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We report a numerical and experimental study of the 
laser beam propagation through a suspension of polystyrene micro-
spheres in distilled water, showing the presence of higher-order cen-
trally symmetric aberrations for the scatterer concentrations in the 
range from 1.3 ´ 105 to 106 mm–3 and analysing the dependence of 
the scattered light wavefront distortion on the concentration of par-
ticles in a turbid medium. The study has also shown the effective-
ness of the compensation of the wavefront aberrations of a scat-
tered laser beam using a bimorph adaptive mirror.

Keywords: turbid medium, light scattering, Shack – Hartmann 
wavefront sensor, wavefront corrector, adaptive optics.

1. Introduction

A medium is considered turbid or scattering if it has a pro-
nounced optical inhomogeneity due to the presence of impu-
rities of particles with a different refractive index. A striking 
example is the atmospheric aerosol, haze, fog and biological 
tissue [1]. In such media, part of the beam energy is absorbed, 
while some of the energy is redistributed in space, forming a 
halo of the scattered light, which makes the contours of these 
objects blurred and prevents radiation focusing. Solving this 
problem is of particular significance for applications aimed at 
increasing the distance travelled by the light, pattern recogni-
tion, information transmission by optical communication 
channels, as well as for medical noninvasive diagnosis, in par-
ticular for the study of the state of blood vessels and retina 
and diagnosis of malignant and benign tumours [2 – 4].

The study of the propagation of light through a randomly 
inhomogeneous medium relies on different approaches, the 
essence of which is to find the solution of the transport equa-
tion: the method of path integrals, methods of diffusion 
approximation, method of the light scattering by Brownian 
particles and method of small-angle approximation [5]. 
However, all these approaches are not universal because they 
are based on the theoretical results obtained under different 
assumptions. Therefore, use is often made of the stochastic 
Monte Carlo simulation, which gives an approximate solu-
tion to the transport equation for any conditions of the prob-

lem: arbitrary configurations of the medium and boundary 
conditions. The Monte Carlo method involves modelling the 
behaviour of individual elementary parts of a physical system; 
in particular, for the problem of propagation of light it takes 
into account the quantum nature of light and simulates the 
behaviour of the photon flux [6].

Traditionally, the scattered light consists of photons of 
three types [7]: ballistic, on-axis (or snake photons) and off-
axis (or diffusive photons). Ballistic photons travel through a 
turbid medium in straight line paths and do not interact with 
the scatterers. This coherent component of the scattered light 
is the best for imaging. On-axis photons, having undergone 
few scattering events with the scatterers, travel in near-for-
ward paths along a trajectory that is close to the initial direc-
tion of the beam propagation. These photons are beginning 
to play an important role when the scattering medium layer 
thickness increases, because the number of ballistic photons 
in this case decreases exponentially [2]. Off-axis photons expe-
rience multiple scattering in all directions and form a nonco-
herent component of the scattered light.

As noted above, ballistic photons are responsible for the 
formation of an undistorted image of the object, but their 
number decreases exponentially with increasing layer thick-
ness or concentration of the turbid medium. Therefore, it is 
necessary to take into account the effect of snake and diffu-
sive photons on the distribution of intensity and phase of the 
scattered light. To increase the efficiency of distinguishing 
malignant tumours from benign tumours, Zhang et al. [8] 
have successfully applied the combined spectral analysis 
method [8]. Contrast enhancement of images of these objects 
has become possible through the use of the principles of 
holography based on the reversibility of the scattering process 
[9, 10]. Matthews et al. [11] describe a method of multispectral 
multiple scattering low coherence interferometry using the 
principles of coherence and spatial filtering to produce milli-
metre-resolution images of objects located in a biological tis-
sue at a depth down to 9 mm. Zhou et al. [12] introduce a new 
all-optical method of time-reversed focusing on moving tar-
gets through scattering samples, which they termed ‘time 
reversal by analysis of changing wavefronts from kinetic tar-
gets’. Bertolotti et al. [13] suggest using a non-invasive method 
to retrieve the shape of fluorescent objects hidden behind a 
scattering layer. For the problems of focusing [14] and resto-
ration of images of objects located inside or outside a layer of 
a scattering medium [15 – 19], Vellekoop et al. [14] have used 
phase modulators.

