Динамика QML-генерации твердотельного лазера с акустооптическим модулятором бегущей волны

О.Е.Наний, А.И.Одинцов, А.И.Панаков, А.П.Смирнов, А.И.Федосеев

Изучены особенности динамики генерации лазера с акустооптическим модулятором. Инжекция светового поля со сдвигом частоты из предыдущей моды в последующую обеспечивает синхронизацию мод и во многих случаях способствует возникновению неустойчивости и автоколебаниям на релаксационной частоте лазера. Проведен анализ амплитудных и частотных характеристик возникающего режима, а также особенности режимов, реализуемых при внешней модуляции коэффициента дифракционной связи.

Ключевые слова: лазер, синхронизация мод, модуляция добротности, акустооптический модулятор, автоколебания, релаксационная частота.

1. Введение

Последовательности коротких оптических импульсов высокой пиковой мощности используются в спектроскопии с временным разрешением, в оптической томографии, для высокоточной обработки материалов, в измерительной технике и других областях. Перспективными источниками такого излучения являются твердотельные лазеры, работающие в режиме синхронизации мод (СМ) с одновременной модуляцией добротности, так называемые QML-лазеры. Лазеры с активной СМ и одновременной модуляцией добротности обладают существенными преимуществами в приложениях, требующих точной синхронизации генерируемых импульсов с другими устройствами.

В первых QML-лазерах использовались два акустооптических модулятора (АОМ) в резонаторе [1]. СМ обеспечивалась с помощью АОМ стоячей акустической волны, для модуляции добротности использовался АОМ бегущей волны. В работе [2] предложено использовать возвращение дифрагированной в АОМ волны обратно в область акустооптического взаимодействия, что существенно увеличило эффективность модуляции и позволило осуществить стационарную СМ при использовании АОМ бегущей волны в резонаторе [3,4]. При этом в работе [3] для возвращения дифрагированного излучения в резонатор применялись дополнительные зеркала, а в [4] - V-образный резонатор специальной конструкции. На возможность объединения режимов СМ и модуляции добротности с помощью одного АОМ бегущей волны указывают данные работы [5], в которой режим QML наблюдался при высоком пропускании плоского выходного зеркала резонатора в лазере на Nd: YVO₄.

О.Е.Наний, А.И.Одинцов, А.И.Панаков, А.И.Федосеев. Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119991 Москва, Воробьевы горы; e-mail: naniy@t8.ru, fedoseev362@mail.ru

А.П.Смирнов. Московский государственный университет им. М.В.Ломоносова, факультет вычислительной математики и кибернетики, Россия, 119991 Москва, Воробьевы горы

Поступила в редакцию 25 июля 2017 г.

Устойчивый QML-режим в лазере на Nd: YAG реализован экспериментально с одним АОМ бегущей волны, расположенным в центре кривизны глухого сферического зеркала [6,7] под двойным углом Брэгга $\theta_{\rm B}$ к оси резонатора (рис.1). В резонатор возвращается волна, не испытавшая дифракцию с частотой v_0 , а также волна, испытавшая двойную дифракцию с частотой $v_0 + 2f(f - paбочая)$ частота модулятора). СМ возникает при рабочей частоте модулятора f, равной половине межмодового интервала. Волны с частотами $v_0 \pm f$, испытавшие однократную дифракцию, уходят из резонатора, определяя дополнительные потери, связанные с АОМ. Быстрое снижение дополнительных потерь происходит во время процесса затухания звуковой волны. Тем самым при отключении рабочей частоты АОМ модулируется добротность резонатора. Позднее было обнаружено экспериментально [8], что режим модуляции добротности может возникать на релаксационной частоте лазера «самопроизвольно» при постоянной амплитуде акустической волны. Эти экспериментальные исследования показали, что в определенных условиях установившийся режим СМ становится неустойчивым, и возможна раскачка релаксационных колебаний.

В настоящей работе исследуется динамика QML-генерации твердотельного лазера с AOM бегущей волны в схеме, аналогичной показанной на рис.1. Разработанная численная модель позволяет установить границы раскачки автоколебаний на релаксационной частоте и исследо-

Рис.1. Схема реализации режима QML в лазере на Nd: YAG.

