Селективная лазерная ионизация радионуклида ⁶³Ni

Г.О.Цветков, А.Б.Дьячков, А.А.Горкунов, А.В.Лабозин, С.М.Миронов, В.А.Фирсов, В.Я.Панченко

Проведен поиск селективной схемы лазерной ступенчатой ионизации радионуклида ⁶³Ni излучением лазеров на красителях с накачкой излучением лазеров на парах меди. Найдена трехступенчатая схема с ионизацией через автоионизационное состояние (АИС): $3d^84s^{23}F_4(E=0) \rightarrow 3d^94p^1F_3^{\circ}(31030.99 \text{ cm}^{-1}) \rightarrow 3d^94d^2[7/2]_4(49322.56 \text{ cm}^{-1}) \rightarrow AIC(67707.61 \text{ cm}^{-1})$, позволившая при использовании насыщающих интенсивностей излучений получить селективность ионизации ⁶³Ni свыше 1200.

Ключевые слова: никель, радионуклид ⁶³Ni, лазерная фотоионизация, автоионизация, селективность.

1. Введение

В настоящее время ведутся активные разработки автономных источников энергии на основе бета-вольтаического эффекта с использованием радионуклида ⁶³Ni (источник β -излучения со средней энергией 0.17 МэВ и периодом полураспада 100 лет) [1–5]. Такие малогабаритные автономные источники электрической энергии (~1–10 мкВт) со сроком службы более 30 лет могли бы обеспечить многолетнее энергоснабжение микросистем, находящихся в труднодоступных местах. Эти микросистемы применяются на объектах космического базирования, в системах распределенного мониторинга Земли, в датчиках контроля целостности конструкций, встроенных в каркасы зданий или в дорожные покрытия, в кардио- и нейростимуляторах в медицине и т.д.

Природный никель состоит из пяти стабильных изотопов – ⁵⁸Ni, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni и ⁶⁴Ni с распространенностью 68.07%, 26.22%, 1.14%, 3.63% и 0.93% соответственно. Известный способ получения радионуклида ⁶³Ni представляет собой последовательность трех операций: получение обогащенного по ⁶²Ni исходного материала с применением центробежного разделения, облучение его в реакторе и конверсия в летучее соединение с последующим обогащением по радиоизотопу ⁶³Ni [6,7]. При условии обогащения мишени по ⁶²Ni до ~50% содержание ⁶³Ni в конечном продукте может достигать 50%. Для дальнейшего увеличения концентрации целевого изотопа требуется дополнительное центрифугирование, однако из-за высокой радиоактивности этот процесс становится технически сложным в реализации.

Применение лазерной технологии разделения изотопов в атомном паре (атомный вариант лазерной изотопной сепарации – АВЛИС) может существенно удешевить данный процесс, поскольку основная часть установки –

Поступила в редакцию 20 октября 2016 г., после доработки – 31 октября 2016 г.

лазерная система – располагается вне зоны действия радиоактивности.

Метод АВЛИС основан на лазерной селективной ступенчатой фотоионизации разреженных паров какоголибо элемента излучением двух и более перестраиваемых по длине волны лазеров [8]. Длина волны спектрально узкого излучения лазеров настраивается на линии поглощения целевого изотопа, происходит ступенчатое возбуждение и фотоионизация атомов. Образованные фотоионы целевого изотопа экстрагируются из потока пара на коллектор с помощю электрического поля, остальные атомы, оставаясь нейтральными, продолжают двигаться по первоначальным траекториям. Эффективность сепарации целевого изотопа методом АВЛИС определяется наличием «больших» изотопических сдвигов в спектре возбуждения данного элемента (превышающих спектральную ширину линии лазерного излучения и доплеровское уширение линии поглощения) и возможностью достижения светового насыщения каждой ступени процесса ионизации (для снижения потерь атомов с промежуточных уровней вследствие спонтанного распада и, следовательно, максимального выхода фотоионов [9]). По уровню световой мощности, спектральным и частотным характеристикам система перестраиваемых лазеров на красителях (ЛК) с накачкой излучением лазеров на парах меди (ЛПМ) является одной из наиболее эффективных для АВЛИС [10]. Исходя из этого, поиск схем ионизации NiI проводился с учетом спектров генерации эффективных лазерных красителей (диапазон длин волн $\lambda = 530-645$ нм) и спектров вторых гармоник излучений ЛК.

