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Abstract.  Based on rigorous solutions of exact dispersion equa-
tions, we consider plasmons in multilayered plane-stratified struc-
tures in the Drude – Lorentz approximation for metal layers with 
dissipation. General and particular types of dispersion equations 
are examined, a classification of waves is presented, gliding and 
leaky waves are described, maximum decelerations are derived, 
losses and conditions for transition from forward plasmons to back-
ward ones and from slow plasmons to fast ones are established, and 
the dispersion of different modes is numerically investigated. 

Keywords: multilayered plane-stratified structures, plasmons, 
Drude – Lorentz approximation.

1. Introduction

Surface plasmon polaritons (SPPs) have been known for 
more than a century. Apparently, for the first time an optical 
polariton was observed by David Brewster in 1815, when he 
discovered the absence of reflection of p-polarised light from 
a transparent plate [1, 2]. In the chronological order, we 
should mention the following researchers who contributed to 
the investigation of SPPs: A. Sommerfeld (1899), R. Wood 
(1902), N. Tesla (late 19th – early 20th centuries), K. Uller 
(1902), J. Zenneck (1907) [3], K.A. Norton (1930s), W. Fano 
(1941), V.O. Schumann (1949 – 1952), R. Ritchie (1957) [4], 
A. Otto (1969), E. Kretschman (1971), M.I. Dyakonov (1988), 
A.V. Chaplik and many others (see references in [2, 5]). The 
simplest explicit dispersion relation obtained by Zenneck [3] 
describes fast and slow SPPs along the vacuum – half-space 
interface. This reation is a reference one, since it gives a pre-
cise analytic solution of the problem [2, 6] and allows one to 
determine the field structure that, in the dissipative case, is 
leaking into the half-space [1, 2]. In the dissipative case, this 
SPP has been also investigated in detail in [6], but this work 
contains a number of inaccuracies: the possibility of existence 
of a surface backward wave (BW) is asserted, which is not 
true, and also the presence of a backward volume wave in the 
dissipative half-space (metal) in the entire frequency range. 
Such a wave actually exists (its phase moves towards the sur-
face), but in a limited frequency range – between a plasmon 
resonance frequency and a plasma frequency [2].

Commonly, surface plasmons are considered (we also 
denote them by the abbreviation SPP), i.e., the waves that 

exponentially decay in amplitude away from the surface. In 
the absence of dissipation, these waves are eigenwaves, i.e. 
they represent the solutions of a self-adjoint boundary-value 
problem. However, there are solutions of Maxwell’s equa-
tions in the form of anti-surface waves [1], i.e. the waves that 
grow exponentially. These are noneigenwaves. They are 
exemplified by leaky waves (polaritons). Losses are of great 
importance in plasmonics. In this case, eigenwaves become 
quasi-eigenwaves. In the general case, dispersion equations 
(DEs) for SPPs are implicit and require the determination of 
roots in the complex plane. For nondissipative structures, the 
presence of forward SPPs is associated with an increase in the 
dependence of the frequency on the wave vector projection 
along the surface w = w(kx) (kx = kx' – ikx'' )*, while the presence 
of backward SPPs – with a decrease in this dependence (the 
z axis is normal to the surface). The group velocity (GV) is 
positive in the first case, ug > 0, and negative in the second 
case, ug < 0. The band gaps may exist between the disper-
sion branches, or the branches may join at a zero band gap 
[7 – 12].

At the plasmon resonance (PR) frequency, the decelera-
tion is infinite, and the function kx = kx(w) is not differentia-
ble. Dissipation makes it differentiable: dkx /dw = 0, the band 
gaps (if any) are replaced by the zones with large but finite 
damping, and infinite decelerations become finite. The group 
velocity in the PR vicinity undergoes drastic changes: at first 
it strongly decreases, then increases dramatically from a small 
positive value, passes through infinity, changes the sign, and 
then, with increasing frequency, its negative values may vary 
greatly. This by no means signifies the presence of backward 
SPPs. Calculations show the presence of a large positive 
damping (kx'' » kx' ) at the PR point [2], which means that in its 
vicinity the waves are forward. To determine the BW, the 
Poynting vector should be calculated instead of the GV, or 
the losses should be determined. In the second case, the sign 
of the product kx'' kx'  defines either forward or backward waves 
(the signs ‘+’ and ‘–’, respectively).

Currently, volume, localised or surface plasmons are 
investigated, the latter being considered along the boundaries 
of photonic crystals, including hyperbolic metamaterials 
[5, 13 – 16], and along complex metasurfaces [17 – 21]. A vari-
ety of applications of localised plasmons and SPPs have been 
proposed in various devices for different purposes [5, 7 – 21]. 
Analysis of SPPs along nonplanar, complexly configured 
metasurfaces requires electrodynamic approaches to the solu-
tion of relevant boundary-value problems [2], which needs a 
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clear understanding of the SPP behaviour in simple struc-
tures.

The goals of this paper are to find a general form of com-
plex DEs with losses taken into account, to obtain the DE 
forms admitting convergent iterative solutions, to conduct 
rigorous numerical investigation of complex DEs, to deter-
mine the regions of dispersion branches with forward and 
backward SPPs, to establish the criteria for the BW exis-
tence and transition of fast SPPs into the slow ones, and to 
examine maximum decelerations and losses, as well as prop-
erties of gliding and leaky SPPs. The DE form for a trans-
versely finite structure depends not only on its configura-
tion, but also on the boundary conditions of both its outer 
boundaries. In the nondissipative case, a transition from a 
surface wave to a leaky wave occurs proceeding from a sin-
gle DE: the real square root in this equation becomes imagi-
nary. In the dissipative case, a relevant branch of the root 
should be chosen, which means imposing a certain boundary 
condition (radiation condition): these are gliding or leakage 
conditions. Therefore, for the same structure, there are four 
different DE types (for a given wave type and symmetry 
conditions).

To describe the dielectric constant of metal, we have used 
the Drude – Lorentz approximation, in which the Lorentz 
term eL (see below) characterises the impact of the crystal lat-
tice and interband transitions. Such an analysis often employs 
the Drude model (with eL = 1) [7, 8, 10 – 13], which does not 
allow adequate description of metals, especially near the PR. 
For a numerical iterative solution, the DEs are represented in 
the forms that allow the convergence of iterations and exact 
calculation of the complex roots. Numerically studied are the 
simplest multilayered plane-stratified structures and the SPPs 
in them, the simplicity of analysis of which allows their prop-
erties to be accurately determined.

One of the goals of this work is the consideration of dis-
sipation. Typically, such structures were studied using the 
mode-matching method without taking dissipation into 
account (see, for example, [8, 10 – 13]). The results of solving 
DEs with dissipation are presented in a number of papers, for 
example, in [2, 5 – 7, 16, 17]. An iterative approach was used in 
[2, 16, 17]. Of interest is the method of Ref. [7], based on the 
solution of the Cauchy problem for a system of differential 
equations. This method was also applied in work [7] for a 
nonlinear problem in the approximation of independence of 
the propagation constant on the wave amplitude with Kerr 
nonlinearity in the dielectric constant of a dielectric. However, 
the method seems substantially more complicated compared 
to the iteration method.

In the absence of dissipation, the waves in open structures 
can be classified as the slow surface eigenwaves, slow anti-
surface noneigenwaves, and fast leaky noneigenwaves ([1], 
p. 227). The eigenwaves represent the solutions of self-adjoint 
boundary-value problems. Dissipation (even weak) drasti-
cally changes the wave properties, and in particular, those of 
SPPs. It leads to the fact that the adjoint boundary-value 
problems become non-self-adjoint ones. This stipulates the 
appearance of complex propagation constants and such an 
effect as leakage [1, 2, 22]. We should note that in a leaky 
wave, the complex propagation constant is mainly related to 
radiation losses [1]. An example of a gliding surface wave is 
fast and slow Zenneck surface waves (ZSWs) [1 – 3]. Before 
J.  Zenneck, this wave was predicted by K. Uller [5]. It is 
formed (theoretically, can be excited) by a planar wave, flow-
ing without reflection into the structure at a Brewster angle 

[1,  2]. In a waveguide, a slow gliding SPP may turn into a fast 
leaky polariton when the surface properties (in particular, its 
impedance), its environment, or radiation frequency is 
changed [21]. Dissipation leads to the fact that the propaga-
tion of noneigenwaves with large losses becomes possible in 
the band gaps. This is typical, for example, for the waveguides 
below their cut-off frequencies, for photonic crystals within 
their band gaps, etc.