вать основные закономерности динамики генерации активного QML-лазера.

2. Модель и уравнения

В предложенной модели используется модовый подход, основанный на фундаментальных работах по теории вынужденной амплитудной модуляции [9, 10]. Линия усиления считается уширенной однородно, насыщение усиления предполагается однородным по пространству. Это позволяет при совпадении частоты основной моды (j = 0) с центром линии усиления учитывать зависимость сечения оптического перехода σ_j только от номера моды $j: \sigma_j/\sigma_0 =$ $(1 + j^2 b^2), b = \delta v_c / \delta v_g$, где $\delta v_c = c/(2L)$ – межмодовый интервал, δv_{σ} – ширина линии усиления.

Принято, что активная среда характеризуется единым временем релаксации инверсии, а насыщение среды определяется суммарной интенсивностью мод \bar{I} , усредненной за время, значительно превышающее время обхода резонатора излучением. В расчетах динамических режимов генерации предполагается, что величина интенсивности излучения не может упасть ниже уровня спонтанного излучения в моду.

Считается, что скорость затухания поля в резонаторе определяется постоянными потерями γ и изменяемыми потерями γ_d , которые связаны с АОМ. Величина постоянных потерь $\gamma = -\ln(1 - \theta)/T_c$, где θ определяется потерями на оптических элементах резонатора, а T_c – время обхода резонатора. Величина γ_d находится из баланса интенсивностей волн, схематично показанных на рис.1: $\gamma_d = -\ln(1 - \kappa_d^2)/T_c$. Здесь κ_d – коэффициент дифракционной связи, равный доле светового поля, отраженной от акустической волны в АОМ. Этот же коэффициент определяется скорость дифракционной инжекции поля из моды j - 1 в моду $j: \xi = \kappa_d^2/T_c$.

В рамках сделанных предположений уравнения для нормированных комплексных амплитуд полей \tilde{E}_j имеют следующий вид (см. [11]):

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\tilde{E}_{j} = \left[\frac{\gamma T_{1}}{2} \left(\frac{\sigma_{j}}{\sigma_{0}}n - 1\right) - \gamma_{\mathrm{d}} T_{1}\right]\tilde{E}_{j} + \xi T_{1}\tilde{E}_{j-1}.$$
(1)

Здесь $\tau = t/T_1$ – нормированное время (T_1 – время релаксации инверсии). В уравнении для основной моды $j = 0 \xi = 0$ и $\sigma_j = \sigma_0$.

Зависимость интенсивности I от времени τ рассчитывается как квадрат модуля комплексного поля:

$$I = \left| \sum_{j} E_{j} \exp[i(j\delta\hat{\omega}_{c}\tau + \varphi_{j})] \right|^{2},$$
(2)

где $\delta \hat{\omega}_c = 2\pi \delta v_c T_1; \varphi_j - \phi$ аза поля моды с номером *j*.

В численных расчетах использована система уравнений для нормированных действительных величин:

$$\frac{d}{d\tau}E_0 = \frac{\gamma T_1}{2}E_0(n-1) - \gamma_d T_1 E_0,$$
(3)

$$\frac{\mathrm{d}}{\mathrm{d}\tau}E_j = \left[\frac{\gamma T_1}{2} \left(\frac{\sigma_j}{\sigma_0}n - 1\right) - \gamma_{\mathrm{d}} T_1\right]E_j + \xi T_1 E_{j-1} \cos \Phi_j, \qquad (4)$$

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\varphi_j = T_1 \xi \frac{E_{j-1}}{E_j} \sin \Phi_j.$$
(5)

Здесь $\Phi_j = \delta \hat{\omega} \tau + \varphi_{j-1} - \varphi_j$ определяет фазовый набег, возникающий вследствие отстройки AOM от частоты межмодового интервала (в расчетах полагалось $\varphi_0 = 0$), $\delta \hat{\omega} = 2\pi \delta v T_1$ – величина отстройки.

К уравнениям для полей добавляется балансное уравнение для нормированной инверсии *n*:

$$\frac{\mathrm{d}}{\mathrm{d}\tau}n = \eta - n\Big(1 + \sum_{j} |E_j|^2 \frac{\sigma_j}{\sigma_0}\Big),\tag{6}$$

где η – параметр накачки, определяющий превышение инверсии над порогом, соответствующим уровню постоянных потерь резонатора.

