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Some specific features of light propagation in a three-channel

nonlinear directional coupler
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Abstract. Exact analytical solutions have been obtained to the
system of nonlinear differential equations for the intensities of the
waves propagating in a three-channel nonlinear directional coupler
with a Kerr nonlinearity and different coupling constants between
the optical waveguides.
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1. Introduction

Among the artificial semiconductor structures with specific
functional characteristics, aimed at storage, transmission and
processing of optical data, a specific position is occupied by
different spatially periodic structures, in particular, nonlinear
directional couplers (NDCs). The principal condition for
their functioning is the possibility of controlling the process
of radiation propagation. To date, a satisfactory theory of
laser radiation propagation in NDCs with a Kerr nonlinearity
of the refractive index is developed. For this case the exact
analytical solutions were obtained for the system of nonlinear
equations, describing the intensities of propagating waves
[1-4]. Maier [2] predicted the phenomenon of the self-switch-
ing of waves in a NDC, when a small variation in the input
intensity of one of the waves causes sharp changes in the
intensities of the rest two waves at the NDC output. However,
analytical solutions are derived only for the NDC, consisting
of two optical waveguides with Kerr nonlinearities. As to a
NDC comprising three or more optical waveguides, the light
propagation in them was studied only by means of numerical
methods, applied to the system of nonlinear equations for the
coupled waves [2—11]. Therefore, it is of great interest to
derive analytical solutions to multi-channel NDC equations
and to study the specific features of their functioning. In the
present paper, we have derived the exact analytical solution to
the system of nonlinear equations for the intensities of waves
propagating in a symmetric three-channel NDC with a Kerr
nonlinearity of the propagation constant and different coupling
constants between the waveguides. The approach proposed in
Refs [12, 13]is used.
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2. Formulation of the problem. Basic equations

Consider a symmetric NDC consisting of three identical
parallel optical waveguides, located at the vertices of an
isosceles triangle (Fig. 1). The coupling constants between
the waveguides with the numbers n = 1, 2 and n = 1, 3 are
equal to y, and for the waveguides with the numbers n = 2, 3
the coupling constant is y;. Thus, in two limiting cases, y; = 0
and y; =y, the present configuration is reduced to the systems
considered previously [5—8§].

We consider the optical waveguides with a Kerr non-
linearity of the propagation constant, 8 = f3, + al, where 3,
is the linear part of the propagation constant; ¢ is the Kerr
coefficient; and 7 is the intensity of propagating wave. In this
case, the nonlinear differential equations for the field ampli-
tudes Ej, E, and Ej; of the coupled waves, propagating along
the x axis in each of the waveguides, have the following form
[2-11]:

% = —i(By + al) E\ + iy(Ey + Es),
% =—1(Bo + ab) Es + iyE| + iy Es, M
% =—i(By + al;) Es + iyE; + iy  Es.

Here I, = (c/8m)|E, | n=1,2,3.

Consider the case when the first optical waveguide (n = 1)
is pumped (Fig. 1). Let us complete Eqns (1) with the boundary
conditions

Eyx=0=Ey Ey=0=E3x=9=0. (2)
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Figure 1. Schematic of the NDC cross section, perpendicular to the axis
of waveguides.
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The system of equations (1) describes the steady-state
propagation of light in optical waveguides. The factors 8, + al;
(j=1,2, 3) describe the variation in the effective propagation
constant in each waveguide as a function of the intensity of
propagating light (Kerr effect). As to the coupling constants
between the waveguides, in Eqns (1) they are assumed con-
stant and independent of the intensity. Equations (1) are valid
under the condition that no new modes are generated during
the nonlinear propagation of the light in the waveguides. They
are applied in the cases of weak nonlinear perturbations and
for the optical waveguides, essentially separated from each
other [1-38].

Consider the solution in the form E,(x) = f,(x)exp (—-ifyx).
For the functions f,(x) we obtain

Yo iatfit i s+ ),

d—'f2 :—i(llzj[z+

& ivfi+ inf, 3

d . e .,
TJE = —10{]3]3 + lj/fl + 1)/1/2.

The boundary conditions for the functions f,(x) are similar
t0 (2): fi1x=0=S0,/2|x=0=/f3]x=0 = 0. Let us show that under
these conditions the field amplitudes (intensities) in the wave-
guides n = 2 and 3 will be similar at any point x. To this end,
we introduce the function p = f, — f3 with the boundary condi-
tion p|=¢ = 0. Then from Eqn (3) we obtain the differential
equation for the function p(x):

dp

d = —lag pPp + p°fs + 20pPA + 20| AP + /20" = iyip. (4)

Let us present p and f3 as p = Qexp(ip), f3 = Fexp(iy), where
Q and F are the amplitudes, and ¢ and ¢ are the phases of the
functions p and f3. Substituting these expressions into Eqn (4)
and separating the real and imaginary parts in Eqn (4), we
obtain

9 — _wQl0Fsin(p —y) + Fsin(2p - 29)]. (5)

Since all functions depend on x, the factor in square brackets
in the right-hand side of Eqn (4) is also a certain function
depending on x:

f(x) = OFsin(p —y) + F2sin(2p — 21).