For SPPs, there also exist band gaps in which polaritons 
(slow and fast ones) can propagate in the case of dissipation, 
a negative GV [2] (with respect to the phase velocity up) being 
possible. It is commonly associated with the BW and the 
energy motion velocity ue, which is only true for monochro-
matic eigenwaves without dissipation and is incorrect for 
noneigenwaves. For the quasi-eigenwaves (eigenwaves in the 
presence of weak dissipation), this is only an approximation. 
For example, in a Zenneck surface eigenwave above the sea 
we have ug > up > c > ue, and such a wave is fast and forward 
one. Therefore, in the presence of dissipation, it is better to 
use ue rather than ug for classification. It is sufficient to deter-
mine the direction of the Poynting vector S rather than the 
energy density in a dispersive medium with dissipation (which 
is a nontrivial problem [23, 24]).

It is necessary to distinguish between the backward and 
counterpropagating waves. The latter exist in pairs and can 
be either forward or backward ones. They are a consequence 
of the quadratic dispersion law, i.e. they correspond to a 
change in the motion direction (simultaneous change in S and 
up signs). For SPPs in a structure with a single or two layers, 
the vector S is easy to find analytically [21]. However, this is 
difficult for multilayer structures. A simple technique is used 
below: a wave is considered as a backward one if the motion 
direction of the phase is opposite to the direction of damping. 
These directions are determined from the real (kx' ) and imagi-
nary (kx'' ) parts of the propagation constant.

2. Waves, fields and dispersion of plasmons  
in a plane-stratified structure

The DE derived by J. Zenneck’s mode-matching method [3] 
for a polariton at the interface between the infinite half-space 
with a DP eu  and vacuum appears as

k k
1x 0 e

e
=

+u
u ,	 (1)

where k0 is the wave number in vacuum. This expression is 
explicit and valid both for fast polaritons and slow SPPs. 
Below we will use the notations:  en and tn are the dielectric 
constants and layer thicknesses; knz = k kn x

2 2e -0  are the 
propagation constants along the normal z to the interface in 
the layer; /( )k ke

n nz n0r e=  and /k kh
n nz0r =  are the normalised 

(by /Z0 0 0m e= , where m0 and e0 are the magnetic permeabil-
ity and dielectric constant of vacuum) wave impedances of 
E- and H-waves in the layers with a dielectric constant en 
(below the word ‘normalised’ is omitted). Magnetic proper-
ties are not considered. The z axis is directed perpendicular to 
the layers, with vacuum being located at z > 0. In the case of 
the E-wave (TM wave), r0 = k0z /k0 = ( / )k k1 x 0

2
-  is the 

wave impedance for the E-wave in vacuum (sometimes super-
scripts ‘e’ and ‘h’ are also omitted). 

For the H-waves to exist over a half-space, it is necessary 
that the latter possesses magnetic properties. However, the 
existence of these waves is possible in layered structures. The 
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difference in consideration is only in the propagation con-
stants (the value of k n

2e0  is replaced by k n n
2e m0 ) and in the 

impedances: for H-waves /k kh
n n nz0r m= , while for the non-

magnetic layers we simply have to put mn = 1. It is easy to see 
that Eqn (1) can be rewritten as ,e e

0r r= u  i.e. the wave imped-
ance in vacuum is equal to its impedance in half-space. This 
signifies the absence of reflection [1]:

0R ,
, ,

, ,
e h

e h e h

e h e h

r r
r r

=
+

-
=

u

u
.	 (2)

In other words, a wave from vacuum propagates at a 
Brewster angle q e, h = p/2 – je, h and flows into the dissipative 
half-space without reflection. In the case of a dielectric half-
space, it is impossible to fulfil condition (2) for the magnetic 
mode: reflection is due to excitation and radiation of electric 
dipoles of the medium, which, at the Brewster angle, are 
directed along the reflected beam and do not radiate. For 
the magnetic mode, electric dipoles are excited perpendicu-
lar to the plane of incidence, and the reflected wave is always 
present.

The situation changes for a magneto-dielectric half-
space or a layered structure: both waves exist in these cases, 
while the absence of a reflected wave is associated with inter-
ference. Condition (2) signifies a transition from the diffrac-
tion problem (which requires the definition of two reflection 
coefficients Re, h and the transmission coefficients T e, h in 
terms of a given amplitude of the incident wave) to the prob-
lem of free waves, i.e., to a uniform system of two linear 
equations. Condition (1) actually means that the system’s 
determinant vanishes. It is immediately clear that, in the 
case of a complicated multilayer infinite dissipative struc-
ture, the DE , ,e h e h

0r r= u  remains valid if the value of ,e hru  is 
understood as the input impedance for the corresponding 
wave in the z = 0 plane. The DEs are also simply generalised 
to the case of the presence of a medium instead of vacuum: 
the dielectric constant and magnetic permeability should be 
simply used in these equations.

A wave that obeys DE (1) is the surface and leaky wave. 
This means that k k kz x0 0

2 2
= - = ''ik kz z0 0-l , with   k z0l < 0,  

''k z0 > 0, i.e. the wave is exponentially damping in the posi-
tive direction of the z axis (localisation near the surface), 
while its phase propagates towards the surface. Here we use 
a dependence of form exp(iwt – kxx – ikzz), where kx = kx'  – 
kx''. If the condition kx'' > 0 is chosen, i.e., the x axis is 
directed along the vector ue, then the wave is a backward 
wave for kx' < 0. Usually, the propagation constant is deter-
mined from the DE in terms of the square root, and so it is 
convenient to find the root from the condition kx'  > 0, or, in 
other words, to direct the x axis along the vector up. Then, 
the backward plasmon (BP) corresponds to the conditions 
kx'' < 0 and kx'  > 0, which is more convenient for represent-
ing the dispersion curves. Just in this way these curves are 
further constructed. In the general case, the condition kx' kx'' 
> 0 defines a forward wave, while the condition kx' kx'' < 0 – a 
backward wave. 

There is neither BWs nor leaky waves over the dissipative 
half-space. In essence, the leakage for a forward wave signi-
fies the reversal of the sign of k0z. The angle of leakage is q =u   
– q = tan(k'0z /k'0x) [17]. The negative leakage angle determines 
gliding. The leakage from a dissipative half-space would 
mean an infinite increase in the energy density in the direction 
of its depth, which is impossible. The leakage from an infini-
tesimally thin impedance film (for example, a graphene film) 

described by the surface conductivity ss is also impossible, 
since it is associated with the expenditure of the energy stored 
in the structure. Of course, this applies to the equilibrium gra-
phene, since negative conductivity is possible in the course of 
its pumping. Leakage may occur from the finite dissipative 
and active structures [2, 17]. 

The structure’s finiteness means binding of the waves on 
both its boundaries. In this case, polaritons are bound: there 
are two E-waves and two H-waves [1, 25]. In addition, each of 
these two waves can be either gliding or leaky. Let us explain 
this. The solution for a plane-layered structure with scalar 
permittivities is divided into E- and H-waves. For each of 
them, in each of the layers, we consider two waves propagat-
ing in opposite directions of the z axis, whereas a single wave 
satisfying the radiation conditions should be taken both on 
the top and bottom of the structure. Then the mode-matching 
method yields a homogeneous system of equations, whose 
vanishing determinant determines the DE.

We may consider waves that are divergent from the struc-
ture, which is equivalent to leakage, or converging to it, which 
is equivalent to gliding. However, there can be gliding at one 
boundary and leakage at the other, i.e., there are four variants 
in total. The DE form depends on the variant chosen. 
Generally speaking, an infinite number of modes exist for 
each DE type. For nondissipative structures with a real dielec-
tric constant of layers, the number of such propagating (slow) 
modes increases with increasing frequency [1], while the high-
est fast complex leaky modes are damping. For thin nano-
layers, this may take place in the UV range. We only consider 
the lowest fundamental mode of each of the DE under condi-
tions that the metal layers with negative e'n values are present. 
The leakage from a dissipative structure finite along the z axis 
signifies that this structure has been excited by the radiation 
sources at x = –¥; in this case, the fields decrease exponen-
tially with increasing x and increase at a large distance from 
the structure with increasing |z|. As the frequency increases, 
leakage can be replaced by gliding [21].

To implement gliding into a long finite symmetrical struc-
ture, the sources should be located far from it on the left and 
on either side of it in order to imitate two plane waves; in this 
case, the phased sources excite an even SPP (magnetic wall), 
and the sources being in anti-phase – an odd SPP (electric 
wall). Another way of excitation is to place the sources over 
one of the surfaces. In this case, it is possible to implement the 
gliding from one side and the leakage from the other.

Let us consider the classification of waves. We employ the 
classification based on the longitudinal components [Ex(z) for 
E-waves and Hx(z) for H-waves], in contrast to the classifica-
tion given in [1, 21, 25 – 28], which is based on the transverse 
components. Our classification seems more general, since for 
strip [8] and multilayer structures [17] of finite width, the 
transverse components (there are four of them) can have dif-
ferent parities. The classification is performed by a single lon-
gitudinal component. The odd mode in a symmetric structure 
corresponds to an electric wall at z = 0, while the even mode 
corresponds to a magnetic wall.

