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Abstract.  The dynamics of wave packets in an active fibre with 
saturable inertial nonlinearity of logarithmic type is considered. 
The possibility of forming spatially localised Gaussian wave packets 
(TEM00 mode) with a large (significantly exceeding 100 mm2) mode 
area and a large (above 1 TW) peak power in such structures is 
shown.

Keywords: active fibre, saturable logarithmic nonlinearity, three-
dimensional soliton-like pulse, single-mode wave packet with giant 
peak power.

1. Introduction

Significant interest in active fibres with a large effective mode 
area, relatively small nonlinear parameters and a high dam-
age threshold is determined by the possibility of forming pulses 
with a large peak power (more than 1 MW), which makes 
them suitable for a number of practical applications [1 – 7]. In 
this case, a standard single-mode fibre, on the contrary, has a 
sufficiently small effective mode area, not exceeding 100 mm2. 
Generation of an effective single-mode signal (for example, a 
Gaussian TEM00 mode) at the fibre output will obviously 
require a larger core area of the fibre, while for further effec-
tive compression (temporal and spatial focusing) of the beam, 
such a fibre should be as single-mode as possible.

In this paper we consider the dynamics of spatially localised 
wave packets in a medium with inertial saturable nonlinearity 
of logarithmic type. Media with a nonlinearity of this type 
have been previously considered in [8 – 14]. It is shown that the 
model of saturable logarithmic nonlinearity more accurately 
describes the dynamics of high-power pulses propagating 
in doped optical fibres than the classical two-level model of 
saturable nonlinearity.

A mechanism is proposed for generating single-mode 
Gaussian wave packets (pulses) with a mode area substan-
tially exceeding 100 mm2 and an energy exceeding 1 mJ in such 
fibres. Generation of wave packets with corresponding param-
eters makes it possible to further compress them by standard 
methods to wavelength scales (diameter ~1 mm) and intensi-
ties I >> 1016 W cm–2. As a result, the implementation of laser 

facilities with such characteristics can contribute to solving a 
number of important technological problems, including the 
development of laser accelerators of charged particles and 
systems for controlled nuclear and thermonuclear fusion 
[3 – 8].

The most promising from this point of view is the use of 
optical disk amplifiers (with a transverse size much greater 
than that of single-mode fibres) based on semiconductors 
[15 – 19] or glasses heavily doped with rare-earth elements 
(Fig. 1). In this case, use can be made of a short (less than 1 m) 
large-diameter optical fibre (quartz disk) heavily doped with 
erbium, neodymium or ytterbium, which, if properly manu-
factured and appropriately pumped, can have a nonlinearity 
coefficient 5 ́  105 times larger than that of a conventional 
fibre [20]. For semiconductor amplifiers, it is possible to use 
current pumping and to obtain giant values of the gain incre-
ment, much larger than 10  cm–1. An important additional 
advantage of short (much less than 1 m long) high-power disk 
amplifiers can be the possibility of their effective cooling.

Another method for forming such high-energy Gaussian 
pulses (in the single-mode regime – TEM00 mode) with a large 
mode area can be heavily doped (as a rule, with ytterbium 
ions) tapered fibres (see, for example, Refs [21 – 26]) with 
an  increasing diameter and a large concentration of active 
centres.

Note that the considered effects described by the logarith-
mic saturation nonlinearity model can probably be observed 
in standard optical fibres, if they are heavily doped, and the 
peak intensity of the propagating pulse is I0 >> 1011 W cm–2. 
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Figure 1.  (a) ‘Focusing’ parabolic fibre with a refractive index 
n (x, y, z, t) = n0(1 – |mx|x2/x0

2 – |my|y2/y0
2 ) + Dn(I ) decreasing away 

from the centre and (b) ‘defocusing’ parabolic fibre with a refractive 
index n (x, y, z, t) = n0 (1 + |mx|x2/x0

2 + |my|y2/y0
2 ) + Dn(I ) increasing 

away from the centre.
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They can be germanium-doped optical fibres, or phosphate 
glass core fibres [27 – 31]. Obviously, when considering the 
dynamics of high-intensity pulses (with I0 > 1011 W cm–2) in 
heavily doped laser media, a question inevitably arises about 
the need to take into account saturation of nonlinearity and 
inertia of the nonlinear response [32 – 35].