In this paper, we present numerical and experimental 
measurements of the wavefront of the laser light transmitted 
through a turbid medium, by using a Shack – Hartmann sen-
sor. We have also demonstrated the possibility of compensa-
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tion of the measured distortions by a bimorph adaptive mir-
ror [20]. To calculate the intensity and phase of the scattered 
light, we have implemented a computer Monte-Carlo-based 
model of the light propagation in a turbid medium. The pro-
gramme provides an opportunity for the formation of hart-
mannograms (images of the focal spot of a microlens array of 
the Shack – Hartmann sensor). We have developed an experi-
mental setup for measuring aberrations of the laser light 
transmitted through a cuvette with a suspension of polysty-
rene microspheres in distilled water. To compensate for the 
measured aberrations we have used experimentally measured 
response functions of the bimorph mirror with 32 electrodes.

2. Model of the light propagation  
in a turbid medium

2.1. Monte Carlo method

In the present study, we have investigated the scattering of the 
laser light with a wavelength l = 0.65 mm [21] by 1 mm-diameter 
polystyrene microspheres suspended in distilled water. The 
particle concentration was varied from 1.3 ´ 105 to 106 mm–3. 
The initial beam aperture was 4 mm, the refractive index of 
the medium was equal to 1.33, and the refractive index of 
polystyrene microspheres for the selected wavelength 
amounted to 1.582 [22].

To simulate the propagation of the light through a scatter-
ing medium we used the stochastic Monte Carlo method [23]. 
Its essence consists in multiple realisations of a random pro-
cess, the probability characteristics of which coincide with the 
physical quantities used in the problem [24]. The laser beam at 
a particular point in time is represented in the form of a large 
number of photons (in the present study, 2.5 ´ 1011) evenly 
distributed over the initial aperture, which is physically 
equivalent to the uniform distribution of the beam intensity 
(Fig. 1).

The paper considers a collimated beam of the light; there-
fore, the initial direction of all the photons was all the same 
(perpendicular to the layer of a turbid medium). The distance 
between two successive collisions of a photon with scatterers, 

called the mean free path, was calculated by the formula l = 
– lnxl /ms, where ms is the scattering coefficient of a medium 
[24], and xl is a random number uniformly distributed on the 
interval [0, 1). The scattering coefficient ms is measured in 
inverse millimetres and is one of the main characteristics of a 
turbid medium: it shows the strength of the scattering per unit 
length. This coefficient is calculated by the formulas of Mie 
theory [24]. As a phase function, in modelling the scattering 
angle as a function of parameters of the scattering medium we 
used the Henyey – Greenstein function due to the high speed 
of its calculation and to the fact that it accurately approxi-
mates the function of the light scattering at selected concen-
trations [25]. To determine a new propagation direction of a 
photon after its collision with a scatterer, we calculated two 
angles. The angle between the current and new directions of 
motion (called the scattering angle q) and the angle between 
the projection of the new direction of motion to a plane per-
pendicular to the initial direction and some fixed axis on this 
plane (called the azimuthal angle j) were calculated as fol-
lows [24]:
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Here, g is the anisotropy factor [24]; and xq and xj are random 
quantities uniformly distributed on the interval [0, 1). Based 
on the mean free path and the new direction of motion, we 
calculated a new position of a photon in space and checked if 
the medium boundaries cross. If the photon stayed within the 
scattering volume, calculations of l, q and j were repeated. 
Thus, at the end of the modelling process, we had information 
about the optical length of the traversed path and the final 
direction of the propagation of each photon.

2.2. Model of the Shack – Hartmann sensor for wavefront 
measurements

For wavefront aberrations of the light transmitted through a 
turbid medium layer to be numerically measured, we devel-
oped a Shack – Hartmann sensor model implementing a sim-
plified real sensor: an array of microlenses with a diameter of 
150 mm and a focal length f = 6 mm, and a CCD-camera sen-
sor located in the focal plane of the lenslet array.

Let us consider the movement of a photon passing through 
a turbid medium and incident on one of the sub-apertures of 
the lenslet array. We introduce a local Cartesian coordinate 
system with a centre corresponding to the centre of the array 
sub-aperture. Suppose that a photon incident on the lens has 
some random direction defined by the direction cosines mx, my 
and mz along the axes x, y and z, respectively. Then, its posi-
tion on the sensor after passing through the lens can be calcu-
lated by the formulas xf = fmx /mz, yf = fmy /mz, zf = f. After 
performing the same calculations for all photons, we obtained 
images of the focal spots on the sensor, i.e. a hartmannogram.

To assess the aberrations of the light we should have a 
reference wavefront. For a hartmannogram of this wavefront 
to be retrieved, a collimated laser beam propagated from the 
source to the sensor in the absence of a scattering medium. 
Photons incident on the microlens array were concentrated, 
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Figure 1.  Scheme of photon scattering on inhomogeneities of a turbid 
medium.
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in this case, in their foci on the sensor. Thus, a hartmanno-
gram of the reference wavefront was formed. In the presence 
of a turbid medium in the beam path, on-axis and diffusive 
photons fell on the microlens array at nonzero angles with 
respect to their initial direction, parallel to the optical axis of 
the system. As a result, in the plane of the CCD-camera sen-
sor there emerged focal spots of some diameter with the cen-
tres, the positions of which, generally speaking, were different 
from the positions of the centres of the reference beam focal 
spots.