Obtaining the DE by means of direct mode matching is 
rather cumbersome. It is convenient to use the transfer matrix 
method. Using the classical normalised transfer matrices

( )
( ) /

( )
( )

cos
sin cosi

i
a

k t
k t

k t
k t

,
,

,
e h

e h

e h

n
zn n

zn n n

n zn n

zn nr
r

=t e o,

we construct a complete matrix
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a a, ,e h e h
n

n

N

1

=
=

t t% ,

which relates the field components from above and below the 
structure:

E
Z H

a
E
Z H

ex

y

N x

N y

0

0 0

1

0 1
=

+

+

te eo o,     E
Z H

a
E

Z H
hy

x

N y

N x

0

0 0

1

0 1

-
=

- +

+

te eo o.	(3)

In order to obtain a DE from (3), we have to bind E0x with 
H0y and EN + 1  x with HN + 1  y for E-waves, and the correspond-
ing components with a zero subscript and subscript N + 1 for 
H-waves. Thus, it is necessary to impose certain impedance 
conditions. The subscript N + 1 corresponds to a half-space 
located below the structure. Theoretically, it should be under-
stood as vacuum. However, in order to obtain the leakage, it 
is of interest to consider a nondissipative half-space with the 
dielectric constant eu . Assuming this, we consider the half-
space as being modelled by a rather thick substrate with small 
but finite losses; in this case, the wave leaking from the struc-
ture does not reach the remote boundary; i.e. it turns into a 
gliding wave that flows into the substrate.

It is possible to realistically simulate such a substrate on 
the basis of the method of transfer matrices, taking into 
account the substrate thicknesses. The same can be also 
attributed to a medium that corresponds to the subscript ‘0’. 
It should be noted that the leakage regime for finite structures 
can be realised at their finite length. The radiation conditions 
for ideal infinite plane-layered structures differ from the tra-
ditional Sommerfeld conditions for sources in a finite region, 
because the structure ‘tends’ to infinity at x = ±¥. 
Consequently, the leaky wave represents in essence a complex 
anti-surface wave and does not satisfy these conditions for 
|z| = ±¥, but satisfies the energy conservation law [1, 25]. For 
the wave that leaks from the structure, we have 

/E H Z ( )e h
x y0 0 0 0r= ; herewith k'0z > 0, k0z''   < 0. For the gliding 

wave, /E H Z e
x y0 0 0 0r=- , the sign is changed due to the fact 

that k'0z < 0, k0z''   > 0. For a wave gliding into the upper half-
space (which is only possible in the case of dissipation), it 
would be necessary to satisfy the conditions k'0z > 0, k0z''   > 0 
(the wave gliding into the upper half-space is leaking from the 
structure). By assigning the relationships

H
E Z e

y

x

0

0
0! r= 0 ,  H

E Z e

N y

N x

1

1
0" r=

+

+
N 1+ ,

H
E

Z h

x

y

0

0
0! r- = 0 ,   H

E
Z h

N x

N y

1

1
0" r- =

+

+
N 1+

and imposing the conditions on the real and imaginary com-
ponents of the transverse wave number from above and below 
the structure, we obtain a DE in the form

a a a a 0e e e e e e e
1 1! ! !r r r+ - + =N N0 21 1 22 1 1 2+ +^ ^h h ,	

(4)

0a a a ah h h h h h h
1 1! ! !r r r- + - =N N0 21 1 22 1 1 2+ +^ ^h h .

Here, the signs for the wave impedances are taken indepen-
dently, and the upper sign corresponds to gliding, while the 
lower sign – to leakage for the corresponding boundary. 
Further, we denote , ,e h e h

N 1r r=+
u .

Equations (4) are transcendental and complex with respect 
to kx. It is possible to find this wave number by assuming 

Im kx < 0, i.e., choosing a wave with the energy motion in the 
positive direction. However, the value of kx'' can be small even 
if dissipation is not very small. This, for example, takes place 
for waves in a thin film with a deceleration close to unity: 
virtually all the energy propagates in vacuum. To diagnose 
the BP, it is necessary to solve the DE with great accuracy, 
where kx'' may change its sign in the course of iterative solu-
tion. It is more convenient to use the condition kx'  > 0. Then 
the BP corresponds to kx'' < 0. In (4), we should choose the 
signs of the wave impedances depending on which waves we 
are looking for.

For a structure surrounded by vacuum from above and 
below, it is necessary to search for waves that flow into the 
structure or leak from it – in this case the signs are correlated. 
For a structure lying on a dissipative substrate, one can search 
for a gliding wave only at the boundary z = 0. In this case it is 
convenient to use the method of impedance transformation. 
The input impedance of a substrate is equal to its wave imped-
ance: ( )

in
e hr r= u . A layer of thickness tN = hN – 1 – hN in the 

region – hN < z < hN – 1 transforms rin into 
( )
in
Nr  according to 

the impedance transformation formula

( )

( )

tan

tan

i

i

k t

k t( ) ( )
( )

( )

in
e h

e h
in

in
e h

N
N

N zN N

N zN Nr r
r r

r r
=

+

+ .	 (5)

Next, we need to make the replacement ( )
in in

N
"r r , N ® N – 1 

thereby obtaining a transformation to the next layer, and so 
on, up to the transformation by the first layer to the surface 
impedance ( )

in
1r . The DE will have the form ( ) ( )e h

in0
1r r= . Input 

impedances are different here, since they are defined for dif-
ferent types of waves. Denoting them by ( )

in
e hr , we have a DE 

in the form

k k 1, ,e h
in
e h

x 0
2

r= -
!^ h ,	 (6)

where the sign ‘+’ corresponds to the E-wave, and the sign ‘–’ 
corresponds to the H-wave.

Consider an example for a layer of the t with a dielectric 
constant e in a half-space with a dielectric constant eu . If the 
layer is electrically thin [tan(kzt) << 1], then 

( ) ( )
in

e h1r r= +u  
[ ]i k t( ) ( )e h e h

zr r- u . If it is transparent (kz'' << kz' ), then the reac-
tive component of the impedance is mainly changed, while, in 
the case of an absorbing layer – its active component. If the 
layer is quarter-wavelength and transparent, we have ( )

in
1r = 

[ ] /( ) ( )e h e h2r ru . For a transparent layer, the imaginary parts of 
the values ,e hr  are small, and so the reactive component of the 
impedance ( )

in
1r  changes its sign compared to ,e hru . At strong 

absorption and sufficient thickness of the layer tan(kzt) ® –i 
and ( ) ( )

in
e h1r r= , i.e., the wave does not reach the layer bound-

ary, and the layer is perceived as infinite.
It is convenient to solve equations (6) iteratively. Consider 

an example of a metal film of a thickness t surrounded by 
vacuum from above and below. It is not difficult to see that 
the equality ( ) ( )e h

in0
1r r=  is only possible in two cases: kzt = mp 

and , ,e h e h
0r r= . The first equality for m = 1 means a transpar-

ent half-wave layer, whilst the second is only valid for vac-
uum. In the case of vacuum, there exists a trivial solution in 
the form of a plane wave. The first condition gives a resonant 
passage, which, for example, is equivalent to the matching of 
identical waveguides by means of a half-wave ‘jar’ used for 
energy extraction in vacuum amplifiers and generators. In 
this case, the energy propagates in one direction. However, 
for waves propagating along a metal film in vacuum, some 
solutions are known in the form of even (symmetric) and odd 
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(anti-symmetric) plasmons [21, 25 – 28], which can be either 
forward or backward. In order to obtain these solutions, we 
should take into account the fact that, in the SPP case, the 
wave flows into the film from both sides, i.e from above and 
below. Therefore, if the impedance ,e h

0r  is taken from above, 
then it must be equal to ,e h

0r-  from below (waves from vac-
uum are directed towards the film). Such a wave should be 
excited by symmetrical sources at x = – ¥, z = ±¥, with an 
even and an odd plasmon arising if the sources are in phase 
and in antiphase, respectively. The leakage means that the 
energy is stored in the film at x = – ¥ and is emitted when the 
wave moves.

Using the Green's function method [2], it is easy to obtain 
a DE for an infinitely thin film and to show that the leakage is 
possible if and only if the real part of the film conductivity is 
negative. When gliding is replaced by leakage, the signs of the 
impedances in both regions are reversed, but the DE form 
remains the same:

/
( )
/

tan
i

k t
1 0, ,

, ,
e h e h

e h e h

z
0

2 0r r
r r

+ + =^ ^h h
,

or / ( /2)tani k t, ,e h e h
z0r r =-  and / ( /2)tani k t, ,e h e h

z0r r =- . This is 
precisely the equation for odd (antisymmetric by Ex) and even 
(symmetric) plasmons [21].