In this paper, we demonstrate the possibility of generating 
a single-mode Gaussian pulse with an extremely high peak 
power (more than 1 TW) and a large mode area (i.e., a three-
dimensional soliton with a large mode area and energy). Such 
a pulse can subsequently be easily compressed by classical tech-
niques (using lenses and diffraction gratings) to peak intensi-
ties I0 >> 1016 W cm–2.

2. Basic equations for describing the dynamics 
of a wave packet in a medium with saturable 
nonlinearity of logarithmic type

Let us consider the dynamics of a wave packet propagating 
in  a nonlinear medium with a parabolic distribution of the 
refractive index over the optical fibre cross-section. In this case, 
it can be described by the equation
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where A is the slowly varying amplitude of the wave packet; 
k0 = w0/c; dn is the disturbance of the refractive index of the 
optical fibre; g(z) is the gain increment of the fibre, which we 
assume to be dependent only on the longitudinal coordinate 
z; t = t – ò0

z
dz/ug(z) is the time in the ‘running’ coordinate sys-

tem; ug = (¶b/¶w)–1w = w0 is the group velocity; b is the propaga-
tion constant of the wave packet; Dt = (¶2b/¶w2)w = w0 is the 
dispersion of group velocities; Dx ~= Dy ~= 1/(n0k0) = 1/b0 are 
the corresponding diffraction parameters (assumed to be 
approximately equal, which is valid in the case of weak bire-
fringence at the fibre axis); n0 is the refractive index of the 
fibre core; and b0 » n0k0.

In this case, for the ‘disturbed’ refractive index of the fibre 
with allowance for saturable nonlinearity (which we assume 
to be homogeneous over the optical fibre cross section) and the 
parabolic distribution of the linear component of the refrac-
tive index, we can write
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where mx,y are the modulation coefficients in the correspond-
ing directions (below we assume that |mx,y| << 1); and x0 and 
y0 are the effective transverse sizes of the fibre. In this case, we 
consider that intense radiation leads to a change in the refrac-
tive index, which can be estimated as n (x = 0, y = 0, z) = n0 + 

Sci Dni(I), where ci is a function depending on the concentra-
tion of the corresponding ith component of the medium (a 
parameter varying from 0 to 1).

In this case, it is considered that each individual compo-
nent makes its contribution Dni (I) to the change in the refrac-
tive index. At c = 1, the material (an undoped silica fibre, a 
liquid or a semiconductor of certain type, etc.) is assumed to 
be completely homogeneous.

It should be noted that in media with large cubic (Kerr) 
nonlinearity, the response time is almost always large enough 
and increases almost linearly with increasing Kerr nonlinear-
ity [32 – 35]. Taking into account the response time (inertia) 
and saturation of nonlinearity for each ith component of the 
medium, we can write the relation:
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where tnl, i is the time of the nonlinear response of the ith com-
ponent of a medium; ni

(2) is a parameter characterising the 
cubic (Kerr) nonlinearity of the ith component; In, i is the satu-
ration intensity for the ith component; and I = |A(z, t)|2 is the 
radiation intensity. Thus, in this paper we consider a fibre 
with saturable nonlinearity of logarithmic type. Models describ-
ing the dynamics of radiation in such media are presented in 
[9 – 14, 32, 33].

It seems to us that the logarithmic saturation nonlinearity 
given by equation (3a) more accurately describes the dynam-
ics of a high-power wave packet than the saturation nonlin-
earity given by the expression [32 – 34]:
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In contrast to (3a), expression (3b) does not virtually take 
into account the modulation (time dependence) of the refrac-
tive index in the approximation of high powers of the radia-
tion propagating in the fibre, i.e. at I /In, i >> 1.

