Исследования гидродинамики формирования течений, обусловленных взаимодействием ударной волны с двумерными возмущениями плотности, на лазерной установке «Искра-5»^{*}

А.В.Бабанов, М.А.Баринов, С.П.Баринов, Р.В.Гаранин, Н.В.Жидков, Н.А.Калмыков, В.П.Коваленко, С.Н.Кокорин, А.В.Пинегин, Е.Ю.Соломатина, И.И.Соломатин, Н.А.Суслов

Представлены результаты серии экспериментов по исследованию гидродинамики процессов формирования течений за счет взаимодействия ударной волны с двумерными возмущениями плотности на лазерной установке «Искра-5». В экспериментах в схеме с точечным источником просвечивающего рентгеновского излучения с энергией квантов ~4.5 кэВ зарегистрированы теневые изображения струи, возникающей при воздействии ударной волны, созданной импульсом мягкого рентгеновского излучения из мишени-иллюминатора, на плоскую алюминиевую мишень с глухой цилиндрической полостью. Приведены оценки размеров и массы струи, выброшенной из алюминиевой полости этой ударной волной. Результаты эксперимента сравниваются с результатами численного моделирования формирования и динамики струи по двумерной методике МИД-НД2Д.

Ключевые слова: ударная волна, возмущение плотности, струя, рентгеновское излучение, рентгеновское просвечивание.

1. Введение

Создание мощных вычислительных машин позволяет реализовать комплексы программ решения двумерных и трехмерных гидродинамических задач для нужд различных областей народного хозяйства. При этом большую актуальность приобретает поиск условий, в которых можно получить экспериментальные данные для тестирования разрабатываемых комплексов и методов 2D и 3D моделирования на параллельных суперкомпьютерах. Мощные лазерные установки позволяют создать экспериментальные условия для моделирования динамики двумерных и трехмерных течений, возникающих при образовании струй с высоким числом Маха под действием ударных волн с давлением в мегабары. Подобное моделирование двумерных и трехмерных течений, постоянно проводимое американскими исследователями, началось с экспериментов на установке NOVA [1], продолжилось на установке OMEGA [2] и его планируется продолжить на установке NIF [3].

Создаваемые во ВНИИЭФ комплексы программ решения двумерных и трехмерных гидродинамических задач могут быть верифицированы по результатам проводимых экспериментов, в частности по измерениям в условиях экспериментов на лазерных установках ряда параметров, таких как пространственные размеры, характерные скорости, масса материала струи и ее пространственное распределение. К сожалению, из-за недостатка информации провести такую верификацию по результатам известных экспериментов [1–3] невозможно.

В настоящей работе представлены результаты экспериментальных исследований, проведенных на лазерной установке «Искра-5», по формированию течений при взаимодействии ударной волны с двумерными возмущениями плотности в виде цилиндрической полости. Полученные экспериментальные данные использованы для сравнения с результатами двумерной методики МИД-НД2Д, разработанной во ВНИИЭФ.

2. Постановка экспериментов

Принципиальная схема постановки экспериментов по исследованию гидродинамики формирования течений при взаимодействии ударной волны с неоднородностью плотности в виде глухой цилиндрической полости в плоском диске методом рентгеновского просвечивания с квазиточечным источником излучения представлена на рис.1.

Четыре или шесть (как на рис. 1) пучков лазерного излучения (ЛИ) установки «Искра-5» вводятся в мишеньиллюминатор для конверсии его энергии в энергию квазипланковского рентгеновского излучения (РИ). Возникающее в иллюминаторе мягкое РИ воздействует на исследуемый образец и формирует в нем ударную волну. Исследуемый образец представляет собой пластину с цилиндрической полостью на ее тыльной поверхности. Ударная волна, распространяясь сквозь образец, нагревает его до плазменного состояния. Плазма со стенок полости заполняет ее, и формируется струя, которая распространяется вдоль ударной трубки, заполненной низкоплотной пеной. Движение струи регистрируется путем просвечивания ударной трубки РИ от квазиточечного источника в заданный момент времени. Для защиты регистратора от РИ из мишенной сборки на нее устанавливается экран с трапециевидным окном для наблюдения области распространения струи. Для защиты регистрато-

^{*}Доложена на конф. ECLIM 2016 (Москва, 18-23 сентября 2016 г).