Большинство расчетов выполнено для численных значений параметров, характерных для Nd : YAG-лазера: $T_1 = 2 \times 10^{-4}$ c, $1/\gamma = 4 \times 10^{-7}$ c, $\delta v_c = 200$ МГц, $\delta v_g = 100$ ГГц.

3. Результаты и их обсуждение

3.1. Динамика усредненной интенсивности при неизменном коэффициенте дифракционной связи к_d

Реализация QML-режима связана с динамикой усредненной интенсивности

$$\bar{I}(\tau) = \sum_{j} |E_j|^2 \frac{\sigma_j}{\sigma_0},$$

 $E_i^2 (10^{-2})$

3

поскольку именно эта величина определяет динамику общей для всех мод инверсии (здесь и далее приводятся результаты расчетов при условии точной настройки рабочей частоты AOM на резонансы). Поведение $I(\tau)$ зависит от числа и состава участвующих в генерации мод. Характерной чертой изучаемой системы является необычное распределение интенсивностей мод E_i^2 по спектру – максимум спектра смещен относительно максимума усиления, причем величина смещения немонотонно зависит от нормированного коэффициента κ_d . Такие распределения, рассчитанные для стационарных решений уравнений (3)–(6), показаны на рис.2. Для каждого значения κ_d наличие максимума обусловлено существованием двух конкурирующих факторов – инжекции поля в следующие моды и падения усиления с увеличением номера моды *j*. С ростом κ_d растут также дифракционные потери, поэтому интенсивности всех мод падают, смещение максимума

 $k_d = 0.1$

Рис.2. Стационарные частотные профили E_j^2 для различных значений κ_d (параметр накачки $\eta = 6$).

распределения вправо (в сторону бо́льших *j*) замедляется, затем сменяется на смещение влево. Эта особенность позволяет ограничить число рассматриваемых в численном эксперименте мод. В расчетах не учитываются поля мод, амплитуда которых меньше одной тысячной максимальной амплитуды. В большинстве расчетов это условие удовлетворялось при *j*_{max} = 400.

Наши расчеты, выполненные для приведенных в [11] наборов параметров, показывают, что стационарные решения (3)–(6) являются неустойчивыми и возникают автоколебания $\bar{I}(\tau)$ на релаксационной частоте. Это согласуется с данными эксперимента [11], причем зона неустойчивости оказывается достаточно широкой по параметрам системы.

На рис.3 приведена зона неустойчивости $I(\tau)$ в координатах η , κ_d при неизменных остальных параметрах. Эта зона расширяется с ростом η . Можно предположить, что неустойчивость связана с процессом последовательной инжекции поля. Равновесие между полем основной моды Е₀, работающей в режиме насыщения усиления, и полями остальных мод, работающих в режиме регенеративного усиления, оказывается неустойчивым. Например, малое возмущение стационарного поля Е0 участвует в процессе инжекции полей в следующие моды. Воздействие на общую для всех мод инверсию может оказаться таким, что возникает еще большее возмущение противоположного знака. В этом случае малые колебания на релаксационной частоте лазера нарастают, формируя насыщенный автоколебательный режим. При этом стабилизирующим фактором вблизи нижней (по величине κ_{d}) границы зоны неустойчивости является глубокое насыщение среды, которое имеет место при стационарной генерации. На верхней же границе влияние процесса инжекции может быть ослаблено возросшими дифракционными потерями. Таким образом, коэффициент κ_d может служить управляющим параметром, изменяя который можно управлять динамическими режимами генерации.

На рис.4 показаны характеристики автомодуляционного режима для параметра накачки $\eta = 5.5$. При низких значениях κ_d наблюдаются релаксационные колебания с невысокими значениями \bar{I}_{max} , которые слабо насыщают среду. Их частота относительно высока ($v_r \approx 8$) вследствие значительного превышения усиления над порогом. По мере роста κ_d и развития неустойчивости происходит быстрый рост \bar{I}_{max} , автоколебания насыщают среду. При этом частота релаксационных колебаний резко снижает-

Рис.4. Характеристики автомодуляционного режима: амплитуда импульсов \bar{I}_{\max} и частота следования v_r .