Из научной литературы известны изотопические сдвиги линий более 30 переходов в спектре дуги NiI [11, 12], однако почти все линии (с $\lambda = 330-391$ нм) лежат вне интересующего нас диапазона. В работах [13–15] предложен ряд схем с ионизацией NiI через автоионизационные состояния (АИС):

3d⁸4s²³F₄ + *hv*(3145 Å) → 3d⁸4s4p³G₃^o + *hv*(3254 Å) → AUC [13], 3d⁹4s³D₃ + *hv*(3249 Å) → 3d⁸4s4p³G₄^o + *hv*(3150 Å) → AUC [13],

Г.О.Цветков, А.Б.Дьячков, А.А.Горкунов, А.В.Лабозин, С.М.Миронов, В.А.Фирсов, В.Я.Панченко. Национальный исследовательский центр «Курчатовский институт», Россия, 123182 Москва, пл. Акад. Курчатова, 1; e-mail: glebtsvetkov@mail.ru

 $3d^84s^{2\,3}F_4 + hv(3232 \text{ Å}) \rightarrow$ $3d^84s4p^3G_5^\circ + hv(3152 \text{ Å}) \rightarrow AHC$ [13],

- $\begin{array}{l} 3d^{9}4s\,^{3}\mathrm{D}_{3} + lw(3051\,\,\text{\AA}) \rightarrow 3d^{8}4s4p\,^{3}\mathrm{F}_{4}^{\circ} + lw(6111\,\,\text{\AA}) \rightarrow \\ 3d^{9}4d\,^{2}[7/2]_{4} + lw(7482\,\,\text{\AA}) \rightarrow \mathrm{AHC}\,[14], \end{array}$
- $3d^94s {}^3D_3 + hv(2748 \text{ Å}) \rightarrow 3d^84s4p {}^1D_2^\circ + hv(7866 \text{ Å}) \rightarrow 3d^94d {}^2[7/2]_3 + hv(7750 \text{ Å}) \rightarrow AMC [15].$

Получить излучение ЛК, мощность которого достаточна для реализации эффективной ионизации макроколичеств целевого изотопа в спектральном диапазоне предложенных переходов, крайне затруднительно.

Настоящая работа посвящена поиску эффективной схемы селективной лазерной ионизации изотопов никеля излучением ЛК с накачкой излучением ЛПМ. В разд.2 описана установка для исследования спектров NiI в атомном паре методом ступенчатой резонансной ионизации. В разд.3 представлены результаты измерения изотопических сдвигов линий ряда переходов с основного и промежуточных уровней для четных изотопов NiI, а также рассмотрена структура первых переходов схемы фотоионизации для ⁶¹Ni и ⁶³Ni. Проведен поиск нечетных АИС с энергией E = 67503 - 68013 см⁻¹, превышающей порог ионизации. На основе полученных результатов выбрана трехступенчатая селективная схема ионизации: $3d^84s^{23}F_4 (E = 0) \rightarrow 3d^94p^1F_3^{\circ}(31030.99 \text{ cm}^{-1}) \rightarrow 3d^94d^2[7/2]_4$ $(49322.56 \text{ см}^{-1}) \rightarrow \text{АИС} (67707.61 \text{ см}^{-1}), и измерены интен$ сивности насыщения по всем ступеням возбуждения. В разд.4 приведены результаты селективной ионизации ⁶³Ni, выполненной по данной схеме.

2. Экспериментальная установка

2.1. Лазерная система

Лазерная установка, состоящая из ЛК с накачкой излучением ЛПМ и комплекса сепаратора, была разработана и создана в НИЦ «Курчатовский Институт» для исследования лазерного разделения изотопов в атомном паре [16].