А.В.Бабанов, М.А.Баринов, С.П.Баринов, Р.В.Гаранин, Н.В.Жидков, Н.А.Калмыков, В.П.Коваленко, С.Н.Кокорин, А.В.Пинегин, Е.Ю.Соломатина, И.И.Соломатин, Н.А.Суслов. ФГУП «Российский федеральный ядерный центр – ВНИИЭФ», Россия, Нижегородская обл., 607188 Саров, просп. Мира, 37; e-mail: zhidkov@iskra5.vniief.ru

Поступила в редакцию 5 декабря 2016 г., после доработки – 15 января 2017 г.

Рис.1. Принципиальная схема постановки экспериментов по исследованию гидродинамических течений: *I* – мишень-иллюминатор; *2* – исследуемый образец; *3* – цилиндрическая полость; *4* – ударная трубка; *5* – струя; *6* – пена; *7* – фланец; *8* – экран с трапециевидным окном; *9* – держатель мишени; *10* – мишень просвечивающего РИ; *11* – точечная диафрагма; *12* – регистратор; *13* – набор фильтров; *14* – рентгеновская фотопленка; *15* – дополнительный защитный экран V-образной формы; *16* – масштабная сетка.

ра от РИ, поступающего из отверстий для ввода лазерного излучения, вблизи мишени устанавливается дополнительный защитный экран V-образной формы, размещаемый между лазерными пучками.

Мишень-иллюминатор и мишень источника просвечивающего РИ облучались второй гармоникой лазерного излучения. Мишень источника просвечивающего РИ облучалась с заданной задержкой относительно момента нагрева мишени-иллюминатора.

Для получения контрастных теневых изображений струй мишени просвечивались излучением от титановой (энергия квантов $hv \approx 4.75$ кэВ) или скандиевой ($hv \approx 4.32$ кэВ) мишени. Линии излучения из спектра излучения мишеней выделялись с помощью титанового фильтра толщиной 20 мкм.

Теневое изображение мишени регистрировалось на рентгеновскую фотопленку УФ-4 с коэффициентом увеличения $M \approx 8$, для определения которого при регистрации изображений в некоторых опытах на мишени устанавливались масштабные сетки с ячейками размером 130 мкм.

3. Конструкция мишени

Фронтальное изображение мишени в сборе и ее вид сбоку приведены на рис.2. Мишень-иллюминатор представляет собой цилиндр диаметром 650 мкм и длиной 900 мкм; его стенка изготовлена из полипараксилилена (ППК) толщиной 14 мкм. Глухой торец иллюминатора закрыт алюминиевым фланцем толщиной 20 мкм. Для ввода лазерного излучения на боковой поверхности иллюминатора имеются четыре отверстия с диаметрами по 300 мкм, расположенные симметрично по его периметру. Для эффективной конверсии лазерного излучения в рентгеновское внутренняя поверхность иллюминатора и Alфланец покрыты слоями золота (материал с большим атомным номером) толщиной 2.7 и 1.5 мкм соответственно.

Исследуемый образец изготовлен из двух Аl-дисков, плотно прижатых друг к другу и склеенных по периметру эпоксидным клеем (рис.3). Один диск (толщиной 50 мкм) – сплошной, без отверстия, другой – со сквозным цилиндрическим отверстием, диаметр которого примерно равен толщине диска.

Корпус ударной трубки диаметром 670 мкм и длиной 930–950 мкм изготовлен из ППК толщиной 12 мкм. Трубка заполнена пеной из полиметилметакрилата с плотностью $\rho \approx 1.2 \times 10^{-2}$ г/см³. Образец пены в виде цилиндра плотно прижат к Al-диску и приклеен к нему в нескольких точках, другой конец образца свободен. Конец трубки закрыт фланцем диаметром 1 мм, к которому крепится держатель мишени.

Для формирования точечного источника просвечивающего РИ использовалась точечная диафрагма с отверстием диаметром 20 мкм, изготовленная из Та-фольги

Рис.2. Фронтальный вид мишени в сборе (вдоль направления рентгеновского просвечивания) (*a*) и вид сбоку (*б*).

Рис.3. Схема Al-образца.

толщиной около 25 мкм. Для снижения фонового РИ, прошедшего сквозь диафрагму, и повышения контраста теневого изображения на нее была установлена дополнительная диафрагма из Та-фольги толщиной 100 мкм с отверстием диаметром 140 мкм. Для защиты диафрагм от рассеянного лазерного излучения из подсвечивающей мишени они были закрыты лавсановой пленкой толщиной 6 мкм.

4. Результаты экспериментов

В проведенной серии экспериментов использовались мишени с различными размерами полости в исследуемом Al-образце, при этом диаметр полости примерно соответствовал ее глубине. Энергия лазерного излучения на мишени изменялась от 0.8 до 1.2 кДж. Задержка момента просвечивания мишени составляла 15 нс. Ранее проведенные эксперименты [4] показали, что при реализованных параметрах лазерного излучения была достигнута температура РИ в боксе-конверторе $T_X \approx 150 \pm 10$ эВ.