To estimate the aberrations, the Shack – Hartmann wave-
front sensor used an algorithm based on the calculation of the 
shifts of the focal spot centres. The positions of the focal spot 
centres were calculated as the positions of the centres of grav-
ity [26]. Based on the magnitude of the shifts of the focal 
spots, we calculated the local tilts of the wavefront. The phase 
surface was approximated by Zernike polynomials [27]. The 
results of numerical experiments showed the tendency to an 
increase in centrally symmetric aberrations with increasing 
concentration of scatterers (Table 1).

Figure 2 shows the interferogram of the wavefront of the 
laser beam transmitted through a turbid medium with a par-
ticle concentration of 7.4 ´ 105 mm–3, and the correspond-
ing terms of some Zernike polynomials are presented in 
Table 2.

3. Experimental measurements of the wavefront

3.1. Experimental setup

For measuring the distortion of the laser beam in a turbid 
medium we assembled an experimental setup whose scheme is 
shown in Fig. 3. The laser beam passed through a glass cuvette 
with a suspension of 1 mm-diameter polystyrene microspheres 
in distilled water and was incident on the Shack – Hartmann 
wavefront sensor [28 – 31]. The sensor consisted of a digital 
Basler A302fs CCD camera equipped with a 1/2-inch sensor 
(the size of the receiving area of the sensor is 6.4 ´ 4.8 mm) 
and of a lenslet array (focal length, 6 mm; distance between 
microlens, 150  mm; number of microlenses is greater than 
1350). The camera frame rate was 30 Hz.

3.2. Measurement results

The wavefront was analysed in the 4.8 mm-diameter aperture, 
the centre of which coincides with the centre of the camera’s 
sensor [32]. Increasing the aperture diameter relative to the 
initial beam size was due to the need to analyse the contribu-
tion of the on-axis and diffusive photons into the light wave-
front. The phase surface measured by the Shack – Hartmann 
sensor was approximated by Zernike polynomials. 
Dependences of the wavefront aberrations expressed in terms 
of symmetric Zernike polynomials Nos 3, 8 and 15 [33] on the 
concentration of polystyrene microspheres are shown in 
Fig. 4. The wavefront measurements by the Shack – Hartmann 
sensor were carried out by averaging over 10 frames coming 
from this sensor with a frequency of 30 Hz. One can see that 
defocusing (the term of Zernike polynomial No. 3 increased 

Table  1.  Terms of Zernike polynomials, PV and RMS of the wavefront 
for different concentrations of scatterers in a turbid medium.

Concentra- 
tion/105 mm–3 PV/ l RMS/ l Defocusing/ l

(2r2 – 1)

Spherical 
aberration/ l
(6r4 – 6r2 + 1)

1.3 2.64 0.59 0.74 0.82

7.38 2.78 0.62 0.91 0.86

9.43 3.28 0.76 1.02 1.03

10.2 3.57 0.83 1.12 1.11

Notes: PV is the peak-to-valley wavefront aberrations; RMS is the 
root-mean-square deviation; r  is the modulus of the radius vector in the 
beam cross section.

0

l/2

Figure 2.  Interferogram of the wavefront of a beam transmitted through 
a turbid medium with a scatterer concentration of 7.4 ´ 105 mm–3.

Table  2.  Terms of Zernike corresponding to the interferogram shown 
in Fig. 2. 

Polynomial 
No.

Aberration Term/ l

1 Tilt along the x axis ( rcos q) 0.008

2 Tilt along the y axis ( rsin q) 0.005

3 Defocusing (2r2 –1) 0.798

. . . . . . . . .

8
Spherical aberration 
(6r4 – 6r2 + 1)

0.866

. . . . . . . . .

15
Spherical aberration 
(20r6 – 30r4 + 12r2 – 1)

0.559

. . . . . . . . .

24
Spherical aberration 
(70r8 – 140r6 + 90r4 – 20r2 + 1)

– 0.166

1

2 3

4

100 mm 455 mm

5 mm

Figure 3.  Schematic of the experimental setup:	
( 1 ) diode laser with a wavelength of 0.65 mm and an output aperture of 
4 mm; ( 2 ) optical filter; ( 3 ) glass cuvette with a turbid medium; ( 4 ) 
Shack – Hartmann wavefront sensor.
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from 0.12l to 1.39l) and spherical aberration (the term of 
Zernike polynomial No. 8 increased from 0.09l to 0.91l) sig-
nificantly increased with increasing particle concentration.