ЛПМ (задающий генератор (ЗГ) – усилитель) создан на основе саморазогревных [17, 18] излучателей на парах меди LT-40Cu и тиратронных модуляторов (длины волн 510 и 578 нм, выходная мощность 35-40 Вт, частота следования импульсов 10 кГц, длительность импульсов $\Delta \tau_{\rm FWHM} \approx 20$ нс). Каждый ЛК состоит из ЗГ и усилителя. Резонаторы ЗГ построены по схеме с дифракционной решеткой, работающей в режиме скользящего падения. Средняя мощность одномодовой генерации на выходе ЗГ составляет 100-200 мВт (спектральная ширина линии излучения $\Delta v_{\rm FWHM} \approx 100 \, {\rm M}$ Гц, $\Delta \tau_{\rm FWHM} \approx 15-20 \, {\rm Hc}$). В усилителе ЛК мощность увеличивается до 4-8 Вт. Конструкция резонатора ЗГ позволяет проводить плавное (без перескока мод) сканирование длины волны одномодовой генерации в диапазоне ~1 Å, управляя напряжением на пьезоэлементе узла поворотного зеркала резонатора. Для сканирования в более широком диапазоне (более 100 Å) используется шаговый двигатель. Контроль длины волны излучения ЛК осуществляется прецизионными измерителями LM007 (Laser 2000, GmbH), обеспечивающими абсолютную точность измерений ~0.0005 Å. При необходимости измерители используются в качестве эталона для активной стабилизации длины волны генерации любого ЛК. Более детальную информацию о ЛК можно найти в работе [19]. На выходе усилителей ЛК пучки телескопируются до диаметра 5–12 мм, коллимируются и направляются в камеру масс-спектрометра. Для пространственного сведения пучков применяются полупрозрачные и/или дихроичные зеркала. Импульсы излучения всех ЛК в едином пучке синхронизованы по времени, однако при необходимости они могут быть разнесены во времени на десятки наносекунд с помощью соответствующих пространственных линий задержки.

Использование эффективных лазерных красителей PM556, PM567, PM597, SR640 и Cresyl Violet обеспечивает рабочий спектральный диапазон лазерной системы 530–645 нм. Для получения перестраиваемого излучения в УФ области спектра излучение ЛК (накачка на $\lambda = 578$ нм, краситель Cresyl Violet, диапазон длин волн генерации 623–645 нм) преобразовывалось во вторую гармонику ($\lambda = 312-323$ нм, средняя мощность до 1 Вт) в нелинейном кристалле β-BBO (размер 4×4×5 мм, углы синхронизма $\theta = 39^\circ$, $\varphi = 90^\circ$).

2.2. Камера масс-спектрометра

Для проведения спектроскопических исследований в узких коллимированных атомных пучках, в частности методом резонансной ступенчатой ионизации, используется установка, состоящая из вакуумной камеры с системой откачки, термического испарителя и квадрупольного масс-спектрометра МС-7302. Установленная над испарителем система диафрагм позволяет формировать узкий атомный пучок (ортогонально лазерному пучку) с углом раскрытия 3° (доплеровское уширение линий ~100 МГц). Лазерный пучок пересекает атомный пучок непосредственно в ионизационной камере источника ионов квадрупольного масс-спектрометра. Зона взаимодействия лазерного излучения с атомным паром имеет форму цилиндра длиной 2 мм и диаметром 2 мм (определяется размером диафрагмы, установленной на пути распространения лазерного пучка непосредственно перед зоной взаимодействия). Оси атомного и лазерного пучков и ионнооптическая ось масс-спектрометра взаимно ортогональны. Регистрация ионов проводится вторично-электронным умножителем. Сбор экспериментальных данных осуществляется в режиме реального времени. Программное обеспечение, реализованное в среде LabVIEW (National Instruments), принимает данные измерителей длин волн, измерителей мощности лазерного излучения, сигналы от вторично-электронного умножителя и с помощью блока сопряжения меняет управляющее напряжение на пьезоэлементе поворотного зеркала резонатора ЛК, перестраивая длину волны генерации. Полученные данные сохраняются, проводится их обработка и оперативная оценка.