ся за счет насыщения среды (известно, что частота релаксационных колебаний, насыщающих среду, всегда ниже частоты малых колебаний). Наличие максимума на кривой интенсивности обусловлено влиянием нарастающих дифракционных потерь. Их дальнейшее увеличение приводит к снижению \bar{I}_{max} и глубины насыщения среды и, как следствие, к росту v_r .

Переходной процесс, к которому приводит небольшое мгновенное снижение κ_d (на величину ~10⁻³) внутри области устойчивости, демонстрирует апериодический «всплеск» интенсивности и характеризуется достаточно коротким временем (~10⁻¹). При этом частотный профиль изменяется во времени незначительно, хотя максимумы интенсивностей мод достигаются в различные моменты времени. На рис.5 показан переходной процесс при относительно плавном переходе из области устойчивости с $\kappa_d = 0.35$ в область неустойчивости с $\kappa_d = 0.2$ для $\eta = 5.5$. Значительные колебания инверсии в этом процессе приводят к возникновению импульсов, насыщающих среду. Время установления насыщенных релаксационных колебаний после завершения изменений κ_d также достаточно мало и составляет ~0.3 τ .

Короткие времена переходных процессов позволяют эффективно изменять динамический режим генерации. В то же время из рис.4 следует, что для заданного параметра накачки высокие значения \bar{I}_{max} достигаются в достаточно узком диапазоне значений κ_d и частот следования импульсов. Это сужает возможности получения импуль-

Рис.3. Границы генерации (1) и зоны неустойчивости (2, 3).

Рис.5. Переходной процесс при плавном изменении управляющего параметра κ_{d} .

сно-периодической генерации с высокой амплитудой импульсов. Увеличить \bar{I}_{max} и расширить частотный диапазон следования импульсов можно путем периодической «внешней» модуляции добротности резонатора. С этой целью коэффициент κ_d модулируется на относительно низких частотах от высоких значений (устойчивая генерация либо ее отсутствие) до минимальных, при которых AOM еще выполняет свои функции.

3.2. Динамика усредненной интенсивности при модуляции *к*_d

Рассмотрена гармоническая модуляция коэффициента дифракционной связи на частотах, не слишком превышающих частоту v_r : $\kappa_d(\tau) = \kappa_d [1 + A \sin(2\pi v_m \tau)]$, где $A - a_m$ плитуда модуляции, v_m – частота модуляции. На рис.6 представлена зависимость частоты следования импульсов $v_{\rm p}$ от частоты модуляции $v_{\rm m}$. Регулярные пульсации \bar{I} возникают в полосах частот вблизи $v_r \approx 2.2$. Эти полосы соответствуют диапазонам изменения v_m, отмеченным цифрами 1, 2 и 3. В промежутках между этими диапазонами наблюдаются режимы со сложным периодом и хаотическая генерация. Измеренные корреляционные размерности $\rho_{\rm cor}$ соответствующих хаотических аттракторов оказались близкими к 1.5. Для $v_{\rm m} \gg v_{\rm r}$ происходит сужение диапазонов регулярных пульсаций, затем на больших частотах модуляции возникают импульсы значительно меньшей амплитуды с частотой следования v_m.

Релаксационная частота v_r с изменением $\kappa_d(\tau)$ изменяется в небольших пределах. В представленном на рис.6 случае можно говорить о взаимодействии сигнала на частоте v_p с достаточно широким релаксационным резонансом. В диапазоне 1 величина v_m изменяется вблизи резонанса, поэтому $v_{\rm p} = v_{\rm m}$. Импульс генерации периодически возникает в момент времени, близкий к минимуму $\kappa_{d}(\tau)$, когда растущее значение инверсии *n* превышает порог. Поэтому в диапазонах регулярных пульсаций отношение частот v_m/v_r – целое число. Переход частоты v_m из одного диапазона в другой (например, из 2 в 3) приводит к снижению частоты генерации в целое число раз и (при увеличении номера диапазона) к «стягиванию» полосы регулярной генерации к релаксационному резонансу. На рис.7 показана временная зависимость генерации для v_m = 6.6; частота следования близка к v_r и равна $v_m/3$.

