)x x i L
2i
xD= - - ,	 (8)

where i = 1, ..., n; ∆x = Lx /(n – 1); and Lx is a given interval. 
Let us set x0 = – ∞ and xn + 1 = ∞. The output alphabet can be 
given by the formulas 

( 1)y y j
L
2i
yD= - - .	 (9)

Here, j = 1, ... , m; Dy = Ly /(m – 1); [ /2, /2]y L Lj y yd - ; y0 = 
– ∞; and ym + 1 = ∞. Let us denote by qi the symbol probability 
xi. If we select 
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then in a discrete channel with a probabilistic rule 
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mutual information virtually coincides with the capacity of a 
continuous channel (6) for sufficiently large m, n, Lx and Ly. 
Here, ( ) (2/ )erf e dx ttx

0

2

p= -y  is the error integral. 
Figure 1 shows the dependence of the continuous channel 

capacity (6) on the signal power P (solid curve) and mutual 
information of discrete channels (10), (11) (points) at m = n = 
51, Lx = Ly = 18, s

2
ASE = 1 and μ = 0.00675. One can see that 

these dependences are very close. 

3. Lower limit of the capacity 

A direct calculation of mutual information (1) is a technically 
challenging task, and so it is convenient to use an approxi-
mate, but close evaluation of mutual information. To esti-
mate the lower limit, we used the capacity of the following 
auxiliary channel. Consider a fixed bit interval with number 
k. The value transmitted in this bit interval is a random vari-
able, as well as a recorded value. Let qi mean the probability 
of an event Xk = xi. In the finite-memory model (3), the detec-
tion probability Yk = yj depends on the nearest left L bits  (Xk – L, 
..., Xk – 1) and right L bits (Xk + 1, ..., Xk + L). Then, L = 1. 

Let us denote by pji (xt, xr) the event probability Yk = yj, 
Xk = xi, Xk – 1 = xt, Xk + 1 = xr. Then, the conditional probabil-
ity Qji of detection Yk = yj for the transmitted value of Xk = xi 
is given by the expression 

( , )Q p x x q q
,

ji ji t r t r
t r

=/ .	 (12)

Consider the function
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determining mutual information in the auxiliary channel. We 
show that mutual information of the auxiliary channel with 
an accuracy of O(μ2) coincides with mutual information (1) of 
a channel with memory (3).

We introduce the function u( μ), which is given by the for-
mula
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Figure 1.  Dependence of the capacity on the signal power for a 
Gaussian channel (solid curve) and a discrete channel (points).
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where Pri H 0; 1Prii =/ ; fji (μ) are the positive smooth func-
tions of m; and the equalities ( ) 1µfjij

J
1 =

=
/  are fulfilled for 

all i, such that Pri > 0. Then, 
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To prove (15), we will use the equality 
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Next, we show that mutual information (1) in the case of 
finite input and output alphabets can be represented in the 
form of (14). Let {xi, i = 1, ... , n} and {yj, j = 1, ... , m} be input 
and output alphabets, respectively. In total, there are nN dif-
ferent input sequences and mN different output sequences. We 
enumerate the input sequence by numbers i = 1, ..., K = n N, 
and the output sequence by numbers j = 1, ..., J = m N. 
Denoting by fji ( μ) the probability of detecting a sequence 
with the number j at an initial sequence with the number i, we 
obtain the desired representation of (14). 

Consider the function V(N, μ) = I(X1, ... , XN; Y1, ..., 
YN)/N. If i = 0, the equality V(N, μ, q1, ... , qn) = F(q1, ..., qn) is 
met. In addition, by using (15) and the relation 

( , ) 1p x xji t rj
m

1 =
=

/ , which is valid for any fixed i, t and r, it is 
easy to obtain the equality dV/dμ = dF/dμ at μ = 0, N ® ∞.

Then we use the Taylor series expansion of the functions 
and find that mutual information in the finite-memory chan-
nel (3) coincides to an accuracy of O( μ2) with F( q1, ..., qn). 
Note that (13) can be formally regarded as an auxiliary dis-
crete channel without memory. Essiambre et al. [5] showed 
that mutual information in the channel (13) is a lower bound-
ary of mutual information (1). However, the accuracy of this 
estimate was not considered in the literature. 