В экспериментах со стабильными изотопами NiI для испарения использовался природный металлический никель, в экспериментах с радионуклидом ⁶³Ni применялась металлическая порошковая смесь природного никеля с радионуклидом из ⁶³Ni-источника β-излучения (ЗАО «РИТВЕРЦ», Россия).

3. Выбор схемы фотоионизации

3.1. Первая ступень

Основной уровень NiI $3d^84s^2 {}^3F_4$ (энергия E = 0) и нижний метастабильный уровень $3d^94s {}^3D_3$ (E = 204.786 см⁻¹)

использовались в качестве начальных. Их относительная населенность при температуре испарения никеля ~1700 °C составляет 0.41 и 0.27 соответственно. Согласно [20] существует порядка 10 переходов с уровней ${}^{3}F_{4}$ и ${}^{3}D_{3}$ с длинами волн 280–323 нм. Для исследования были выбраны три перехода, соответствующие различным изменениям электронной конфигурации:

 $\begin{aligned} & 3d^84s^{2\,3}F_4 \rightarrow 3d^84s4p\,^3G_3^{\circ}\,(\lambda=314\text{ hm}), \\ & 3d^94s\,^3D_3 \rightarrow 3d^84s4p\,^3G_3^{\circ}\,(\lambda=317\text{ hm}), \\ & 3d^84s^{2\,3}F_4 \rightarrow 3d^94p\,^1F_3^{\circ}\,(\lambda=322\text{ hm}). \end{aligned}$

Потенциал ионизации NiI равен 7.64 эВ (61600 см⁻¹), что позволяет исследовать структуру первых переходов по двухступенчатой схеме с ионизацией в континуум с помощью одного ЛК. В ходе эксперимента фильтр масс квадрупольного масс-спектрометра настраивался на пропускание фотоионов исследуемого изотопа, проводились сканирование длины волны ЛК и регистрация фотоионного тока. Пример фотоионного сигнала ⁵⁸Ni при сканировании длины волны ЛК вблизи длины волны резонансного перехода $3d^84s^{23}F_4 \rightarrow 3d^94p^1F_3^{o}$ приведен на рис.1. Для более точного определения «центра» каждого перехода экспериментальные точки аппроксимировались контуром Фойгта с использованием программы PAW библиотеки ЦЕРНа [21]. В табл.1 представлены измеренные изотопические сдвиги частот переходов для четных изотопов NiI.

Рис.1. Фотоионный сигнал ⁵⁸Ni (точки) в зависимости от волнового числа излучения ЛК первой ступени возбуждения ($3d^84s^{23}F_4 \rightarrow 3d^94p^1F_3^{\circ}$). Сплошная кривая – контур Фойгта с ширинами (FWHM) лоренцевского (Δv_L) и гауссова (Δv_D) профилей, равными соответственно 25 и 190 МГц.

Рис.2. Изотопическая структура первых переходов NiI. Вертикальные линии указывают длины волн переходов четных изотопов NiI, точки – СТС переходов ⁶¹Ni (•) и ⁶³Ni (•).

Селективность возбуждения, наряду с величинами изотопических сдвигов, определяется сверхтонкой структурой (СТС) перехода для изотопов с ненулевым значением спина ядра *I*. В нашем случае I = 3/2 для ⁶¹Ni и 1/2 для ⁶³Ni. Для выбранных переходов константы сверхтонкого взаимодействия известны только для нижних уровней изотопа ⁶¹Ni [22]. Этого недостаточно для расчета СТС переходов с изменением полного атомного момента $\Delta F = 0, \pm 1$ между подуровнями свехтонких мультиплетов с F = J + I, J + I - 1, ..., |J - I|, где J – полный электронный момент атома. Поэтому СТС трех первых переходов определялась в эксперименте (рис.2).

