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Abstract.  A method is proposed for measuring complex coupling 
coefficients in a ring optical resonator in the absence of an active 
gas mixture. A setup is described on which measurements are per-
formed in ring resonators of ring He – Ne lasers with a wavelength 
of 632.8 nm. A model of backscattering field interference between 
conservative and dissipative sources is presented. Within the frame-
work of this model, the unusual behaviour of backscattering fields 
in ring resonators observed in experiments is explained: a signifi-
cant difference in the moduli of coupling coefficients of counter-
propagating waves and variation of the magnitude of the total 
phase shift in a wide range. It is proposed to use this method as a 
metrological method when assembling and aligning a ring resonator 
of a laser gyroscope. 

Keywords: ring laser, ring resonator, laser gyroscope, backscatter-
ing, lock-in threshold, coupling coefficients of counterpropagating 
waves. 

1. Introduction and statement of the problem 

Backscattering on mirrors is one of the main sources of errors 
of a laser gyroscope (LG) based on a ring He – Ne laser with a 
wavelength of 632.8 nm. This phenomenon leads to the 
appearance of a gyroscope dead band at low rotation speeds 
(so-called lock-in threshold), as well as to nonlinear distor-
tions of the frequency characteristic of the gyroscope outside 
the lock-in band [1, 2]. 

In describing the effects associated with the influence of 
backscattering, use is made of the system of equations [2]: 
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where Icw and Iccw are the intensities of counterpropagating 
waves of a ring laser (RL) in clockwise and counterclockwise 
directions; y is the phase difference of counterpropagating 
waves in the RL; W is the dither frequency; and a is the differ-
ence between the active medium gain and ring resonator (RR) 
losses. The coefficients b and q are, respectively, the parame-
ters of self-saturation and mutual nonlinear saturation of 
counterpropagating waves in the active medium; c is the speed 
of light; and L is the RR perimeter. The influence of backscat-
tering is described by two complex coupling coefficients 
(CCs), representing the fractions of the natural oscillation 
fields scattered in counterpropagating directions: 

( )exp ir rcw cw cwj=u ,	 (4)

( )exp ir rccw ccw ccwj=u .	 (5)

It is easy to see from the structure of equations (1) – (3) 
that backscattering is taken into account in them by three 
parameters rather than four (two moduli rcw and rccw and two 
phase shifts jcw and jccw). The phase shifts arising during 
backscattering of each of counterpropagating waves appear 
in these equations as a sum j = jcw + jccw. Therefore, by 
complex CCs we mean three parameters: rcw, rccw and j. 

The influence of backscattering on the amplitude – fre-
quency response of a ring gas laser has been actively studied 
since the mid-1960s. For more than half a century of LG 
history, several hundred articles have been published and 
many patents have been issued. Special mention should be 
made of paper [3], where the authors presented the results of 
model experiments using inverse reflectors installed near the 
output RL mirror, which revealed the main features of the 
behaviour of the amplitude – frequency response of RLs as a 
function of complex CCs. The results of calculations per-
formed in the weak-coupling approximation [4, 5] showed 
good qualitative agreement with the results of these model 
experiments. In particular, for the correction to the beat fre-
quency of counterpropagating waves in a RL, the relation 
was obtained: 
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where Dn is the RL beat frequency; 
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Wc is the RR band; and d is the RR losses. The coefficients in 
the numerators of the negative and positive corrections to the 
beat frequency are the following combinations of CCs: 
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2 2 j j= + + ++ , 	 (8)
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The weak-coupling approximation corresponds to the 
case when the frequency dithering W significantly exceeds the 
lock-in threshold WL. 

Equation (6) can be used for the experimental estimation 
of the magnitudes of complex CCs. To do this, the RL is 
placed on a rotating stage and the dependence of the scale 
factor on the rotation speed (frequency dithering W) is mea-
sured. The parameter S+ determines the RL lock-in threshold 
WL [WL = (c/L)S+] (in the framework of the weak-coupling 
approximation). The ratio of the parameters S+ and S– deter-
mines the sign of the LG scale factor correction. Typically, in 
ring He – Ne lasers with a wavelength of 632.8 nm, the param-
eter S– is 3 – 5 times higher than S+. Therefore, at high rota-
tion speeds, a positive scale factor correction is observed [2]. 