Thus, it is well known that in a rough quasi-monochro-
matic approximation [32 – 34] (i.e., neglecting the effect of dis-
persion and nonlinear effects of higher orders) for the classical 
Kerr nonlinearity of form RI, where I = |A|2 = I0 exp (–t2/tp2 ), 
and R is the coefficient of the cubic (Kerr) nonlinearity [32, 33], 
the truncated equation describing the dynamics of the ampli-
tude A can be written in the form

A
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whence

A » A0 exp(–iR|A|2z) » A0 exp{–iRI0 [1 – (t2/tp2 )]z}.	 (5)

In this case, in the quasi-monochromatic approximation 
for a chirp (i.e., the rate of frequency modulation) of the wave 
packet, we can write down the approximate relation [33, 34]

¶2j/¶t2 » 2RI0 z/tp2.

The most common model, taking into account saturation 
of nonlinearity, corresponds to a two-level atomic system, for 
which the nonlinearity parameter can be written as RI /(1 + I /In) 
[32, 34]. In this case, the truncated equation (4) takes the form
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Thus, as above, in the rough quasi-monochromatic approxi-
mation
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	 (at t2 << tp2 and I0 >> In).

Consequently, for the maximum of the pulse at t << tp, 
the chirp value (the rate of frequency modulation, or the linear 
component of the rate of change in the carrier frequency) can 
be estimated as ¶2j/(¶t2)t ® 0 ® 0.

Obviously, for high-power beams propagating in a medium 
with inertial saturable nonlinearity, this approximation is not 
completely correct. It is difficult to imagine a nonlinear medium 
during the propagation of which the linear component of the 
rate of frequency modulation (chirp) disappears in a high-
power laser pulse. In fact, a sufficiently long pulse in such a 
medium should become practically transform limited. Con
sequently, in our case of generation (formation) of a high-
energy pulse, such a model does not take into account the 
most important factor – nonlinear phase modulation – and, 
therefore, is not completely correct.

Consider now a model that takes into account saturable 
nonlinearity of logarithmic type, RInln(1 + I /In). For this case, 
valid is the quasi-monochromatic approximation of form
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Thus, we can write for the amplitude
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	 (at I0 >> In and t << tp).

From (9) we obtain the expression for the chirp of the carrier 
frequency: ¶2j/(¶t2)t ® 0 ® 2RIn z/tp2. It is obvious that for 
I0 >> In the chirp grows much more slowly than in the case of 
the standard Kerr nonlinearity; however, it does not tend to 
zero, as in the case of the classical saturating model.

Note that for I /In << 1 and tnl ® 0, both types of saturable 
nonlinearity (two-level and logarithmic) reduce to the well-
known classical nonlinearity of Kerr type [32 – 35].

The situation is usually realised when dopants with large 
and ‘slow’ nonlinearity (for example, dopants based on semi-
conductors or rare-earth elements) are introduced into the 
matrix with small and ‘fast’ Kerr nonlinearity (for example, in 
quartz glass). In this case, as a rule, ni

(2)(I) >> nl
(2)(I) and In,i << In,l  

(subscripts l determine the parameters of the fibre matrix). In 
addition, it is well known that usually the nonlinearity depends 
strongly on the response time of the nonlinear medium, such 
that tnl ~ n(2) [33 – 35], which implies the condition tnl,i >> tnl,l. 
Thus, for media with large saturable nonlinearity, as a rule, 
the nonlinear response time is significantly more than several 
femtoseconds. Thus, for standard silica fibres, tnl < 10–14 s, 
but even for fibres with a high degree of doping (for example, 
with erbium and ytterbium ions), the response time tnl can 

be much larger, ~10–13 s, and for heavily doped glasses it is 
~10–11 s.