4. Numerical experiment 

We have found the dependence of the auxiliary channel 
capacity (13) on the signal power P = x qi ii

2/  at μ = 0.00675 
and 0.027. The mutual information of the auxiliary channel 
was maximised by using the distribution of the input alpha-
bet; the results of the procedure are shown in Fig. 2. Figures 
2a and 2b show the dependences of the auxiliary channel 
capacity on the signal power at m = 0.00675 and 0.027, respec-
tively. Other parameters are as follows: m = n = 41, Lx = Ly = 
8 and s 2ASE = 1. In both figures the upper curve is an estimate 
of the capacity by a regular Gaussian-noise channel (6) and 
the lower curve describes the auxiliary channel capacity. Note 
that the optimal values of the signal power for both channels 
are identical in Figs 2a and 2b. However, if the memory 
parameter m increases, the difference between the estimates 
also increases. 

For the finite-memory model, we used a relaxation modi-
fication [6]. The method of finding the optimal distribution is 
a generalisation of the Arimoto method [7] for a channel with 
the probabilistic rule Qji, independent of qi, and involves three 
steps. 

Step 0: we choose an initial set of probabilities , ...,q q(0) ( 0)
n1  

and assume k = 0. 
Step 1: using the probability , ...,q q( ) ( )k

n
k

1 , we calculate the 
matrix 
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Step 2: we find a new set of probabilities , ...,q ( )k
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at which we achieve a maximum
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Steps 1 and 2 are repeated as long as |q q( 1) ( )
i
k

i
k

-
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than the given e. 
The difficulty is that Qji depends on variables q1, ... , qn. 

We have used an iterative procedure [6] to find , ...,q q( 1) ( 1)k
n
k

1
+ +  

in step 2. Let us denote 

( , ..., ) ( , ..., , ) 1R q q I q q W q( )
n n

k
i

i
1 1 l= - -c m/ ,	 (16)

where l is the Lagrange multiplier. The extremum R(q1,..., qn) 
is defined by a system of equations 
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where 1qll =/ ; l = 1, ..., n. Equations (17) can be rewritten as 
Tl = 0, where 
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Note that representation (18) provides an inequality qi H 0. 
To find the desired unknowns q1, ... , qn, we introduce an 
additional parameter t. Assumingql (t) and l(t) to be func-
tions of the variable t, we find the solution to a system of 
differential equations 
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Figure 2.  Dependences of the capacity on the signal power for a 
Gaussian channel (solid curve) and a channel with memory (points) at 
m = (a) 0.00675 and (b) 0.027.
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( ( ), ..., ( ))
d
d T q t q t Tl n l1t =- .	 (19)

The solution to a system of equations (19) converges rap-
idly to the solution to system (17). We will use the found val-
ues as , ...,q q( 1) ( 1)k

n
k

1
+ + . The additional restriction, x q Pi ii

2
=/ , 

only slightly complicates the proposed algorithm. 

5. Conclusions 

Thus, we have proposed a method for calculating the capacity 
of a communication line with nonlinear finite memory with 
an accuracy of O( m2), where m is the memory parameter. With 
this method, we have compared the capacity of a nonlinear 
finite-memory channel and a regular channel in which the 
Kerr nonlinearity is taken into account as an additional 
Gaussian noise. In the regular channel model, the signal-dis-
torting noise is Gaussian. In the finite-memory model (3), the 
noise is a mixture of n2 Gaussian noises with various disper-
sions, which makes these models different. We have shown 
that the optimal signal powers coincide for both methods of 
mutual information estimation in the communication line. 
However, the assessment of the capacity in a regular Gaussian-
noise channel model is greater than the estimate of the capac-
ity by the auxiliary channel taking into account the temporal 
distribution of the transmitted signal. With the growth of the 
memory parameter, the difference in estimates of the infor-
mation channel capacity using the proposed models increases. 
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