Возможности повышения амплитуды периодических импульсов \bar{I} связаны с изменением режима работы AOM, например с заменой гармонического изменения $\kappa_d(t)$ на периодические резкие снижения его величины. При этом для обеспечения достаточно высокой инверсии перед началом каждого импульса частоту такой модуляции необходимо снизить относительно частоты v_r . Импульс генеа-

Рис.6. Зависимость частоты следования импульсов $v_{\rm p}$ от частоты $v_{\rm m}$ при гармонической модуляции $\kappa_{\rm d}$ в диапазоне 0.4 –0.2 (η = 5.5).

Рис.7. Генерация при частоте модуляции $v_{\rm m} = 6.6$.

Рис.8. Импульс генерации при резком периодическом снижении коэффициента κ_d и $v_m = 1$ (*a*) и спектральные профили мод E_j^2 (*б*). Цифры 1–6 показывают моменты времени измерения профилей.

ции при таком изменении к_d показан на рис.8, а для частоты модуляции $v_{\rm m} = 1$. Видно, что амплитуда импульса существенно выше, чем при гармонической модуляции, среда насыщается глубже. Амплитудное значение I достигается спустя примерно $3 \times 10^{-2} \tau$, за этот промежуток времени импульс нарастает от уровня спонтанной эмиссии до максимального значения, равного 600 (в режиме автоколебаний это значение составляет ~40, см. рис.5). Спектральный состав такого импульса определяет характеристики режима синхронизации мод. Распределение E_i^2 по модам за отмеченный выше промежуток времени установиться не успевает. Такие распределения показаны на рис.8, δ в моменты времени τ (отмечены цифрами 1–6 на рис.8,*a*), когда I уже не слишком мало. Максимум распределения постепенно сдвигается вправо, спектр при этом остается значительно более узким, чем тот, который имел бы место в режиме стационарного \bar{I} (сравни с данными рис.2). Полученные результаты говорят о том, что время формирования спектра, соответствующего новому значению κ_d , примерно на порядок больше времени формирования импульса в режиме модуляции добротности.

3.3. Характеристики импульсов синхронизованных мод

В QML-режиме распределение амплитуд в серии импульсов синхронизованных мод, разделенных интервалом времени T_c , совпадает по форме с $\bar{I}(\tau)$. В режиме автоколебаний их максимальная амплитуда при прочих равных условиях определяется величиной коэффициента дифракционной связи. С ростом κ_d увеличивается число синхронизующихся мод (согласно данным рис.2) и одновременно растут потери. Поэтому, как и для \bar{I}_{max} , существует оптимальное значение κ_d , при котором достигается самая высокая амплитуда I_{max} . При этом влияние увеличения числа мод сказывается сильнее и оптимальное значение $\kappa_{\rm d} \approx 0.17$ несколько больше того, которое достигается для \bar{I}_{max} . При таком значении κ_d и накачке $\eta = 5.5$ в режиме автомодуляции $I_{\text{max}} = 4.5 \times 10^3$. В случае модуляции κ_d (см. рис.8) результат выше: $I_{max} = 5 \times 10^4$. Импульс СМ, показанный на рис.9, в обоих случаях имеет длительность, близкую к $\tau_p = 5 \times 10^{-7}$ (в абсолютных единицах при выбранных параметрах $T_p = 10^{-10}$ с). Сравнение ширины импульса с величиной Т_с показывает, что синхронизуется ~100 мод.

Последнее замечание связано с возможной отстройкой удвоенной рабочей частоты АОМ от межмодового интервала. С ростом отстройки изменяются параметры автоколебаний. Уже для $\delta\hat{\omega} \approx 6.3$ (в абсолютных единицах соответствует $\delta v \approx 5 \kappa \Gamma \mu$) становится заметным рост релаксационной частоты, связанный со снижением глубины насыщения среды каждым импульсом. По этой причине амплитуда импульсов автоколебаний $I(\tau)$ снижается, их длительность увеличивается. Частотный состав претерпевает значительные изменения. Величина $\Delta \Phi_i$ для каждой моды изменяется за время импульса (плавное снижение во времени разности $\Delta \varphi_i = \varphi_{i-1} - \varphi_i$ лишь приближенно компенсируется ростом $\delta\hat{\omega}\tau$). Изменения $\Delta\Phi_i$ приводят к тому, что при наличии отстройки наблюдаются изменения распределения E_i^2 во времени – появляются минимумы и максимумы, при этом сокращается эффективное число работающих мод. При $\delta v \approx 10 \, \text{к}\Gamma$ ц нарушается регулярность импульсов автоколебаний.