Let us consider in detail the situation with dopants based 
on semiconductors and rare-earth elements, for which tnl var-
ies in the range 10–11 – 10–13 s.

3. Formation of three-dimensional soliton-like 
pulses in a medium with saturable nonlinearity 
of logarithmic type

In the case of saturable nonlinearity of logarithmic type and 
parabolic inhomogeneity of the refractive index over the opti-
cal fibre cross section, equation (1) can be transformed to the 
form
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Below, we will consider the dynamics of transform limited 
Gaussian pulses that at the input to the medium have the 
form
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in the case when fast Kerr nonlinearity can be considered 
small in comparison with the inertial ‘slow’ nonlinearity. This 
is logical, since we will consider the possibility of generating 
three-dimensional solitons with a giant transverse size (includ-
ing considerably larger than 1 mm), when the radiation inten-
sity does not exceed 1010 W cm–2 even at peak powers much 
greater than 1 MW. In this case, for ‘slow’ nonlinearity, we 
can assume that I /In

(slow) >> 1 and, as a consequence, ln (1 + I /
In
(slow)) » ln (I /In

(slow)). On the other hand, for ‘fast’ nonlinearity 
[for example, for the cubic (Kerr) nonlinearity typical for glass 
dielectric matrices], with a good degree of accuracy we can 
assume that I /In

(fast) << 1 and, as a consequence, ln (1 + I /In
(fast)) » 

I /In
(fast).
Let us consider the case of a single dopant in the matrix, 

when only one component with inertial saturable nonlinearity 
is taken into account. It is this situation, as a rule, that is 
realised in practice. For example, it can be glass heavily doped 
with rare-earth elements (erbium, neodymium or ytterbium), 
or glass doped with semiconductors.

In this case, on the length of the formed wave packet, i.e., 
for z >> ugtnl, we can, by substituting
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pass from the nonlinear equation (8) to the linear equation for 
the amplitude A:

¶
¶

¶
¶

¶
¶

¶
¶i

z
A D

x
D

y
D A

2 x y2

2

2

2

2

2

t
+ + - t

r
e o

	 ( ( ) ( ) ( ) ) .i z x z y z Ax y
2 2 2tW W W= + + t r 	 (12)

Here, nlt t t= -r  is the nonlinear response time of the 
medium. In (12), we introduced parabolic potentials deter-
mined by the value of nonlinearity saturation and the distri-
bution of the change in the refractive index over the fibre 
cross section:
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For simplicity, but not limiting the generality of the prob-
lem in question, we assume that the parameters Dx, Dy, Dt are 
independent of z. The corresponding problem, taking into 
account the initial conditions, has localised soliton-like solu-
tions:
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In this case, equation (12) splits into three independent 
(autonomous) equations [36]:
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The system of equations (14), as is well known, describing 
the oscillations of a harmonic oscillator, has spatially localised 
soliton-like solutions:

z
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Here, lj = hj / /D2 j j! W ; and  hj is a nonnegative integer.
At Wx,y /Dx,y > 0 (for transverse components) or Wt /Dt < 0 

(for the longitudinal time component), the system of equa-
tions (14) has soliton-like solutions in the form of known 
functions of a harmonic oscillator. In addition, the function 
U ( )
n
j  will have the form [37, 38]
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where jj ( )H ( )
n  is a Chebyshev – Hermite polynomial of order 

n, defined by the relation [37, 38]
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j/j D2j j
2 2 !x W= ; for j = x, y the sign ‘+’ is true, and for j = t 
– the sign ‘–’.

The functions that are solutions of equations (14) will be 
continuous and finite for hj = 2n + 1 (n = 0, 1, 2, 3, ...).