Примеры теневых изображений струи, зарегистрированных в опытах, приведены на рис.4.

На момент зондирования в обоих случаях струя имеет грибообразный вид. В опыте №2 в верхней части изображения видна размытая граница пьедестала, который образован теневым изображением массы алюминия, выброшенной ударной волной с тыльной относительно иллюминатора поверхности Al-диска с отверстием. Ширина основания струи практически совпадает с диаметром отверстия в Al-диске (90 мкм), а вершина струи отстоит от пьедестала на ~180 мкм и имеет большую ширину, также около 180 мкм. В опыте №4 ширина основания струи составляет ~100 мкм, что примерно вдвое меньше диаметра отверстия в этом опыте. Вершина струи отстоит от пьедестала на 100-120 мкм и имеет ширину около 180 мкм. Хотя из-за невысокого контраста полученных изображений приведенные размеры струи носят только оценочный характер, они указывают на влияние размера цилиндри-

Рис.4. Результаты теневого рентгеновского просвечивания мишеней. Опыт № 2: $E_{LE} \approx 1.1 \text{ кДж}$, размеры полости Ø90×95 мкм, подсветка от Ті-мишени ($hv \approx 4.75 \text{ кэВ}$) (a); опыт № 4: $E_{LE} \approx 0.8 \text{ кДж}$, размеры полости Ø200×200 мкм, подсветка от Sc-мишени ($hv \approx 4.32 \text{ кэВ}$) (b). Штриховой линией выделены прямоугольные области, в которых наблюдается тень от сформировавшейся струи, размер ячеек масштабной сетки 130×130 мкм.

ческого отверстия на характер формирования струи к моменту зондирования.

Для оценки массы Al в струе была проведена обработка полученных изображений с использованием следующего соотношения:

$$m_{\rm Al} = -\frac{1}{\mu_{\rm Al}} \sum \ln \frac{I(r)}{I_0(r)} \left(\frac{\Delta x}{M}\right)^2,\tag{1}$$

где I(r) и $I_0(r)$ – интенсивности теневого изображения и просвечивающего излучения в соответствующих точках в пределах выбранного фрагмента изображения ($I_0(r)$ на всем фрагменте определялась путем линейной интерполяции ее значений на левой и правой границах изображения); Δx – шаг сканирования изображения; M = 8 – коэффициент увеличения, с которым зарегистрировано теневое изображение струи; μ_{A1} – коэффициент поглощения РИ в алюминии, принятый равным его значению для холодного алюминия при энергии квантов зондирующего излучения. В опыте №2 при размерах Al-полости \emptyset 90× 95 мкм масса m_{A1} струи, выброшенной из нее ударной волной, составила примерно 0.1 мкг, а в опыте №4 при размерах полости \emptyset 200×200 мкм $m_{A1} \approx 0.06$ мкг.

5. Разработка двумерной модели формирования струи

В случае одномерного моделирования возможности исследования процессов развития газодинамических неустойчивостей, а также влияния эффектов асимметрии на конечные параметры, крайне ограниченны или вообще отсутствуют. Вместе с тем нестационарные и неравновесные эффекты, характерные для лазерной плазмы, оказывают существенное влияние на динамику движения мишени и на развитие возмущений. Все это определяет необходимость развития многомерных методик для расширения возможностей моделирования лазерной плазмы.

В настоящее время во ВНИИЭФ создана двумерная методика МИД-НД2Д, которая позволяет в разумные календарные сроки проводить расчеты по математическому моделированию экспериментов, выполняемых на лазерных установках.

Методика МИД-НД2Д дает возможность рассчитывать большое число физических процессов, таких как распространение и поглощение энергии лазерного излучения, газодинамическое движение плазмы в многотемпературном приближении, электронная и ионная теплопроводности, спектральный перенос РИ, термоядерные реакции, перенос энергии *α*-частицами.

С использованием методики МИД-НД2Д была проведена серия пробных расчетов по моделированию экспериментов для исследования гидродинамики формирования двумерных течений с параметрами образца из опыта \mathbb{N}_2 (размеры полости $\emptyset 90 \times 95$ мкм). В этих расчетах для реальной конструкции мишени (без учета иллюминатора) с торца задавался поток РИ с максимальной равновесной температурой $T_X = 140$ или 160 эВ. На рис.5 приведены расчетные распределения оптических толщин (интеграл от плотности вещества в струе вдоль направления наблюдения) на момент времени t = 14.9 нс, а в табл.1 – расчетные параметры струи.