Рис.9. Импульс синхронизованных мод.

Сценарий изменения структуры импульсов СМ с ростом δv подробно не изучался. Однако изменения распределения E_j^2 , происходящие за время импульса автоколебаний, существенным образом сказываются на характеристиках импульсов СМ. Снижаются амплитуды, увеличивается длительность импульсов. Для отстройки $\delta v = 5 \ \kappa\Gamma$ ц импульс уширен до $T_p \approx 2 \times 10^{-10} \ c$, дальнейшее увеличение отстройки приводит практически к пропорциональному увеличению длительности. При этом форма импульсов приобретает изрезанность, близкую к той, которая получается при моделировании мод со случайным изменением фаз от 0 до $\pi/2$ в обе стороны от нуля.

4. Заключение

Предложена модель для описания твердотельного лазера с одним АОМ бегущей волны в резонаторе. Динамическая связь мод осуществляется за счет инжекции поля от предыдущей моды в последующую со сдвигом частоты, равным межмодовому интервалу. Установлено, что в достаточно широком диапазоне изменений коэффициента дифракционной связи κ_d и скорости накачки режим генерации со стационарной усредненной интенсивностью оказывается неустойчивым. Неустойчивость приводит к автоколебательному QML-режиму с частотой следования импульсов, близкой к релаксационной частоте системы v_r . Показано, что коэффициент κ_d является управляющим параметром, который может кардинально изменять динамику системы при неизменных остальных параметрах.

Управление характеристиками импульсно-периодического режима путем внешней периодической модуляции коэффициента κ_d на относительно низкой частоте v_m имеет особенности, связанные с влиянием релаксационного резонанса. Регулярная импульсно-периодическая генерация возникает, когда отношение частот v_m/v_r равно целому числу, и в полосах частот вблизи v_r . Этим полосам соответствуют определенные диапазоны изменения v_m , в промежутках между которыми наблюдаются режимы со сложным периодом и хаотическая генерация.

Коэффициент κ_d не только определяет потери резонатора и скорость инжекции, но и существенно влияет на модовый состав генерации, тем самым в значительной степени определяя форму и амплитуду импульсов синхронизованных мод.

- 1. Kuizenga D.J. IEEE J. Quantum Electron., 17, 1694 (1981).
- Корниенко Л.С., Кравцов Н.В., Наний О.Е., Шелаев А.Н. Квантовая электропика, 8, 2552 (1981) [Sov. J. Quantum Electron., 11, 1557 (1981)].
- Кравцов Н.В., Магдич Л.Н., Шелаев А.Н., Шницер П.И. Письма в ЖТФ, 9, 440 (1983).
- Надточеев В.Е., Наний О.Е. Квантовая электроника, 16, 2231 (1989) [Sov. J. Quantum Electron., 19, 1435 (1989)].
- Jabczinski J.K., Zendzian W., Rwiatkowski J. Opt. Express, 14 (6), 2184 (2006).
- Донин В.И., Яковин Д.В., Грибанов А.В. Квантовая электроника, 42, 107 (2012) [Quantum Electron., 42, 107 (2012)].
- Donin V.I., Yakovin D.V., Gribanov A.V. Opt. Lett., 37 (3), 338 (2012).
- Донин В.И., Яковин Д.В., Грибанов А.В. Письма в ЖЭТФ, 101, 881 (2015) [JETP Lett., 101, 783 (2015)].
- 9. McDuff O.P., Yarris S.E. IEEE J. Quantum Electron., 3, 101 (1967).
- Hjelme D.R., Mickelson A.R. *IEEE J. Quantum Electron.*, 28, 1594 (1992).
- Ларионцев Е.Г. Квантовая электроника, 21, 209 (1994) [Quantum Electron., 24, 191 (1994)].