As an example, consider the wavefront of the light trans-
mitted through a turbid medium with a scatterer concentra-
tion of 7.4 ´ 105 mm–3. The interferogram of this wavefront 
is shown in Fig. 5c. The root-mean-square (RMS) deviation 
of the surface, calculated from the first 24 Zernike polynomi-
als (RMS24), is in this case equal to 0.217l. If only lower order 
aberrations are taken into account (the terms of Zernike poly-
nomials Nos 3 – 8), and all other terms are artificially zeroed, 
the rms deviation RMS8 is equal to 0.192l. Similar results 
hold for other values of the concentrations used in this study 
(Table 3).

3.3. Wavefront measurement problems

Due to the symmetrical nature of Mie scattering, we expected 
to see only centrally symmetric aberrations in the measure-
ment of the wavefront of the scattered light, such as defocus-
ing and spherical aberration (Fig. 5b). However, the studies 
conducted have demonstrated the presence of a range of 
lower- and higher-order aberrations. Possible reasons for this 
are as follows:

1. Nonideal surfaces of the walls of the glass cuvette used.
2. The presence of turbulent fluctuations in the medium in 

the path of the light beam.
The measurements by the Shack – Hartmann sensor 

showed that the glass cuvette had non-parallel walls, which 
led to the emergence of the wavefront tilt. The peak-to-valley 
(PV) wavefront aberration of the laser beam transmitted 
through an empty cuvette (Fig. 5a) was 1.05 mm (1.62l), the 
rms deviation was found to be 0.3 mm (0.46l), the slope along 
the x axis was – 0.6 mm (– 0.9l), and the magnitude of the 
coma along the x axis was equal to – 0.05 mm (– 0.08l). By fill-
ing the cuvette with a suspension of scattering particles, the 
coma also increased as a result of the displacement of the 
beam from the optical axis of the system.

4. Wavefront correction

4.1. Bimorph deformable mirror

Table 3 shows that the main contribution to the distortion of 
the scattered light wavefront is made by centrally symmetric, 
lower-order aberrations. To compensate for such distortions, 
use is traditionally made of a bimorph deformable mirror 
[34, 35]. A bimorph mirror is composed of two glued plates: a 
relatively thick (about 2 mm) glass or metal substrate (the 
thickness depends on the mirror diameter) with a reflective 
coating and a thin (0.3 mm) piezoceramic substrate (Fig. 6a). 
Both sides of the piezoceramic disk (piezodisk) have elec-
trodes. When a voltage is applied to an electrode, due to the 
reverse piezoelectric effect the piezodisk either expands or 
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Figure 4.  Peak-to-valley wavefront aberrations as functions of concen-
tration of scatterers in a turbid medium in the case of ( 1 ) defocusing 
(Zernike polynomial No. 3) and spherical aberrations of ( 2 ) lower 
(Zernike polynomial No. 8) and ( 3 ) higher (Zernike polynomial No. 15) 
orders.
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Figure 5.  (a) Aberrations introduced by a glass cuvette, (b) expected interferogram of the wavefront of the light transmitted through a turbid me-
dium at a scatterer concentration of 7.4 ´ 105 mm–3 and (c) interferogram of the actually measured wavefront.

Table  3.  RMS deviations of the wavefront approximated by the first 
24 Zernike polynomials (RMS24) and the first 8 Zernike polynomials 
(RMS8).

Concentration/105 mm–3 RMS24 /l RMS8 /l
1.3 0.077 0.058

2.5 0.085 0.077

4.5 0.103 0.095

6.0 0.155 0.138

7.4 0.217 0.192

8.5 0.377 0.349

9.4 0.611 0.588

10.3 0.958 0.945
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contracts (depending on the sign of the voltage) in the radial 
direction. This leads to a bending of the glued substrate with 
a reflective coating. To reproduce different types of aberra-
tions with the help of such a corrector, the outer electrode is 
divided into a large number of separate sectors. An example 
of a grid of electrodes is shown in Fig. 6b. The size and num-
ber of electrodes depends on the type of aberrations to be 
compensated for. Sometimes it is useful to use an additional 
piezodisk with a bulk electrode for reproducing defocusing.