Сравнение результатов расчета с экспериментальными данными показывает, что для размеров полости Ø90× 95 мкм геометрические размеры струи на момент зонди-

Рис.5. Расчетное распределение оптической толщины в струе на момент времени t = 14.9 нс для двух температур T_X ; диаметр цилиндра 700 мкм.

Табл.1. Расчетные параметры струи.

<i>T</i> _X (эВ)	t (нс)	<i>m</i> _{A1} (мкг)	<i>h</i> (мкм)	<i>r</i> (мкм)
140	13	0.55	227	114
	14.9	0.59	240	128
160	13	0.64	253	156
	14.9	0.67	266	185
Примеча	ние: <i>m</i> _{A1} – м	асса Al в выбро	ошенной стр	ye; <i>r</i> – радиус

струи; *h* – высота «отрыва» струи от пьедестала.

рования в расчете примерно в два раза больше, чем в эксперименте, а масса алюминия в струе в 5-10 раз больше. Различие в размерах отчасти может быть связано с тем, что при моделировании не проводился расчет рентгенограммы с учетом распределения температуры и плотности в струе. Кроме того, сделано предположение о возможном наличии технологического зазора между двумя слоями образца с цилиндрической полостью, что снижает эффективность перехода ударной волны из сплошной пластины, при облучении которой формируется ударная волна, во вторую, с цилиндрической полостью, где должна формироваться струя.

Следует также учесть, что масса струи при обработке экспериментальных результатов оценивалась исходя из величины поглощения зондирующего РИ в холодном, а не в прогретом алюминии. У холодного алюминия в области $hv \approx 4.5$ кэВ коэффициент поглощения РИ μ_{Al} больше, чем у нагретого, поэтому масса струи, оцененная по формуле (1), оказывается заниженной.

На данном этапе исследований указанные различия в результатах предварительного расчета и проведенного эксперимента можно признать вполне удовлетворительными.

6. Заключение

На установке «Искра-5» проведена серия экспериментов по исследованию формирования и развития гидродинамических течений в присутствии двумерного возмущения плотности в виде цилиндрической полости.

Эксперименты проведены с алюминиевыми образцами с размерами цилиндрической полости $\emptyset 100 \times 100$ мкм, $\emptyset 150 \times 150$ мкм и $\emptyset 200 \times 200$ мкм. Нагрев образцов осуществлялся мягким РИ с эффективной температурой $T_{\rm X} \approx 150$ эВ от мишеней-иллюминаторов при вводе в них четырех или шести пучков ЛИ с $\lambda = 0.66$ мкм и общей энергией от ~760 до ~1200 Дж.

Для проведения экспериментов изготовлены мишени с масштабными сетками и усовершенствована конструкция точечного источника просвечивающего РИ, повышающая контраст теневого изображения. Получены теневые изображения струи в рентгеновском излучении с энергией квантов $hv \approx 4.75$ кэВ от Ті-мишени и с $hv \approx$ 4.32 кэВ от Sc-мишени.

При размерах полости Ø90×95 мкм масса *m*_{Al} струи, выброшенной из алюминиевой полости под действием ударной волны, сформированной мягким РИ из мишенииллюминатора при введенной в нее энергии ЛИ около 1.1 кДж, по оценке составила ~0.1 мкг, а при размере полости Ø200×200 мкм и энергии ЛИ 0.8 кДж – около 0.06 мкг.

Предварительные результаты численного моделирования формирования и развития струи по двумерной методике МИД-НД2Д показали, что параметры струи существенно зависят от момента зондирования. Результаты моделирования для полости с размерами Ø90×95 мкм предсказывают, что на момент зондирования геометрические размеры струи должны быть примерно в два раза больше, чем в эксперименте, а масса алюминия в струе – больше в 5–10 раз. На данном этапе исследований такие различия в результатах предварительного расчета и проведенного эксперимента можно признать вполне удовлетворительными.

Авторы выражают благодарность всему коллективу лазерной установки «Искра-5» за подготовку и проведение экспериментов.

- Stone J.M., Turner N., Estabrook K., et al. Astrophys. J. Suppl. Ser., 127, 497 (2000).
- Foster J.M., Wilde B.H., Rosen P.A., et al. Astrophys. J., 634, L77 (2005).
- Blue B.E., Weber S.V., Glendinning S.G., et. al. *Phys. Rev. Lett.*, 94, 095005 (2005).
- Ватулин В.В., Жидков Н.В., Кравченко А.Г. и др. Физика плазмы, 36 (5), 447 (2010).