If a Gaussian pulse is launched into the fibre (TEM00 
mode), then the simplest zero-order polynomial (n = 0, lx,y = 

/D 2, ,x y x yW  и lt = /D 2W- t t ) corresponds to the solution 
describing the dynamics of the wave packet. In this case, it 
becomes possible to form a soliton-like (spatially localised) 
pulse with a duration and a transverse size determined by the 
relations
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Because we can assume that for a radially symmetric fibre 
Dx ~ Dy ~ 1/b0, expression (18b) in this case is reduced to the 
form
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for mj > 0 and to the form
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for mj < 0.
Note that a stable soliton-like pulse can be formed only if 

the condition tnl £ ts is satisfied. Taking into account the fact 
that in the cases of optical fibres with large saturable nonlin-
earity we have tnl ³ 10–13 s, the duration of the localised wave 
packet must satisfy the inequality ts > tnl > 10–13 s.

It is interesting that for mj < 0 (i.e., when a defocusing lens 
compensated for by nonlinear focusing arises in a fibre), the 
parameters Wx, Wy, which determine the effective mode area, 
can take practically any values that are arbitrarily close to 
zero. As a consequence, the conditions for generating a two-
dimensional (over the cross section) soliton with a transverse 
size Dx, Dy >> 1 mm can be easily realised.

In the approximation of large-diameter beams for a defo-
cusing fibre (mj < 0), when valid are the inequalities

ci Ri In, i Dx2, ci Ri In, i Dy2 >> 1/b0 ,

|mx|Dx4/x02, |my|Dy4/y02 >> 1/b02, 

for beams with large dimensions (Dx, Dy > 100 mm), there are 
solutions [solutions in (18d) with the sign ‘+’] approximated 
by the relations:
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It can be seen that with the use of gradient defocusing 
fibres (with a refractive index increasing away from the the 
axis) one can ensure the generation of quasi-single-mode 
(with a Gaussian distribution of the field over the fibre cross 
section – TEM00 mode) wave packets a giant (over 1 mm2) 
mode area. Note that the saturable character of nonlinearity 
leads to the fact that the beam in the corresponding medium 
is described by a well-known equation of a harmonic quan-
tum oscillator [39]. As a consequence, the corresponding linear 
equations obviously give solutions that are stable to perturba-
tions. Therefore, such beams are stable with respect to the 
appearance of a transverse modulation instability and decay 
of a single beam into individual small-scale beams, i.e. fila-
ments [32 – 34, 40 – 47].

The energy is effectively accumulated when the shape of 
the wave packet is preserved until the effect of fast nonlinear-
ity becomes comparable with the effect of slow nonlinearity 
with low saturation energy. When the influence of fast nonlin-
earity becomes comparable with that of slow nonlinearity, 
expression (10) is transformed into a three-dimensional Gross–
Pitaevskii equation [20, 32, 34], and in the general case it can 
be analysed only by numerical methods.

It can be seen from relation (18a) that in a medium 
with inertial saturable nonlinearity in the region of anoma-
lous group velocity dispersion (GVD), it is possible to form 
a soliton-like pulse with high energy and peak power. 
Because of the potential instability of such a wave packet 
(primarily because of the possible development of modu-
lation instability) in media with large saturable nonlin-
earity, a stable three-dimensional soliton can be formed 
when ci Ri In, i < 10 m–1. For ‘solid’ highly nonlinear mate-
rials (for example, for photorefractive media [32, 34, 35]), 
as a rule, Ri In, i > 103 m–1 and, therefore, at ci » 1, nonlin-
earity is too large to form ‘saturated’ stable soliton-like 
pulses, because in this case (in the optical and near-IR 
spectral ranges) the condition tnl £ ts does not hold. 
However, at certain dopant concentrations (when ci << 
1), a stable soliton-like wave packet can be realised at the 
fibre length, z >> ugts. Thus, for Dt » –1025 s2 m–1 and 
ci Ri Ii, n » 5 m–1, the duration of the soliton-like pulse is ts » 
10–13 s, and its transverse size, determined by relation (18b), 
can take practically any values. The energy of a soliton-like 
amplified pulse will vary as

z
( ) ( ) ( )exp dW z W g z z0 2

0
= c my

and can achieve (at an appropriate pump power) greater 
values, higher than 1 J.