Consider first the E-waves. For the first plasmon, by vir-
tue of symmetry in the z = – t/2 plane, it is possible to put an 
electric wall, and for the second one – a magnetic wall. 
Recalculation of the impedance of vacuum into this plane 
yields two indicated formulas. There is a sufficient number of 
works containing experimental data on dielectric constants of 
metals, for example [29 – 31]. For a theoretical analysis, it is 
convenient to use the Drude – Lorentz model:
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The plasma frequency wp and the electron collision frequency 
wc are determined on the basis of concentration and conduc-
tivity at a constant current, while the remaining parameters 
can be conveniently chosen from the condition of the best 
approximation of experimental data. We will use the sim-
plest model with a constant real term eL. In particular, at 
frequencies up to the optical ones, we may assume that eL » 

/ /1 1p pm m
2 2 2 2fw w w w+ + +1 . If we neglect dissipation and con-

sider the dielectric constant of metal to be negative, e = –|e|, 
then for even and odd plasmons along the metal film we have
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tanh
tanh
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e
e
x 0 2 2

2 2

e q
e q e
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| |
tanh
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k ko
e
x 0 2 2
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e q
e e q
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Here the subscript ‘e’ corresponds to an even plasmon, and 
the subscript ‘o’ – to an odd one;

| |t k k
2

( )o e x0
2 2

q
e

=
+

.

Because tanh2q ® 1 at t ® ¥, then for a thick plate we have 
/( )k k k 1e

e
o
e

x x 0 e e= = + . This is Zeneck’s DE (1) having a 
band gap  –1 £ e £ 0, or ks £ k0 £ ks0 in the absence of losses. 
Here / 1k ks p Le= +  is the PR wave number corresponding 

to the frequency ws; kp = wp/c is the plasma wave number; and 
ks0 = kp/ Le  is the cut-off wave number of plasmonics, cor-
responding to e' = 0. 

Allowance for dissipation leads to the dependence of 
ksand ks0 on wc  and to a slight decrease in these values. For 
finite t, the values of components (8) and the corresponding 
decelerations are limited. Indeed, if this were not the case, 
then tanh2q = 1 at the infinite deceleration frequency. Then 
this frequency could be determined from the condition e = –1, 
i.e., it would be equal to ws and would not depend on the 
thickness. Setting now the thickness equal to zero, we obtain 
unit deceleration, which is a contradiction. In reality, the 
maximum deceleration frequency decreases with decreasing 
thickness (Fig. 1), where always tanhq < 1. For an even SPP 
we have e2tanh2q > 1, while for an odd SPP e2 > tanh2q. The 
plasmons without dissipation were considered in [28], and it 
was shown that there is no BW for an even E-SPP, while it 
does exist for an odd E-SPP. Numerical calculations (Fig. 1) 
for an even E-SPP do not yield a branch with the BP, i.e., 
always kx'  kx'' > 0. By introducing infinitesimal losses, it is also 
possible to analytically show the fulfilment of this condition. 
The dashed curve ( 8 ) in Fig. 1 corresponds to the limiting 
case t ® ¥ and Eqn (1). In the case of dissipation, in the region 
ws < w < wp, i.e., in the band gap –1 < e'  < 0, from (1) we 
obtain the expression 
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| |
| | ( /2)exp

i
ik

k
k

1
x x2 2

0
2 2

!
e e

e e e e
j=

+ +

+ - -
=

' ''

'' ' ' '' .

Here, j is the argument of the complex number under the 
root in the numerator. Two values of the root correspond to 
two counterpropagating waves. If the losses are small, i.e., e'' 2 
+ e' 2 – |e' | < 0, then this complex number is located in the 
third quadrant, which means that kx'  kx'' > 0. If the losses are 
large, i.e., e'' 2 + e' 2 – |e' | > 0, then it is in the fourth quadrant, 
and again kx'  kx'' > 0. The wave is forward, although the dis-
persion is anomalous and negative. It is of interest to note 
that, when passing through ws in a small vicinity of it, the 
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Figure 1.  (Colour online) Dispersion of a symmetric E-SPP normalised 
by the plasma wave number for eL = 2, wp = 1016 Hz at t = ( 1 – 6 ) 2 and 
( 7 ) 10 nm, and also at t = ¥ ( 8 ) for the ratios wc /wp = ( 1 ) 10–4, ( 2, 8 ) 
10–2, ( 3 ) 5 ´ 10–1, ( 4 ) 1, ( 5, 7 ) 2 ´ 10–1, and ( 6 ) 10–1. The dashed curve 
( 8 ) is constructed for  eL = 2 – 0.01i. 
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normal dispersion is replaced by the anomalous positive dis-
persion, which turns into the anomalous negative dispersion, 
qualitatively resembling the Lorentz dispersion (7). For an 
odd E-SPP, the branches with the BP are located above the 
branches with a forward SPP (Fig. 2). The branches with a BP 
[curve ( 6 )] and with a forward polariton [curve ( 5 )] for the 
symmetric H-SPP are also shown there. The polariton is 
backward and strongly decelerated at low frequencies; it has 
large losses there and does not possesses the Ex component, 
i.e., it does not interact with electron fluxes; therefore, this 
polariton is very difficult to excite. At high frequencies, the 
polariton is forward. As the thickness t increases, the decel-
eration and losses increase, but at t ® ¥ the polariton does 
not exist.

The results for forward and backward plasmons are 
shown in Fig. 2 for a metal film with eL = 9 – 0.01i and wp = 
1016 Hz, wc = 1013 Hz. The branches of the backward plas-
mons were controlled by the condition kx'' < 0. Each of the 
points of the dispersion branches represents an iterative solu-
tion of the corresponding DE. The results show that, in dis-
sipative structures, the anomalous negative dispersion (nega-
tive GV) does not yet mean the presence of a BW. Especially 
this concerns the band gaps (in the absence of dissipation). 
The BP may correspond to both normal and anomalous neg-
ative dispersions. Characteristic here is curve ( 8 ) in Fig. 1, 
which corresponds to the SPP over the metal half-space, i.e., 
dependence (1). When approaching the PR point swu  » 
/ 1p L cw e w+ -  » ws from below, the GV ug first decreases 

strongly, but in a small vicinity of resonance it starts to 
sharply increase, passes through infinity and changes its sign, 
which corresponds to a bend of the dispersion curve. A nega-
tive GV does not mean that the plasmon is backward. At a 
bend point ug = ¥, but the energy velocity ue < c. The losses 
are maximal at this point, with kx'  » kx''. Such a bend may also 
occur for other branches.

The presence of a bend does not mean a change in the 
sign of ue, since the Poynting vector S and the energy density 
are continuous in a vicinity of this point. Fluxes of the vec-
tor S can be easily calculated in each of the regions [21, 28]. 
The total flux is defined as their sum. In this case, the DE 
solution kx should be used in the calculation results. The 
flux sign in a metal film is determined by the values of e and 
kx. Indeed, for the E-SPP we have 2Sx = –EzHy

* = kxZ0|Hy|2/
(k0e). The flux of power is determined by the real part of Sx, 
and its sign – by the sign of the sum kx'  e' + kx'' e''. Without 
dissipation, the flux sign changes with changing the sign of e 
or kx' , i.e., in a metal film at w < wp  / Le  the flux direction is 
opposite to that in vacuum. In the case of dissipation, the 
flux sign is negative at kx'  e' + kx'' e'' < 0. In the forward wave 
(kx'   > 0), this is possible at e' < – kx'' e''/kx'  < 0, since e'' > 0 and 
kx'' > 0. In this case, the flux in vacuum is positive and larger 
in absolute value. In the BW (kx'   < 0), this is possible at e' > 
kx'' e''/|kx' | , i.e., if m' < 0. For the BW to exist, the flux in a 
plate must be opposite in direction to the flux in vacuum and 
larger in absolute value.

The authors of papers [9, 10, 32 – 34] considered the BW in 
layered structures, including the layers from homogeneous 
metamaterials with e' < 0 and m' < 0. The authors of papers 
[32 – 34] and number of other works examined a simplest 
waveguide from a metamaterial in the form of a plate. Not 
addressing the question of the possibility (or impossibility) of 
obtaining homogeneous metamaterials only described by 
negative e' and m', we should note that the DEs are the same 
for them (taking into account the change in the sign of knz in 
the layers made of a metamaterial). 

The curves for slow SPPs do not intersect the light line in 
the absence of dissipation, whereas sufficient dissipation leads 
to such an intersection in the band-gap region in Fig. 1 (fast 
polaritons) and in the region e' > 1 (slow polaritons). Fast 
polaritons commonly correspond to radiation losses (leak-
age). Both dissipation and radiation losses lead to a non-
Hamiltonian system for which the conditions of the 
Leontovich – Lighthill – Rytov theorem [23, 24, 35] are not 
satisfied, i.e., in a monochromatic wave ue ¹ ug. The decelera-
tion maxima correspond to the conditions ( )e o x ¶/ 0k =

e¶k 0l for 
complex (in general case) relations (8), which is equivalent to 
ug = ¥. Since these relations are implicit and transcendental, 
it is impossible to divide them into real and imaginary parts 
explicitly depending on frequency. Even for the explicit 
Zenneck dispersion relation (1), the condition for the maxi-
mum deceleration frequency requires a search for the root of 
a high-degree algebraic equation [2].