СТС переходов ${}^{3}F_{4} \rightarrow {}^{3}G_{3}^{\circ}$ и ${}^{3}D_{3} \rightarrow {}^{3}G_{3}^{\circ}$ оказалась такой (рис.2), что селективная фотоионизация 63 Ni возможна только через слабые линии с $\lambda = 3146.012$ и 3166.438 Å соответственно. СТС перехода ${}^{3}F_{4} \rightarrow {}^{1}F_{3}^{\circ}$ изотопа 63 Ni состоит из трех переходов с изменением *F*: $3.5 \rightarrow 3.5$, $4.5 \rightarrow 3.5$,

Табл.1. Изотопические сдвиги частот переходов для четных изотопов NiI (знак « – » означает, что частота перехода для более легкого изотопа больше).

Ступень возбуждения	Переход	Длина волны [*] (Å)	Изотопический сдвиг (ГГц)					
			58Ni-60Ni	60Ni-62Ni	62Ni-64Ni	⁵⁸ Ni- ⁶⁴ Ni		
Первая	$3d^84s^{23}F_4 \rightarrow 3d^84s4p^3G_3^0$	3146.0237(3)	0.727(30)	0.728(30)	0.697(30)	2.152(30)		
Первая	$3d^94s^3D_3 \rightarrow 3d^84s4p^3G_3^\circ$	3166.4219(3)	-1.077(30)	-0.928(30)	-0.957(30)	-2.962(30)		
Первая	$3d^84s^{23}F_4 \rightarrow 3d^94p^1F_3^0$	3222.5841(3)	2.080(30)	2.080(30)	1.964(30)	6.124(30)		
Вторая	$3d^94p {}^1F_3^o \rightarrow 3d^94d {}^2[7/2]_4$	5464.0140(6)	0.423(15)	0.522(15)	0.504(15)	1.449(15)		
Третья	$3d^94d^2[7/2]_4 \rightarrow 67707.6 \text{ cm}^{-1}$	5442.1623(6)	-1.641(30)	-1.419(30)	-2.055(30)	-5.115(30)		
[*] Длина волны (в вакууме) соответствует переходам ⁵⁸ Ni.								

3.5 → 2.5. В эксперименте были зафиксированы только две линии на λ = 3222.559 и 3222.566 Å. Вероятно, интенсивный пик фотоионного сигнала ⁶³Ni на λ = 3222.566 Å образуют два близких по частоте сверхтонких перехода. Частотное расстояние от данного пика до ближайших пиков изотопов ⁶⁴Ni и ⁶²Ni составило 0.75 и 1.21 ГГц соответственно. Таким образом, переход ³F₄ → ¹F₃^o был выбран в качестве перехода первой ступени схемы фотоионизации.

3.2. Вторая ступень

Двухступенчатая ионизация атомов никеля может быть проведена через ряд известных четных АИС [13], однако трехступенчатый вариант (один УФ квант и два кванта видимого диапазона) потенциально предпочтительней. Во-первых, селективность двухступенчатой ионизации ниже из-за наличия канала неселективной двухфотонной нерезонансной ионизации. Во-вторых, мощность УФ излучения на выходе нелинейного кристалла β-BBO из-за температурной зависимости угла фазового синхронизма ограничена величиной в несколько ватт [23, 24], что может быть недостаточно для достижения эффективной ионизации. Переход с уровня 3d⁹4p¹F^o₃ возможен на четный уровень со значением полного электронного момента Ј, равным 2, 3 или 4. В спектральном диапазоне эффективной генерации ЛК согласно [20] переходы возможны на следующие уровни:

 $3d^{9}4d^{2}[7/2]_{4}$ (*E* = 49332.593 cm⁻¹, λ = 546 HM),

 $3d^{9}4d^{2}[7/2]_{3}$ (*E* = 49313.814 cm⁻¹, λ = 547 HM),

 $3d^{9}4d^{2}[3/2]_{2}$ (*E* = 49159.030 cm⁻¹, λ = 551 HM),

 $3d^84s5s^5F_4$ (*E* = 49085.982 cm⁻¹, λ = 554 HM).