Apparently, for the experimental realisation of the effects 
under consideration, the concentration of erbium ions in opti-
cal fibres (glass matrices) should exceed 1020 см–3 [27], up to 
~1021 cm–3, which can correspond to c ~ 0.01. This will allow 
one to use a short, less than 1 m, segment of a heavily erbium-
doped fibre-cone [21 – 23] or a properly doped (neodymium, 
ytterbium or erbium) quartz disk. Such elements, when properly 
manufactured, can be characterised by a nonlinearity factor 
that is 5 ́  105 times greater than in a conventional fibre [34, 35], 
i.e. reach the values of n (2) » 10–8 cm2 kW–1. Of course, heavy 
doping with rare-earth elements will lead to a significant increase 
in losses (for example, due to clustering). However, the cor-
responding losses can be compensated for by using more 
high-power pumping.

4. Soliton-like pulses in a medium with a travel-
ling wave of a change in the refractive index

A whole set of interesting solutions appears in the case when 
the refractive index is additionally modulated in time. Then, 
relation (2) can be rewritten as follows [48 – 52]:

( , , , ) ( ( , , , ))n x y z t n m
x
x m

y
y

n I x y z tx y0
0
2

2

0
2

2

Td = + -e o

	 + mt n0 cos[wt(t – dt(z))],	 (20)

where
z
( )du u zg m

1 1

0
dt = -- -y

is the parameter determined by the difference between the 
velocity um of a travelling wave of a change in the refractive 
index (TWCRI) and the group velocity of a soliton-like wave 
packet.

In this case, starting from the results of [36, 52], we can 
conclude that in the expression for the duration and size of 
the soliton-like pulse being formed, relations (18a) and (18b) 
will remain valid if we write for the parabolic potential

Wt
u 	» ci Ri In, i /tp2(z) + mt b0 wt

2,	 (21)

for the delay time of a soliton-like wave packet

,nl dt t t t= - -r 	 (22)

and for the phase shift

/ /2.D m2 0
2l b wW= - +t t t t 	 (23)

Then, the duration of the soliton-like pulse is determined 
by the relation

( , ) ,
m

RI
m D

m

RI

m
D

2 2 2
, ,

/ /

s
i n i i n i

0
2

0
2

2

0
2

1 2 1 2

t
b w

c
q

b w
c

b w
= - + -

t
t

t t ttt
e o= G) 3 	(24)

where q(mt, D) = 1 for mt > 0 and D < 0, and also for mt < 0 
and D > 0; q(mt, D) = ±1 (bistable solution) for mt < 0 and 
D < 0. In the case mt > 0 and D > 0, a soliton-like wave 
packet is not formed.

Figures 2 – 4 show the dependences of the normalised dura-
tion of the soliton-like pulse ts /tnl от c0 /c. In this case we used 
the normalisation parameters tnl = 10–13 с, c0 = 0.1, and the 
parameters RIn = 104 m–1, D = –10–26  s2m–1 (Figs 2 and 3), 
D = 10–26 s2 m–1 (Fig. 4). Note that for ts £ t0 the model under 
consideration becomes not completely correct. In this case, it is 
necessary to additionally take into account the influence of 
higher order nonlinear and dispersion effects.

Note some interesting features of the solutions presented 
in Figs 2 – 4. First, special attention should be paid to the fact 
that in synchronising a soliton-like wave packet with a TWCRI 
minimum (for mt < 0) in the region of anomalous GVD, two 
stable soliton solutions are possible: a ‘long’ soliton q(mt, D) = +1 
and a ‘short’ soliton q(mt, D) = –1 (Fig. 3). In this case, the 
bistability regime is implemented, including for small values 
of mt and wt. It seems that the corresponding property of non-
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linear media with saturable nonlinearity can be used to design 
all-optical logic elements on their basis.