Let us obtain such a frequency approximately, assuming 
that tanh2q in the vicinity of resonance varies much more 
slowly than e. Finding the maximum of ke

e
x  we can replace by 

finding the maximum of the ratio (|e| + 1)/(e2 tanh2q – 1) for a 
constant value of tanh2q. As a result, we obtain

( )tanh2
s

L

p2
2 2

2

w
e e q

w
=

- - -
L

u .

From this it is clear that with a decrease in t and, correspond-
ingly, the value of tanh2q, the frequency decreases. An odd 
plasmon can be strongly decelerated only in the case of suffi-
ciently large thicknesses, when |e| » 1 and tanhq » 1; in this 
case, its branch in the region w < ws lies to the left and above: 
keex /keox > 1. For small thicknesses, it propagates at a speed 
being slightly less than the speed of light. The DE solution (8) 
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Figure 2.  (Colour online) ( 1, 3, 5 ) Forward and ( 2, 4, 6 ) backward 
plasmon – polariton branches for ( 1 – 4 ) antisymmetric electric and 
( 5, 6 ) symmetric magnetic plasmons in the layers with a thickness t = 
( 1, 2 ) 50, ( 3, 4 ) 100, and ( 5, 6 ) 10 nm at eL = 9 – 0.01i and wp = 1016 Hz, 
wc = 1013 Hz.



573Plasmons in multilayered plane-stratified structures

for a silver film is shown in Figs 3 and 4. The silver DP is 
approximated by the Drude – Lorentz model (7) with the 
parameters wp = 1.9 ´ 1016 Hz, wc = 4.5 ´ 1013 Hz, wp1 = 2.5 ´ 
1016 Hz, w1 = 2 ´ 1016 Hz, wp2 = 4 ´ 1016 Hz, w2 = 4.5 ´ 
1016 Hz, wc1 = wc2 = 5 ´ 1012 Hz, eL(0) = 22.0, m = 2.

Thus, if dissipation is taken into account, the deceleration 
is limited, and the branch of anomalous dispersion appears in 
the band gap ws < w < ws0 where GV passes through an infinite 
value and becomes negative. The above said does not mean 
the existence of the BW, since the energy in this region cannot 
propagate in the absence of losses, while the phase velocity in 
the presence of losses is directed along the direction of energy 
propagation, but is opposite to the GV. In the region w > ws, 
the branches of anomalous dispersion also appear in Figs 1 
and 2. For a certain part of these branches, the waves are 
backward, and the GV is opposite to the velocity ue.

Consider the case of small thickness, when the film is 
almost transparent, the value tanhq » q is small, and keox = 

k0 [1 + (|e|–1 + e–2)q2/2]. With the thickness decreasing to zero, 
the odd plasmon degenerates into a T-wave of free space with 
k0z = 0. For the even slow plasmon such a transition does not 
exist. If the thickness tends to zero and the value of kex is con-
stant, frequency decreases, with q ® tkp/2 and increasing e2q2. 
At a constant frequency, the deceleration increases with 
decreasing thickness, and for each thickness there is a critical 
frequency of maximum deceleration ( )tswu  < ( )s s3w w=u . Let 
us now consider the behaviour of waves at low frequencies for 
a fixed thickness. The region of the negative dielectric con-
stants is limited from below by at least several values of wc. At 
extremely low frequencies, e = – is0(we0)–1, kx » k0, whence 
q = (1 + i)t /( )c80

2
0ws e , tanhq ® q. Therefore
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i.e., both plasmons are slightly decelerated, but the even 
plasmon remains slower, with the dispersion being deter-
mined by the conductivity s0 = e0wp

2  /wc. In both cases, we 
have /k k 1( )e o

e
x 0 "  at w ® 0. In the model without dissipation 

at low frequencies e » – wp
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For small k0 the decelerations tend to unity, but an exact anal-
ysis requires the dissipation to be taken into account. In the 
right-hand parts of these expressions, we can neglect k ( )e o

e
x  in 

comparison with kp, i.e., obtain the explicit approximate rela-
tions. We also present here the DE for H-plasmons:
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A magnetic even plasmon is slow at e < 0. In the region –1 < 
e < 0, its deceleration is of the order of unity. With increasing 
|e| (with decreasing frequency), the deceleration grows pro-
portionally to k0–1 at low frequencies; however, with losses 
taken into account, it reaches a maximum in the region of 
ultralow frequencies, and then tends to unity (Fig. 2). With 
increasing thickness tanh2q ® 1, the deceleration is n ® ¥, 
which indicates that the SPP does not exist over the half-
space. Because of the absence of the longitudinal component 
of electric field, it does not interact with electron beams and is 
not excited by them. A very slow H-SPP can be excited in a 
thin plate by a low-frequency gliding TE-wave flowing at a 
very small angle, which is very difficult. The H-SPP is fast in 
the region 0 < e < 1, while the ordinary modes of a dielectric 
waveguide exist in the region e > 1 [1, 25]. In the region e < 0, 
the magnetic odd plasmon cannot be slow. It is fast leaky and 
strongly damping, which is due to the inability to compensate 
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for the radiation at an odd distribution of Ey. This plasmon 
becomes slow at e > 1.

The film field is stipulated by the polarisation current den-
sity Jp = iwe0[e(z) – 1]E. In the case of a thin film and E-wave, 
it is sufficient to take into account the component Ex and use 
formulas (2.41) from [36]. Those formulas imply that the 
slow wave field of a surface current is a surface field, while 
the field of a fast wave of current is a leaky field. In the case 
of an odd H-wave, we take the electric field E = ey E0y  ´ 

sin(kzz)exp(–ikxx) and the polarisation current Jp = iwe0 ´ 
[e(z) – 1] ey E0y sin(kzz)exp(–ikxx), where the wave vector com-
ponents satisfy the second DE in (8) (the z coordinate is 
counted here from the symmetry plane). The vector potential 
A and all the fields are determined through Jp, in particular, 
Ey = –ik0c–1Z0Ay and Hx = – ¶Ay /¶z [36]. In the region |z| > t/2 
outside the sources, we obtain
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Inside the plate we have an electric field and a magnetic field 
associated with the electric field via Maxwell’s equation. Since 

( ) ( ) ( )cos expi iH k k Z E k z k xx z y z x0 0
1

0=- -- , then, sewing Ey 
and Hx, we determine DE (8) by another method. Calculating 
now A and the fields inside the domain |z| < t/2, we obtain a 
coincidence with the above results, with the function Ay and 
its derivative with respect to z being continuous at the inter-
face. We should note that the function e(z) in (10) is constant 
inside the film; however, this method of constructing the DE 
is suitable for any dependence e(z). In this case, the term in 
square brackets in (10) changes and we also have to calculate 
the vector potential inside the layer. It is convenient to anal-
yse plasmons by means of the function tanhq, which for e > 0 
should be represented in terms of ordinary tangents, with 
reduced DEs having an infinite number of modes in the com-
plex plane kx [1]. For a complex DE, imaginary and real val-
ues of kx become complex. In the absence of dissipation, the 
number of propagating modes is determined by k0.

An important problem is the maximum possible decelera-
tion. For an even SPP, it grows with a decrease in thickness 
and, for small thicknesses, is approximately inversely propor-
tional to t. In reality, the film thickness is limited to ~2 nm, 
up to which it is technologically possible to get a continuous 
film without islets. Besides, the transport in such a film is bal-
listic, and the density of states (the number of conductivity 
modes) varies, i.e., wp changes. The frequency of collisions 
may increase due to diffuse scattering on the walls (scattering 
by phonons of localised states), which increases the losses and 
limits the deceleration. An odd SPP at small thicknesses prop-
agates virtually at the speed of light, and a noticeable decel-
eration occurs when the value a = 1 – tanh2q is small at a 
frequency slightly lower than the PR frequency: ,s s dw w w= -u  
e = –1 – de, de = 2wp

2 dw/ws
3. Let n be the maximum decelera-

tion at a frequency swu . We assume that the quantity ( , )nsq w =u  
[ /(2 )] | ( )|t c ns sw e w +u u  is large, so that [ ( )]tanh s

2 q wu  » 1 – 
[ ( )]exp4 sq w- u , whence 4 [ ( , )].exp nsa q w= - u  For the odd 

E-SPP ( )e w| | 1s de= +u  » 1. For the even E-SPP ( )e w| | 1s 2u , 

but the frequency of the maximum deceleration is different 
and has a smaller value, with the detuning dw being larger. All 
the values defined above are different for both plasmons, and 
we supply them with appropriate subscripts hereafter.