Для определения длин волн и изотопических сдвигов длина волны излучения ЛК второй ступени (накачка на $\lambda = 510$ нм, краситель PM556, диапазон длин волн генерации 530–550 нм, плотность средней мощности 50 мВт/см²) сканировалась вблизи длины волны резонансного перехода, одновременно ЛК первой ступени (80 мВт/см²) был стабилизирован на длине волны 3222.5841 Å. Дополнительный ЛК (накачка на $\lambda = 510$ нм, краситель PM556, длина волны излучения 535 нм, плотность средней мощности 1 Вт/см²) использовался для увеличения вероятности ионизации в континуум со второго уровня.

Поиск вторых переходов мы ограничили исследованием перехода $3d^94p^1F_3^{\circ} \rightarrow 3d^94d^2[7/2]_4$, поскольку, с одной стороны, он имеет заметную изотопию (табл.1), а с другой стороны, с его верхнего уровня $3d^94d^2[7/2]_4$ был обнаружен очень интенсивный автоионизационный переход (см. ниже).

3.3. Третья ступень (автоионизация)

При использовании ЛК с накачкой излучением ЛПМ четвертый уровень (АИС) в схеме фотоионизации должен иметь энергию в диапазоне 64663–68189 см⁻¹ и быть нечетным со значением полного электронного момента J = 1-5 в зависимости от третьего (предыонизационного) уровня. Согласно [14] в диапазоне E = 62577-67157 см⁻¹ обнаружено только одно нечетное АИС с энергией 62694 см⁻¹

и J = 3. Наша лазерная система позволила несколько расширить диапазон поиска. Сканирование длины волны излучения ЛК третьей ступени (возбуждение с уровня $3d^{9}4d^{2}[7/2]_{4}$, E = 49332.593 см⁻¹) проводилось в диапазоне длин волн генерации красителя PM556: λ = 535-550 нм $(E = 67503 - 68013 \text{ см}^{-1})$. В ходе сканирования были обнаружены семь АИС (табл.2). Фотоионный сигнал при ионизации через наиболее интенсивный автоионизационный переход ($E_{AIS} = 67707.611 \text{ см}^{-1}$) (рис.3) превысил сигнал ионизации в континуум в 630 раз. Для определения полного электронного момента J данного АИС экспериментально исследовалась возможность ионизации через это состояние с использованием другого предыонизационного уровня с E = 67707.611 см⁻¹ из конфигурации $3d^{9}4d^{2}[7/2]_{3}$ с *J* = 3. В эксперименте автоионизации обнаружено не было, поэтому можно предположить, что полный электронный момент АИС с $E_{AIS} = 67707.611 \text{ см}^{-1}$ равен 5.

Важнейшей характеристикой каждой схемы фотоионизации является интенсивность лазерного излучения, необходимая на каждой ступени для достижения насыщения переходов. Это позволяет оценить эффективность фотоионизации при заданных лазерных мощностях, а также затраты, необходимые для достижения требуемой производительности процесса разделения. Для определения этих характеристик экспериментально исследовались зависимости фотоионного сигнала от плотности средней мощности лазерного излучения. На рис.4 и 5 приведены такие зависимости для всех ступеней возбуждения. Уровни насыщения для первой, второй и третьей ступе-

Табл.2. АИС ⁵⁸Ni, возбуждаемые при переходах с уровня $3d^94d^2[7/2]_4$ (*E* = 49332.561 см⁻¹).

Длина волны (в вакууме) перехода (Å)	Ширина (FWHM) линии перехода (ГГц)	Энергия АИС (см ⁻¹)	K
5460.293	18	67646.598	3.2
5456.925	0.4	67657.903	5.5
5452.601	0.6	67672.431	11
5442.162	1.1	67707.611	630
5435.736	30	67729.336	4.5
5428.130	0.2	67755.112	11.5
5424.010	12.3	67769.105	5.7

Примечания: *К* – отношение тока фотоионизации через АИС к току фотоионизации в континуум при плотности средней мощности излучения 1 Вт/см².