Then, Eqn (5) can be rewritten in the form
99 - w0,

Its formal solution has the form

0 =dexp(-| x.f(&)deE),

where A is the integration constant. Satisfying the boundary
condition Q) = = 0, we obtain 4 = 0. Thus, at any point of
the NDC the following relation holds:

0(x) = | /o(x) = f3(x)| =0, (6)

i.e., the absolute value of the difference of the complex field
amplitudes f> and f3 is equal to zero. Presenting them in the
form f> = Frexp(ip,) and f3 = F3exp(ips3) and substituting into
Eqn (6), we arrive at the relation

F3 + F} — 2F, Fycos(¢py — ¢3) = 0.

According to the law of cosines, this relation is valid for
F,=Fyand ¢, = o3 + 2nm, m = 0, 1, 2, .... From this fact
it finally follows that f> = f; at any point x of the NDC. This
fact allows essential simplification of Eqns (3) and its reduc-
tion to the form

d . .
d_j:cl =—ial fi + 2iyf,

(N

ds

4y = iebh+ivfi+ing.

From Eqns (7), one can see that when the NDC with three
identical optical waveguides, located at the vertices of an
isosceles triangle, is pumped via the apical waveguide, it is
equivalent to the NDC with two different waveguides. These
waveguides possess different propagation constants, and the
coupling constant of the first waveguide to the second one is
by two times greater than the coupling constant of the second
waveguide to the first one.

Let us introduce the functions [12]

ha=g|fial’ Q=g (fai=fil).

= g (S2hi+fI1). ®)

Using Eqns (7) and the system of conjugate equations, we
obtain the system of coupled nonlinear differential equations
for the new functions:

dh— 20, S =yp, ©)
dQ = [a(ly = L) + yilR + 2y(1, — 2D), (10)
AR e~ 1) + 710 ()

According to (2), the boundary conditions for the system
of equations (9)—(11) have the form

Lijx=0=1o, Lx=0=0, Q|x=0=R|x=¢=0. (12)

From Eqn (9) it is easy to obtain the first integral of
motion

I+ 20 =1, (13)
which represents the law of conservation of energy in the

system. Using Eqn (9) and Eqn (13), we obtain the second
integral of motion from Eqn (11)

R= 20‘712(312 21y — 4L (14)
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Finally, from Eqn (10) we derive the third integral of
motion

2
2 41—8+ﬁ1—2ﬁ91<1—11)
0 2|4y v ) y yP\o=7b

2 2
- %@) - izz) . (15)

2

It is easy to show that there is one more integral of motion,
relating all the functions,
0>+ R* =461, (16)
which is actually a consequence of expressions (13)—(15).
Substituting Eqn (15) into Eqn (9) it is easy to obtain the non-
linear differential equation describing the spatial variation

of the light intensity 7, in the second optical waveguides of
the NDC

dn _

2 a 3 N2
T2 = {12[410—<8+;12)12—27"12<10—212) ” . (17)

vy

Let us introduce the normalised quantities

_ _abh N
z—2yx,a—2y,s— .

b

L _ 4
Y= IO’ = IO’ (18)

Then the solution of Eqn (17) in quadratures for the function
y(z) can be presented as

12

foydy<y{l -2y —y[% + a(l — %y)]z}y =z

From Eqn (19) one can see that the behaviour of the solu-
tions is determined by two parameters, the nonlinearity ¢ and
the ratio of coupling constants s. Moreover, from Eqn (19)
it follows that the intensity y of light propagating through
the second optical waveguide periodically varies from zero
to the maximal value y,,,, determined by the equation

(19)

= 2 = Y[ 3+ (1 = 3y )] = 0. (20)

The positive root closest to zero is chosen for the solution.
When the level of excitation grows, no new roots of Eqn (20)
appear. The appearance of a pair of real roots of Eqn (20)
manifests the occurrence of the self-trapping effect. Hence,
the above facts allow the conclusion that in the considered
system pumped via one of the waveguides the self-trapping
is absent. The latter takes the place in the case of the NDC
consisting of two waveguides.

Note that the light self-trapping phenomenon was predicted
in atomic systems [14—16], in atomic-molecular systems [17],
in exciton-polariton systems in microcavities [18, 19], and was
observed experimentally [20, 21]. It consists in a sharp (practi-
cally stepwise) change of the oscillation amplitude under the
variation of the system parameters or the excitation level.