For maximum decelerations, we have the equations
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Let us present them in the form
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We should emphasise that Eqns (11) – (13) are suitable for suf-
ficiently large layer thicknesses, when ( , )n, ,e o s e oa wu  and de are 
small, the decelerations also entering the right-hand sides of 
ae,o. By neglecting ae,o in the right-hand sides of (11) and (12), 
we obtain the dependence of decelerations on resonant fre-
quencies. Equating (11) [or (12) and (13)] and substituting 
these dependences into the obtained relations, we find equa-
tions for determining the resonance frequencies, from which 
the decelerations can be determined. It is appropriate to talk 
about the maximum deceleration no if the thicknesses are 
large, when both SPPs degenerate into the Zenneck wave. For 
a SPP propagating along a metal half-space with a dielectric 
constant e e=u , it is necessary to take losses into account. In 
this case,
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In fact, the maximum deceleration n' takes place below the 
frequency
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Finding the exact value of this frequency leads to a search for 
the root of a high-degree algebraic equation [2] corresponding 
to the minimum of the expression

2n' 2 = c
a b b2 2

+ + ,

where b = e1wc /w, a = 'c b b2 2e- + , c = (e' + 1)2 + b2, and 
e1 = e – eL. However, Eqn (14) is the more accurate the smaller 
are the losses. For small losses, we have kx' » kx'' . Dissipation 
at a large, but finite t also limits the decelerations that can 
be obtained approximately by taking w = ws, i.e., by setting 
e' = –1 and q = q' + iq''. This approximation works the better, 
the larger the thickness and lesser the losses. Omitting the 
subscripts and assuming that q' >> |q'' |, we obtain

q' » xx' ''t k k k
2
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2 2 2
+ - ,  q'' » x x
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8
22

0
2

q
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We also assume that k0t > 1. Then, tanh2q » 1 – 4exp(–2q) = 
1 – a + ib. Assuming that a << 1 and |b| << 1, we have
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Similarly, for a magnetic plasmon
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( )''

cosh
i

k 2
2

0 q
e b a

+
+ -; E.	 (16)

Near PR, a transition to a branch with anomalous negative 
dispersion is possible, and therefore the choice of the root sign 
is of importance. The result also depends on the sign of b and 
on the relationship between this value and e''. If, for example, 
2e'' ± b >> a, then
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i.e., the orders of losses and decelerations are the same. Hence 
it is clear that our assumption (q' >> |q'' |) is not true. For large 
decelerations, it turns out that k02 + kx'2 – kx''2 <<  2kx'' kx'  – e'' k0

2, 
q' » |q'' |, and the sign of q'' is negative. In particular, 
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This implies thata = 4exp(–2q' )cos(2q'' ), b = 4exp(–2q' ) ´ 
sin(2q'' ), and these values are exponentially small. In the case 
under consideration, virtually always 2e'' ± b > a, and rela-
tions (17) are valid.

For expression (16), we obtain kex'' h/ kex' h » – tanq'', which 
indicates that for small q'' the plasmon is forward, and for 
large – backward, depending on the thickness t. Assuming 
kx' t = p, kx''  » kx'  >> k0, we have k0z

 » (1 + i)kx' , i.e., the gliding 
angle is approximately equal to p/4. If kx = k0(1 + dkx' – idkx'' ) 
for small dkx' and dkx'' , then k0z

 » x x2 2'' 'ik k k0 d d- , which 
corresponds to n' » 1 and small losses. If dkx' > 0 (the wave is 
slow), then the phase of the complex wave number k0z is 
greater than p/4, and if dkx' < 0 (the wave is fast), then this 
phase is smaller than p/4. Therefore, both waves glide at a 
small angle, but for fast waves and the same |dkx' | and dkx'' this 
angle is larger. This is an approximation, since these values 
themselves are determined by the gliding angle.

We should emphasise that for different plasmons the val-
ues kx, q, a and b in formulas (7) – (18) are different, and k0 in 
all ratios is equal to /cswu  (for large thicknesses k0 = ws /c). 
Therefore,

( )
( ) ( / )

( ) /
''

1 1

1 /

s
L c p

L c p
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3 2

e w
e w w

e w w
=

+ +

+
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L c
3 2

w
e w+ .

For copper, we assume that wp = 2.7 ´ 1016 Hz,  wc = 1.09 ´ 
1014 Hz, eL » 25, e''(ws) » 0.5. For silver, wp = 1.9 ´ 1016 Hz, 
wc = 4.9 ´ 1013 Hz, eL » 22, e''(ws) » 0.25. For gold, wp = 1.43 
´ 1016 Hz, wc = 3.98 ´ 1013 Hz; however, the Drude – Lorentz 
formula with a constant term eL in the ws region gives a large 

error [37] due to rather strong interband transitions. Their 
main negative effect is an increase in e''(ws), where ws also 
changes. The above relations for maximum decelerations can 
only be used at small e''(ws).

The order of maximum deceleration for an even E-SPP 
can be determined from the condition min|e2 tanh2q – 1|. In 
the case of sufficiently thin films and small dissipation, we 
obtain n' » ( l/t)/( | | 1 | |' 'p e e+ ). The value of the dielectric 
constant e = – 8.6 – 0.6i near the resonance for a film with t = 
2 nm corresponds to n' » 3.76. Our calculation gives n' » 5.1 
(Fig. 3). In work [27], an assumption was put forward as to 
the existence of an optical SPP with a wavelength of l = 50 nm 
in a 2-nm-thick silver film. Apparently, at room temperature 
this deceleration is too overestimated (approximately, two-
fold) even when using the frequency wc for a bulk material. To 
obtain a very slow SPP, low cryogenic temperatures are 
needed. For this purpose, it seems reasonable to use semimet-
als in the IR and THz regions, a monolayer or a bilayer of 
graphene, or well-conducting semiconductor materials with 
plasma frequencies in the THz region. For example, for doped 
InSb,eL = 17.8, wp = 1012 Hz, and wc » 1010 Hz at T = 77 K 
[38]. For an undoped sample, according to [38], at T = 300 K, 
the electron density Ne = 2 ´ 1017 cm–3; therefore, during dop-
ing, the plasma frequency can be varied within wide limits.

The shift of swu  towards the THz region is an important 
task of THz electronics, connected with the design of devices 
based on the interaction of electron currents with slow SPPs 
[39]. For this purpose, it is advisable to use thin films with 
large eL, layered structures with thin metal films and dielectric 
layers, and also thin films with graphene sheets. Since at fre-
quencies much lower than ws, the equality e''/|e' | = wc /w is 
valid, it is necessary to reduce the collision frequency. One of 
the ways to reduce losses is the use of active layers and films 
obtained by optical pumping, for example, graphene ones. 
The surface conductivity of graphene represents a weakly 
expressed tensor quantity. The formulas for its description 
were obtained by the Kubo – Greenwood method and the 
method of non-equilibrium Green functions in an approxi-
mate scalar form [40], and also in the tensor form, for exam-
ple, in the Bhatnagar – Gross – Krook approximation [41].

A conductive (thin compared to the wavelength) film and 
the radiation penetration depth can be described by the sur-
face conductivity ss = st, where s is the volume conductivity. 
If the mean free path l0 >> t, then the quantum ballistic trans-
port should be considered. In the substances like graphene, 
we can only use ss. The film serves as a shunt with a nor-
malised conductivity z = ssZ0 and is described by the transfer 
matrix

a
1 0
1s z

=t e o.	 (19)

This matrix can be considered as two parallel-connected con-
ductivities z/2 corresponding to the two film sides. We can obtain 
the DE for a film in vacuum by equating the impedances: 

( / )k k 1 2e
x 0

2z= -  for E-waves and ( / )k k 1 2h
x 0

2z= -  for 
H-waves. Obviously, they correspond in form to expression 
(6). In this case, the waves can be only gliding. If y is the con-
ductivity of the right half-space, then the input conductivity 
to the left of the film is ss – y. Due to the gliding of the waves, 
the sign of the conductivity is changed. The matching condi-
tion has the form ss – y, from which the DE follow.

Obviously, these DEs can be obtained by the mode-
matching method, taking into account the jump in the mag-
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netic field’s tangential component on the film surface (sheet 
with current). In the general case, for an arbitrary number of 
layers, one can find the DE using the complete layer transfer 
matrix. The gliding – leakage conditions are equivalent to the 
boundary conditions for this matrix and can be written in the 
form of a two-terminal network for its left and right termi-
nals. The sign of the input impedance for a two-terminal net-
work determines the gliding or leakage of the waves. As a 
result, we obtain a homogeneous system of two equations 
with two unknowns, the equality to zero of the determinant 
of which gives the DE. By loading the matrix on the right 
terminals with a corresponding two-terminal network, i.e. 
by imposing the boundary conditions, we obtain the input 
impedance at its left terminals corresponding to the left 
boundary of the structure.