Рис.3. Фотоионный сигнал ⁵⁸Ni при ионизации через АИС с $E_{AIS} = 67707.611 \text{ сm}^{-1}$ в зависимости от волнового числа излучения ЛК третьей ступени (возбуждение с уровня $3d^94d^2[7/2]_4$, $E = 49332.561 \text{ сm}^{-1}$).

1.0

0.8

0.6

0.4

Рис.4. Зависимости фотоионного сигнала от плотностей средней мощности ЛК первой ступени (плотности средней мощности ЛК второй и третьей ступеней 80 мВт/см² и 1 Вт/см² соответственно) (1) и ЛК второй ступени (плотности средней мощности ЛК первой и третьей ступеней 80 мВт/см² и 1 Вт/см² соответственно) (2).

Рис.5. Зависимость фотоионного сигнала от плотности средней мощности ЛК третьей ступени (плотность средней мощности ЛК первой и второй ступеней: 80 и 15 мВт/см² соответственно).

ней составили 80, 15 и 4000 мВт/см² соответственно. Окончательная схема трехступенчатой ионизации NiI представлена на рис.6.

4. Селективная фотоионизация

Настройка длин волн излучений лазеров для селективной фотоионизации радионуклида осуществлялась в несколько этапов. В начале фильтр масс квадрупольного масс-спектрометра настраивался на пропускание ионов с массой 63. ЛК первой ступени настраивался на длину волны наиболее интенсивной компоненты спектра ⁶³Ni $(\lambda_1 = 3222.5656 \text{ Å})$ и переводился в режим автоматической стабилизации длины волны. Затем длины волн ЛК второй и третьей ступеней последовательно настраивались на максимальный фототок радионуклида ^{63}Ni (λ_2 = 5464.0058 Å, $\lambda_3 = 5442.1953$ Å) и также стабилизировались. Для определения селективности фотоионизации ⁶³Ni масс-спектрометр сканировался в диапазоне массовых чисел 57-65. Пример масс-спектра фотоионного сигнала представлен на рис.7. Плотности средней мощности ЛК первой, второй и третьей ступеней в эксперименте составляли 80, 15 и 1700 мВт/см² соответственно и были близки к уровням насыщения (рис.4 и 5).

Концентрация ионов ⁶³Ni в фотоионном токе (при начальной концентрации радионуклида менее 1%) состави-

Рис.6. Трехступенчатая схема ионизации NiI через АИС. Энергии уровней и длины волн (в вакууме) соответствуют ⁵⁸Ni.

Рис.7. Масс-спектр фотоионов. Начальная изотопная концентрация ⁶³Ni составляла менее 1%, плотности средней мощности ЛК первой, второй и третьей ступеней равны 80, 15 и 1700 мВт/см² соответственно.

ла 93%. В табл.3 приведены результаты экспериментов по селективной ионизации различных мало распространенных изотопов NiI. Видно, что селективность фотоионизации ⁶¹Ni оказывается ниже, чем, например, ⁶³Ni. Это, по-видимому, связано с тем, что линии ⁶¹Ni в спектре соседствуют с линиями четных изотопов с относительно высокой концентрацией – ⁶⁰Ni (26.22%) и ⁶²Ni (3.63%). Кроме того, при настройке длин волн лазерного излучения первой ступени на компоненту СТС ⁶³Ni в процесс

Табл.3. Селективность S лазерной ионизации изотопов NiI при насыщающих интенсивностях излучений по схеме $3d^84s^{23}F_4 \rightarrow 3d^94p^1F_3^{\circ} \rightarrow$ $3d^{9}4d^{2}[7/2]_{4} \rightarrow AUC (67707.611 \text{ см}^{-1}).$

Изотоп	$C_{ m f}$	Cp	S	
⁶¹ Ni	0.011	0.75	265	
⁶² Ni	0.036	>0.98	>1300	
⁶³ Ni	< 0.01	0.93	>1200	
⁶⁴ Ni	0.009	>0.98	>5000	