A feature of adaptive bimorph mirrors is that they can 
effectively reproduce lower-order aberrations. This is very 
important in our case because, as mentioned above, defocus-
ing and lower-order spherical aberration make the largest 
contribution to the distortion of the scattered light wavefront. 
Figure 7 shows the interferograms of the wavefronts corre-
sponding to Zernike polynomials Nos 3 and 8, reproduced 
using a bimorph adaptive mirror with 32 electrodes. The 
amplitudes of the initial phase surface that was necessary to 
reproduce were 2 mm (polynomial No. 3) and 1.2 mm (polyno-
mial No. 8). A residual error of reproduction, i.e. the rms 
deviation of the phase surface calculated as the point-to-point 
difference between the amplitudes of the restored and initial 
surfaces, was 0.03 mm for defocusing and 0.005 mm for spher-
ical aberration. This suggests a high accuracy of reproduction 
of given symmetric Zernike polynomials by a bimorph 
deformable mirror.

4.2. Correction algorithm

The experimentally measured phase surface of the light trans-
mitted through a turbid medium was approximated by the 
response functions of mirror electrodes. The response func-
tion of an electrode is a set of displacement coordinates of the 

focal spots in response to the voltage with unit amplitude 
applied to the given electrode. The required voltages on the 
electrodes of the deformable mirror were calculated in such a 
way that the coordinates of the analysed beam focal spot cen-
tres after applying corrective voltages maximally coincided 
with the coordinates of the reference beam focal spot centres. 
The matrix of shifts of the focal spot centres is given by the 
expression

( , )S
x
y

u b x yk
k

k
j j k k

j

N

1

D
D= =

=

/ ,

where Dxk is the displacement of the kth focal spot along the 
x axis; Dyk is the displacement of the kth focal spot along the 
y axis; N is the number of mirror electrodes; uj is the voltage 
on the jth electrode; and bj (xk, yk) is the response function of 
the jth electrode at point (xk, yk).

After calculating the displacement of the focal spots and 
measuring the response functions of the adaptive mirror we 
calculated the voltages applied to the electrodes by the method 
of least squares [27]. Applying a voltage to the mirror elec-
trodes caused a bending of the reflecting surface, which, in 
turn, led to the displacement of the focal spots detected by the 
Shack – Hartmann sensor [36]. On the basis of new data on 
the position of the focal spots we calculated a new set of volt-
ages. This procedure was repeated until the minimum required 
difference in amplitudes of the reference and corrected wave-
fronts was achieved.

4.3. Results of correction

Table 4 presents peak-to-valley wavefront aberrations for 
each concentration in question before and after correction 
using the response functions of the bimorph mirror. For 
example, it is clear that for a concentration of 7.4 ´ 105 mm–3 
the peak-to-valley aberrations were reduced from 1.26l to 
0.05l .

Figure 8 shows the interferograms of the wavefront of the 
light transmitted through a turbid medium with a scattering 
particle concentration of 7.4 ´ 105 mm–3 before and after cor-
rection by the bimorph mirror. To measure the wavefront we 
used the averaging of 10 frames from a video camera.

5. Conclusions

We have studied numerically and experimentally wavefront 
aberrations of the laser light passed through a layer of a tur-
bid medium. It has been shown that centrally symmetric aber-
rations of both lower and higher orders (defocusing and 

Substrate with
a reflecting 
surface

Common 
electrode

Piezodisks
Electrode 1

Electrodes 2 – 32

ba

Figure 6.  (a) Schematic of a bimorph mirror with 32 electrodes and (b) 
arrangement of these electrodes.

l/2

0
a b

Figure 7.  Interferograms of Zernike polynomials (a) No. 3 and (b) No. 
8 reproduced by a bimorph adaptive mirror with 32 electrodes.

Table  4.  Peak-to-valley wavefront aberrations of the light transmitted 
through a layer of a scattering medium with different concentrations.

Concentration/105 mm–3
PV before 
correction/l

PV after 
correction /l

1.3 0.46 0.05

2.5 0.51 0.05

4.5 0.66 0.05

6.0 1.06 0.05

7.4 1.26 0.05

8.5 2.34 0.03

9.4 3.29 0.03

10.3 4.23 0.06
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spherical aberration) prevail in the scattered light for a range 
of scattering particle concentrations from 1.3 ´ 105 to 
106 mm–3. Experimentally measured distortions of the wave-
front of the light travelled through the suspension of polysty-
rene microspheres in distilled water has been effectively com-
pensated for by the response functions of the adaptive 
bimorph mirror with 32 electrodes. The efficiency of correc-
tion has amounted to ~95 %.
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Figure 8.  Interferograms and profiles of the wavefront of the light 
transmitted through a turbid medium at a scattering particle concentra-
tion of 7.4 ´ 105 mm–3 (a) before and (b) after correction by the bi-
morph mirror.