If the structure is long and dissipative, it may happen that 
this impedance does not depend on the load on another sur-
face. Consequently, the SPPs on both surfaces are not con-
nected, and they can be considered independently. This serves 
as substantiation for the impedance transformation method: 
in each of the layers, only the incident (gliding) wave is con-
sidered, i.e. reflection from the right boundary of the struc-
ture is neglected. In the case of a large number of dissipative 
layers (for example, quasi-periodic layers), it is possible to 
specify the input impedance in any cross section (in particu-
lar, by setting it equal to zero) and recalculate it to the plane 
z = 0 [16]. Periodic and quasi-periodic structures have been 
also investigated in [12, 13]. In accordance with the 
Floquet – Bloch conditions, the input impedance for forward 
and counterpropagating Bloch waves in an infinite periodic 
structure is also periodic, which can be used to measure vol-
ume waves [16].

It follows from (6) that SPPs are decelerated when the 
conductivity is mainly reactive (dissipation is small); for 
E-waves it should be small in absolute value, and for H-waves 
– large. A metal film with a thickness of a few or tens of nano-
metres can be described by a surface conductivity propor-
tional to the thickness: ss = st. The conductivity of graphene 
on a metal substrate increases [42], which reduces the E-SPP 
deceleration and increases the H-SPP deceleration. To obtain 
a strongly decelerated H-SPP, of interest is a structure in the 
form of a metal layer overlaid with graphene sheets. From the 
viewpoint of obtaining a strongly decelerated E-SPP, of cer-
tain interest is a structure having a form of a dielectric layer, 
for example SiO2, overlaid with graphene sheets. For an even 
SPP (magnetic wall in the middle), we have y0 + z = 
– ytan(kzt/2). For an odd SPP (electric wall), y = –i(y0 + z) ´ 
tan(kzt/2). Here y0 = 1/r0, y = 1/r. For a graphene bilayer, r = 
r0, with z corresponding to half the conductivity. For even 
and odd E- and H-waves, we have
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h
e
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x 0
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Comparing these expressions with the above results, we can 
see that a thin metal film plays the role of an additional induc-
tive conductivity, if quantities (21) and (22) are understood as 
effective conductivities.

In plasmonics, e = –|e'| – ie''. The generation of very slow 
even E-SPPs is related to the necessity of having a conductiv-
ity zee = ze'  e + i ze' ' e satisfying the condition 0 £  ze'  e << |ze' ' e | << 
1, i.e., small in absolute value and with the real part substan-
tially smaller than the imaginary one. The real part is deter-
mined by dissipation, which should be small. The dynamic 
(high-frequency) conductivity of graphene is well described 
by the Drude model [40]:

( )
1 /

( )
i
0

c
z w

w w
z

=
+

,	 (23)

i.e., is inductive like the conductivity of a metal film, and 
therefore the deceleration decreases. The effect is the same as 
from increasing the thickness (and effective conductivity) of a 
metal film.

It is desirable to obtain a film with a capacitive conductiv-
ity so that it would partially compensate for the effective 
inductive conductivity –itk0|e'|tanhq/(2q) of the metal film, 
thereby increasing the deceleration. This can be implemented 
by forming a structure of a thin dielectric layer on a metal. It 
is also possible to adjust the impedance by forming a two-
dimensional periodic or one-dimensional periodic structure 
on the dielectric layer, for example, from graphene nano-rib-
bons of finite length or from metal elements. For a certain 
period and wavelength ratios, the introduced conductivity 
can be either capacitive or inductive. The capacitive conduc-
tivity is introduced by the thin dielectric layer itself.

For the E-SPP, the effective conductivity of a thin metal 
film is much larger, which explains the greater deceleration at 
small thicknesses. However, it is technologically virtually 
impossible to obtain a film thickness substantially less than 
2 nm, and, in addition, its parameters are not described by the 
parameters of a bulk material. In this case, a bilayer of gra-
phene is of interest, for which t = 3.1 Å. For the even H-SPP, 
the conductivity should be large in absolute value, i.e., it is 
necessary to increase its inductive reactive part, which can be 
also provided by a bilayer of graphene supported on the two 
sides of a metal film. These structures can be modelled either 
as a single effective conductivity, or on the basis of exact DEs 
(20) – (22).

Let us present the DE for a symmetric structure from a 
layer of thickness t1 with a dielectric constant e1, on both sur-
faces of which two layers of thickness t2 with a dielectric con-
stant e2 are laid, bordering two half-spaces with a dielectric 
constant e3. We denote the wave impedances in media by r1, 
r2, and r3. The normalised input resistance at the interface 
between the media 1 and 2 for a symmetric SPP (magnetic 
wall at the centre) is rs12 = –i r1/tan(k1zt1/2), and for an anti-
symmetric (electric wall at the centre) ra12 = –i r1tan(k1zt1/2). 
At the interface between media 2 and 3, the normalised input 
impedances are

( )
( )

tan
tan

i
i

k t
k t,

,

,
s a

s a

s a

z

z
23 2

2 12 2 2

12 2 2 2r r
r r
r r

=
+

+ .

Thus, the DEs have the form r3 = r
s
2 3 and r3 = r

a
2 3. Each of 

them defines two waves, electric and magnetic, depending on 
the types of the impedances used.
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3. BP in a thick plane-stratified structure

Let us obtain the conditions for the BP existence at the vac-
uum – absorbing structure interface under the assumption 
that the second boundary is removed, representing the nor-
malised input impedance in the form r = r' + i r''. For simplic-
ity, we omit the subscripts and assume that the real part is 
small and positive because of the dissipation: 0 < r' < 1. The 
E-SPP is decelerated for r' < | r'' | and becomes very slow for 
| r'' | >> 1. For r'' > 0, the impedance is inductive, while for 
r'' < 0 – capacitive. For the E-SPP, the condition for energy 
motion along the x axis is

0' '' ' ''Im i1 22 2 1r r r r- + - .

For the inductive surface impedance, in both cases (1 – r' 2 + 
r'' 2 < 0 and 1 – r' 2 + r'' 2 > 0) kx'  > 0, i.e., the wave is forward. 
For capacitive impedance, always kx'   < 0, i.e., the wave is 
backward. For the H-wave, the condition 

( ) 0' ''Im i1 2 1r r- + -  

is satisfied, from which it follows that for the inductive imped-
ance the wave is backward, while for the capacitive imped-
ance – forward.

The BP appears at the deceleration 1 'n 2r= - , that is, 
when the wave is fast. If the E-wave impedance re is inductive, 
it impossible to change it to capacitive by addition of a thin 
homogeneous metal, graphene, or other inductive film: the 
inductive part will only increase. However, this is possible for 
a transparent layer, when its thickness is comparable to the 
radiation wavelength in the layer. Thus, if a quarter-wave 
layer of a nonabsorbing material is applied to the inductive 
surface, then the impedance becomes capacitive. The BP in 
thin metallic films (with a thickness much smaller than the 
wavelength and with small dissipation) may appear at the 
boundary with a dielectric layer, which occurs at wc << w < 
wp / Le e+ u  [16]. In the case of thick inductive films with a 
normal skin effect, r' = r'' << 1 (which is valid at low frequen-
cies), and the deceleration is equal to 1 + r' 4/2. A slow wave 
turns into a fast wave when kx' e(h) = k0, whence we obtain the 
condition ( r'/r'' )2 = r' 2  + 1. In terms of e' and e'' this condi-
tion was obtained in [2] for arbitrary ratios between r' and r''. 
In particular, the ZSW over a homogeneous land or sea is 
always fast, since r' > r''. An electrically thin layer of ice, 
whose wave impedance is much larger than the sea imped-
ance, introduces the capacitive impedance, leaving its real 
part almost unchanged, so that the ZSW may become slow. It 
should be noted that in both cases the deceleration is very 
close to unity.

Let us consider the conditions for transition from a for-
ward wave to a backward wave for a film in vacuum (Fig. 5). 
To this end, we represent the transverse component in the 
form

x x xx2'' ' ' ''ik k k k k kz0
2 2 2

= + - +0 .

For a backward wave (kx'  kx'' > 0), both gliding and leakage 
are possible. The gliding wave can be either fast (k0

2 + kx'' 2 – 
kx' 2 > 0) or slow (k0

2 + kx'' 2 – kx' 2 < 0). In both cases, the phase 
j of the component k0z lies in the first quadrant and k0z = 
±|k0z|exp(ij). Since in vacuum we have exp(–ik0zz), the sign 
‘+’ corresponds to the leakage, while the sign ‘–’ – to the glid-
ing. In this case, the gliding is accompanied by its exponential 

damping when moving away from the surface (surface wave), 
while the leakage is accompanied by its increase (the wave is 
anti-surface).