In the linear limit (¢ = 0) the intensity of light in the optical
waveguides of the coupler is determined by the expressions:

_bL_4

sinzgz, Y= 5—(1) =1- %sinzgz, 21)

I() IC2

where x = V8 + s%. Thus, the light intensity is periodically
transferred from the first optical waveguide to the second and
the third one, Vyax = 4/k% Y1 min = 1 — 8/, and the coupling
length is Ly = nt/(2yx). From these results, it is seen that the
coupling length in the three-channel linear coupler is smaller
than in the coupler consisting of two similar waveguides.

The solution of Eqn (20) shows that the maximal light
intensity yn.x in the second (third) waveguide monotonically
decreases from the value y,,,, = 4/k> to zero with the growth
of the nonlinearity parameter a (with the growth of the excita-
tion level at the input face of the first optical waveguide). Two
other roots of Eqn (20) are complex conjugate at any combi-
nation of the parameters s and «. Assuming that y..
is known, these roots can be presented as y, 3 = u tiv, where

u= % v = % V4a + (Vmax — a1) (3Vmax + @1);
(22)

a1=%<1+2%1); a2=g[(l+i>2+% .

Then, expression (15) can be easily integrated, and we obtain

yzymaXV/"2+V2

1 — cn(3mazl2)
(n — my)en(3mazi2) + ny+ny’

(23)

where cn(x) is the elliptic cosine [22,23] with the modulus &
equal to

1 Iu(:u — ymax) + v2 .
k=5 (1 - ; (24)
2V V(i = ) + VPV R
212, 202 U2,
m = {[,u(/'t _J/max) +v ] +v ymax} s
(25)

= V(1= V) + V5 = VRV

From Eqn (23) it follows that the intensity of the light in
the second optical waveguide y(z) periodically changes from
7e10 10 Viax The coupling length L. = 2y L is expressed by the
formula

_ 4
L. = 5~ K(K),

(26)
where K(k) is the complete elliptic integral of the first kind
with the modulus k [22,23].

3. Discussion of the results

Figure 2 presents the dependence of the maximal intensity
Ymax» transferred from the first (pumped) optical waveguide
of the NDC into the second one, on the parameter of non-
linearity a for a number of values of the ratio of coupling
constants s. One can see that with the growth of a, the value
of ynax rapidly decreases, tending to zero at a >> 1.

An increase in the coupling constant ratio affects the val-
ues of ymax at @ = 0, but does not affect the general character
of its further behaviour. Figure 2 shows that in the three-
channel system of waveguides the phenomenon of self-trap-
ping is absent.

Figure 3 presents the spatial dependence of intensity y(z),
transferred from the first (pumped) waveguide of the NDC
into the second one, on the parameter « for a few values of
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Figure 2. Dependence of the maximal intensity y... transferred from
the first (pumped) waveguide of the NDC into the second one on the
nonlinearity parameters a for different values of the ratio of coupling
constants s = (1) 0,(2)0.5,(3) 1,(4)3and (5) 5.

0.10

0.05

Figure 3. Spatial dependence of the intensity y(z) transferred from the
first optical waveguide into the second one on the nonlinearity parameter
a for the ratio of coupling constants s = (a) 1 and (b) 5.

the parameter s. One can see that the energy of propagating
light is periodically transferred from the first waveguide into
other two waveguides and back. For a fixed nonlinearity
parameter a the amplitudes of oscillations of the function y(z)
monotonically decrease with increasing z. However, with
an increase in the nonlinearity parameter a the amplitude of
oscillations of the function y(z) increases. The positions of the

maxima are determined by the coupling length L., which, as
seen from Figs 2 and 4, depend on the excitation level.

Figure 4 presents the dependence of the coupling length
L. on the nonlinearity parameter a for several values of the
coupling constant ratio s. With the growth of a the function
L_(a) increases due to the increasing modulus & of the com-
plete elliptic integral of the first kind K(k), while for a >> 1
the coupling length, as follows from (26), decreases inversely
proportional to a. From Fig. 4 it also follows that in a three-
channel NDC under the condition of a strong excitation level
the self-trapping phenomenon is absent.

0 2 4 6 a

Figure 4. Dependence of the coupling length L. on the nonlinearity
parameter a for the values of the ratio of coupling constants s = (/) 0,
(2)0.5,(3)1,(4)3and (5) 5.

Thus, let us summarise the basic results. The exact ana-
lytical solutions are obtained for the system of nonlinear
equations, describing the intensities of the propagating waves
in a symmetric three-channel NDC with a Kerr nonlinearity
of the propagation constant and different coupling constants
between the waveguides. It is demonstrated that the radiation
is periodically transferred from the pumped waveguide into
two other ones and back. The maximal intensity of the light,
transferred into the adjacent waveguides, and the coupling
length rapidly decrease with increasing excitation level. At
high excitation levels, there is no self-trapping phenomenon
that occurs in two-channel NDC.
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