Примечание: $S = C_p(1 - C_f)/[C_f(1 - C_p)]$, где C_f – исходная концентрация целевого изотопа, а C_p – концентрация фотоионов целевого изотопа

5. Заключение

Эксперименты по спектроскопии атомарного никеля, выполненные методом резонансной ступенчатой ионизации, позволили найти эффективную схему селективной лазерной ионизации изотопов NiI излучением ЛК с накачкой излучением ЛПМ: $3d^84s^{23}F_4$ (E = 0) $\rightarrow 3d^94p^1F_3^{0}$ $(31030.99 \text{ cm}^{-1}) \rightarrow 3d^{9}4d^{2}[7/2]_{4} (49322.56 \text{ cm}^{-1}) \rightarrow AHC$ (67707.61 см⁻¹). Полученная в экспериментах селективность выделения радионуклида ⁶³Ni при относительно низких требованиях к мощностным выходным характеристикам лазерной системы позволяет рассматривать метод лазерного разделения изотопов в атомном паре (АВЛИС-технология) как весьма перспективный для получения макроколичеств радионуклида ⁶³Ni – основы для создания долгоживущих автономных источников электроэнергии.

Работа поддержана грантом РФФИ №16-29-09459офи_м.

1. Нагорнов Ю.С. Современные аспекты применения бетавольтаического эффекта (Ульяновск, 2012).

- 2. Пустовалов А.А., Гусев В.В., Заддэ В.В., Петренко Н.С., Тихомиров А.В., Цветков Л.А. Атомная энергия, 103, 353 (2007).
- Пчелинцева Е.С. Канд. дис. (Ульяновск, УдГУ, 2011). 3 4. Резнев А.А., Пустовалов А.А. и др. Нано- и микросистемная
- техника, 3, 14 (2009). 5
- http://www.findpatent.ru/patent/245/2452060.html.
- Sosnin L.J., Suvorov I.A., Tcheltsov A.N., Rogozev B.I., Gudov V.I. 6. Nucl. Instrum. Methods Phys. Res., Sect. A, 334, 43 (1993).
- 7. http://www.findpatent.ru/patent/231/2313149.html.
- Амбарцумян Р.В., Калинин В.П., Летохов В.С. и др. Письма в 8. ЖЭТФ, 13, 305 (1971).
- 9 Летохов В.С., Мишин В.И., Пурецкий А.А. В сб.: Химия плазмы (М.: Атомиздат, 1977, т. 4, с. 3).
- Bass I.L., Bonanno R.E., Hackel R.P., Hammond P.R. Appl. Opt., 10. 33, 6993 (1992).
- 11. Schroeder D.J., Mack J.E. Phys. Rev., 121, 1726 (1961).
- 12. Steudel A. Z. Phys. A: At. Nucl., 296, 189 (1980).
- 13. Lievens P. Phys. Rev. A, 54, 2253 (1996).
- 14. Jokinen A. Nucl. Instrum. Methods Phys. Res., Sect. B, 126, 95 (1997).
- 15. Kessler T. J. Phys. B: At. Mol. Opt. Phys., 40, 4413 (2007).
- 16. Бабичев А.П. и др. Квантовая электроника, 35, 879 (2005).
- 17. Исаев А.А., Казарян М.А., Петраш Г.Г. Письма в ЖЭТФ, 16, 40 (1972)
- 18. Беляев В.П., Зубов В.В., Исаев А.А. и др. Квантовая электроника, 12, 74 (1985)
- 19. Grigoriev I., Diachkov A., Kuznetzov V., Labosin V., Firsov V. Proc. SPIE Int. Soc. Opt. Eng., 5121, 411 (2003).
- 20. http://grotrian.nsu.ru.
- 21. http://cernlibweb.cern.ch/cernlib.
- 22. Childs W.J., Goodman L.S. Phys. Rev., 170, 136 (1968).
- 23. Yap Y.K. Opt. Lett., 23, 1016 (1998).
- 24. Takahashi M. Jpn. J. Appl. Phys., 49, 080211 (2010).