Beam interpretation of growing for the leaky wave is 
given in [1, 12], while the process of damping for the gliding 
wave is described in [2]. In Fig. 5, this interpretation is illus-
trated for forward and backward waves. The paths of phase 
beams are shown schematically. The direction of phase 
motion is assumed positive, the direction of the Poynting vec-
tor S is shown by a thick arrow – solid for the forward wave 
and dashed for the BW. For the forward wave (gliding and 
leaky), the energy moves along the phase beam, and for the 
BW – in the opposite direction. Because of dissipation, the 
amplitude of the forward surface leaky wave at point 1' is 
greater than that at point 2'. Accordingly, at point 1 it is larger 
than at point 2, i.e., we have a surface wave. On the contrary, 
for the leaky wave the amplitude at point 1'' is greater than 
that at point 2'', i.e., we have an anti-surface wave. In the case 
of a leaky BW, the phase flows out, while the energy flows in, 
i.e., the wave represents a surface wave. For the gliding BW, 
the phase flows in, and the energy flows out, i.e., the wave 
represents an anti-surface wave. We should note that the BW 
in a dissipative plate behaves like a forward wave in the active 
plate (with negative losses).

For a backward wave (kx' kx'' < 0) the gliding and leakage 
are also possible. Both for fast and slow waves, the phase is in 
the third quadrant, and therefore the leaky wave is a surface 
and damping wave, while the gliding wave is an anti-surface 
and growing wave. For the transition point, we have the con-
dition kx'' = 0, and the transition corresponds to a change in 
the sign. This is possible when the wave speed reaches (from 
below or from above) the speed of light, and also for slow and 
fast waves. In the first case the gliding is absent, and the entire 
energy moves in vacuum. The transition corresponds to a 
change from gliding to leakage, but there is no transition 
from a slow wave to a fast wave. In the second case, the wave 
is slow, while in the third case it is always fast, and the transi-
tion also corresponds to a change from gliding to leakage. A 
number of cases is illustrates in Fig. 2. 
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Figure 5.  Gliding (continuous beams) and leaky (dashed beams) waves 
in a magneto-dielectric plate.
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Analysis for a structure bordering two different half-
spaces is more complicated. If vacuum is located above 
the structure while a medium with a dielectric constant eu  is 
located from below, we should also examine the quantity 

x x xx2'' ' ' ''ik k k k k kz 0
2 2 2e= + - +u u . For simplicity, we assume 

that eu  > 1. A gliding wave that flows into the structure from 
vacuum is possible if there are sources at infinity in vacuum. 
Here, the case kx = k0 impossible, but for a slow wave, the 
transition from a fast wave in the medium (kx

2 < k 2e0 u ) to a 
slow wave (kx

2 > k 2e0 u ) with a change in the sign of kx' kx''  and 
a change from gliding to leakage is real. There are also two 
other scenarios when a wave remains either slow or fast. 
The transition from gliding to leakage occurs in both half-
spaces.

The results of calculations for a metal film overlaid by two 
dielectric films, and also for a dielectric film overlaid by two 
metal films demonstrate the possibility of reversing the for-
ward wave as the frequency changes. At 0 < r' < 1 such a 
change occurs for a slow wave; however, it is possible to 
obtain waves with a larger deceleration at frequencies much 
larger and smaller than the change frequency. All these argu-
ments can be applied to H-waves with replacing impedances 
by admittances, but the H-SPPs are not of interest in terms of 
their interaction with electron fluxes.

For travelling-wave THz amplifiers with ribbon electron 
beams, forward E-SPPs with decelerations of the order of 
2 – 4 [39] and waveguide structures with a vacuum channel 
and vacuum – metal or vacuum – metallic film – dielectric 
interfaces are of interest. In the BW lamps the backward plas-
mon should have regions with anomalous negative disper-
sion; therefore, the regions of resonances and heavy losses 
should be excluded. If the condition r' > 2 is fulfilled, the wave 
type changes at a slow wave, which is typical for even E-SPP 
in a thin film. The input impedances and conductivities 
depend on kx, and relations (6) are implicit. When the matter 
in hand is the change in the impedance sign, we need to under-
stand what is happening for kx satisfying the DE.

4. Waves in asymmetric structures with multiple 
dielectric layers

To calculate the fields in any layer, it is sufficient to specify 
one of the amplitudes in (3), for example, HN + 1 y for the 
E-wave. The transfer matrix method makes it possible to 
determine all the amplitudes and, thus, the field distributions. 
In this case, it is necessary to additionally determine N matri-
ces for each layer, which relate the amplitudes in it with 
HN + 1 y. The simplest dielectric structure has two surfaces sep-
arating the layer with a dielectric constant e from the half-
spaces with the dielectric constants e1 and eu  for z > 0 and for 
z < –t. This structure is asymmetric; therefore, the wave that 
leaks into the layer has two different gliding angles. The glid-
ing can give way to leakage. If e1 < eu , then the gliding into the 
layers from the first medium may occur together with the 
leakage from the layer to the half-space with eu. The data in 
Fig. 5 quite simply explain the surface character of the gliding 
wave, and also the anti-surface character of the leaky wave [1, 
2]. The DE for four regions is given in [10], and for three 
regions it has the form [21]
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Here we have

k k kz x0
2 2e= -u u ; k k kz x0

2 2e= - ; k k kz x1 0
2
1

2e= - .

For slow SPP, it is convenient to set in (24)

ik k kz x
2

0
2e=- - .

In the case of searching for SPPs at the boundary with vac-
uum, it is better to use the DE obtained from formula (5). 
Thus,
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Here we again have changed the sign of ,e hru , since the gliding 
implies the wave propagation from the lower half-space to the 
plate. If vacuum is below, then , ,e h e hr r=u , and all four of the 
above DEs follow from (25). If the SPPs are searched on 
another surface, the impedances should be interchanged. 

In the case of a finite multilayer structure in vacuum, the 
use of relations (6) for iterative finding of both branches with 
allowance for diffraction is inconvenient. Therefore, it is bet-
ter to perform matrix recalculation from top to bottom and 
from bottom to top in order to obtain two types of relations, 
which also applies to impedance transformation (5). We 
denote by r!

in  the impedances been transformed top-down 
and bottom-up .These relations must now be substituted into 
(6). If vacuum is from above and a substrate from below, then 
we have a DE for iterative determination of the E-wave for 
the second branch localised near the substrate:

ek k ( )
inx 0

2 1 2
e e r= -u û h .

Now consider relations (3). If there is vacuum on both sides of 
the structure, then
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Equations (26) are suitable for determining four branches of 
the solutions for both types of waves. It is necessary to con-
trol k0z''  to obtain either gliding (k0z''  > 0) or leakage (k0z''  < 0). 

Of interest is the case of plasmons propagating along the 
boundary of multilayer quasi-periodic plane-stratified struc-
tures and along the layers of infinite periodic structures. Such 
structures may represent hyperbolic metamaterials with effec-
tive dielectric constants, the real parts of which satisfy the 
condition e'xxe'zz < 0 [16, 43]. The method described above 
makes it possible to obtain a DE for plasmons on a surface 
and inside an infinite periodic structure [12, 16]. In the latter 
case, the Floquet – Bloch DE should be supplemented by the 
periodicity condition for the input impedance, which allows 
two complex components kx and kz to be determined for a 
wave in an anisotropic uniaxial photonic crystal.

5. Conclusions

We have considered SPPs at the interface of the multilayer 
plane-stratified structures with dissipative metal or dielectric 
layers, and also in the presence of infinitely thin films with a 
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predetermined surface conductivity at these interfaces. Waves 
(polaritons) are classified as gliding and leaky, surface and 
anti-surface, fast and slow, forward and backward. The glid-
ing/leaky waves are classified in accordance with the sign of 
the real part k'0z of the wave vector’s normal component in 
vacuum, which determines a flux of power from vacuum 
into the structure. The surface/anti-surface waves are classi-
fied in accordance with the sign of the imaginary part k0'' of 
the wave vector’s normal component in vacuum, which 
determines the exponential damping/growing of a wave from 
the surface. In particular, the leaky wave is the anti-surface 
wave and has a complex wave number k0z. The wave is fast if 
k'x /k0 < 1, and slow if k'x/k0 > 1. Both slow and fast waves can 
be surface waves. A leaky wave is fast with respect to the 
medium into which it flows (i.e., into which its energy flows). 
A wave is classified as a backward one if its propagation con-
stant kx satisfies the condition kx' kx'' < 0, and as a forward one 
if kx' kx'' > 0. Choosing the direction of phase motion as the 
positive direction of the x axis, we obtain another definition 
of the backward wave: kx' ex ReS < 0. This definition is more 
general, since it is suitable for structures without dissipation, 
and is more convenient for very small losses, when the sign of 
kx' kx'' is difficult to control.

The commonly used GV is unsuitable for BW classifica-
tion in the case of dissipative structures. It can take any value, 
including infinite, whereas its negative value, in general, does 
not define the BP that may correspond to the branches with 
anomalous negative and normal dispersions, similarly to for-
ward plasmons. The DEs are given for any possible configu-
rations of structures and types of waves in them. The results 
of this work are confirmed by the results of the numerical 
solution of DEs for the simplest structures; the discrepancy of 
dispersion equations was controlled and did not exceed 10–8.
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