Second, one can see from Fig. 3 that in the linear approxi-
mation, i.e., at c0 /c ® ¥, the duration of the localised wave 
packet, ts, tends asymptotically to (|D|/(2|mt|b0 wt

2 ))1/4.
Third, when a soliton-like wave packet is synchronised 

with the TWCRI minimum (for mt < 0), it becomes possible 
to form a three-dimensional soliton in a medium with a nor-
mal material dispersion when D > 0 (Fig. 4). The duration of 

such a soliton can greatly exceed 1 ns; therefore, remaining 
stable, it will be able to accumulate soliton-like pulses with 
giant energy – much greater than 1  J. Under normal GVD 
conditions, the realisation of a soliton-like pulse substantially 
increases its resistance to perturbation by preventing the develop
ment of modulation instability, which occurs in a medium 
with anomalous GVD [32 – 34].

Note that the above-described scheme for the formation 
of high-energy spatially localised wave packets under condi-
tions of interaction with the TWCRI resembles the mechanism 
of the formation of ball lightning proposed in Refs [53, 54]. 
The problem of experimental realisation of such a scheme 
requires separate consideration, but the development of appro-
priate acousto- or electro-optic modulators does not seem to 
be particularly difficult at present. In particular, the scheme used 
in conical fibres and bottle cavities can be promising, which 
makes it possible to implement the effective acousto-optical 
interaction of the TWCRI and the whispering-gallery mode 
waves [49, 55 – 59].

5. Conclusions

We have considered the conditions for the formation of spa-
tially localised wave packets in doped fibres with large inertial 
saturable nonlinearity of logarithmic type. It is shown that 
soliton-like wave packets (TEM00 modes) with a large cross 
section and high energy (more than 1 J) and peak power (over 
1 TW) can be formed in such fibres.

It is shown that large saturable (inertial) nonlinearity con-
tributes to the formation of a soliton-like wave packet, and a 
large mode area reduces the effect of fast Kerr nonlinearity of 
the matrix (for example, a silica fibre). Thus, it is possible to 
generate a single-mode pulse with a giant mode area (well 
exceeding 100 mm2) and large (above 1 J) energy.

To obtain wave packets with similar energy characteristics, 
it seems optimal to use conical fibres (doped with ytterbium, 

4

ts/tnl
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0 25 50 75 s

1
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3

Figure 2.  Dependences of the normalised duration of the soliton-like 
pulse ts /tnl  on the normalised function s = 10–3( c0 /c) in the case D = 
–10–26 s2 m–1 and mr > 0 at |mt b0 wt

2| = ( 1 ) 1023, ( 2 ) 5 ́  1023, and ( 3 ) 
1024 m–1 s–2. Here and in Figs 3 and 4 the sign of mt b0 wt

2 depends on the 
sign of the modulation depth mt.
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Figure 3.  Dependences of the normalised duration of the soliton-like 
pulse ts /tnl on the normalised function s = 10–3( c0 /c) in the case D = 
–10–26 s2 m–1 and mt < 0 at |mt b0 wt

2| = ( 1 ) 1023, ( 2 ) 5 ́  1023, and ( 3 ) 
1024 m–1 s–2.
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Figure 4.  Dependences of the normalised duration of the soliton-like 
pulse  ts /tnl on the normalised function s = 10–3( c0 /c) in the case D = 
10–26 s2 m–1 and mt < 0 at |mt b0 wt

2| = ( 1 ) 1023, ( 2 ) 5 ́  1023, and ( 3 ) 
1024 m–1 s–2.
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neodymium or erbium) with increasing diameter. Further 
amplification of the corresponding solitons can be realised in 
disk amplifiers made on the basis of rare-earth-doped quartz 
glasses.

It is shown that additional possibilities for generating 
high-energy wave packets in the single-mode regime can be 
implemented under conditions of their interaction with a 
TWCRI realised in a fibre with saturable inertial nonlinearity.
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