Of course, the results of measurements of the parameters 
S+ and S– [see relations (8) and (9)] make it impossible to 
determine the values of all three backscattering parameters: 
rcw, rccw and j. In order to carry out their estimation, it is 
assumed (see, for example, [6]) that the CC moduli for coun-
terpropagating directions are equal. In a number of cases (in 
particular, when analysing sources of error of an extra-large 
LG [7]), complex CCs are found from the results of measure-
ments of the variable components of the counterpropagating 
wave intensities at the beat frequency. With such an estima-
tion method, it is not necessary to assume the equality of the 
CC moduli, since use is made of the values of three measured 
parameters: the modulation depth of the counterpropagating 
wave intensities and the phase shift between the variable com-
ponents of the intensities at the beat frequency. 

The above methods can be attributed to indirect methods 
of measuring complex CCs in RLs. Without focusing atten-
tion on the obvious shortcomings of the indirect methods 
associated with inaccurate knowledge of the values of the 
parameters of the nonlinear interaction of counterpropagat-
ing waves (q and b) and with the use of approximate solutions 
of the system of equations (1) – (3), we point out a more sig-
nificant and fundamental disadvantage: Complex CCs are 
determined only after the RR is assembled and filled with a 
working gas mixture. 

Practice shows that in mass assembly, the spread in the 
values of complex CCs is significant. As a result, the differ-
ence between the minimum and maximum values of the lock-
in threshold reaches 20 to 30 times. It is not always possible to 
explain this by the influence of large dust-like particles in the 
working region of mirrors. Such a large spread in the param-
eter values is due, first of all, to the physical nature of the 
formation of the backscattering fields in the RR (so-called 

speckle pattern [8, 9]). Therefore, the assembly and alignment 
of a laser gyro is today a ‘lottery’, the result of which becomes 
known after a time-consuming procedure of vacuum process-
ing of a monoblock sensor. For this reason, measurements of 
complex CCs at the stage of assembly and alignment of the 
RR is not only an extremely important means of control, but, 
more significantly, it makes it possible to increase the LG 
accuracy. 

The present paper consists of two main parts. The first 
part (Sections 2, 3) describes the methods for measuring com-
plex CCs in a RR. The results of measurements for ring reso-
nators of a He – Ne laser with a wavelength l = 632.8 nm are 
presented. The effect of the backscattering field interference 
of counterpropagating waves on complex CCs is analysed. 
The second part of the paper (Section 4) considers the inter-
ference model of waves of dissipative and conservative point 
sources, which makes it possible to describe correctly the reg-
ularities observed in the experiments. 

2. Methods for measuring complex CCs in the RR 

We start with the simplest optical scheme, which allows the 
CC modulus to be measured for one of the counterpropagat-
ing waves in the RR (Fig. 1a). When the generation frequency 
of a probe laser (PL) coincides with the RR natural oscilla-
tion frequency, the intensities of the forward (I ) and back-
scattered (Ibs) waves are determined by the relations [10]: 

I TT I4
2
1 2

0
d

= , 	 (10)

I r I4
bs 2

2

d
= . 	 (11)

Here, T1 and T2 are the transmission coefficients of the input 
and output RR mirrors; I0 is the intensity of laser radiation 
(we assume an ideal matching of the amplitude – phase front 
of the laser and the RR); and r is the CC modulus (the index 
of the direction is not specified). It should be noted that these 
relations were obtained on the assumption that the RR losses 
are small. For reference, the total RR loss of modern LGs is 
hundreds of ppm (1 ppm is one part per million or 0.0001 %). 

Let us carry out numerical estimates. For typical values of 
the LG RR parameters (d = 400 ppm, T1 = T2 = 150 ppm, r = 
0.1 – 1 ppm), the ratio of backscattered and forward wave 
intensities is Ibs/I = 2.5 ´ 10–7 – 2.5 ´ 10–5. Or to estimate the 
absolute value of the power of the backscattered wave emerg-
ing from the RR (we assume that the PL has an output power 
of 1 mW), we have 1.4 ´ 10–13 – 1.4 ´ 10–11 W. Registration of 
such powers of optical radiation does not cause significant 
technical difficulties. 

Of course, with this method of measurement, it is not pos-
sible to obtain information about the magnitude of the phase 
shift j of counterpropagating waves arising due to backscat-
tering. The phase shift measurement should rely on a funda-
mentally different optical scheme. In our experiments, two 
such schemes were used (Figs 1b and 1c), where the natural 
oscillations of the RR were excited in opposite directions. In 
this case, the fields of counterpropagating waves represent a 
superposition of natural oscillations of the resonator and the 
fields of backscattered waves: 
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Because counterpropagating waves in the RR have the 
same frequency, the factor exp(iwt) (w is the circular fre-
quency) is omitted in these relations. The factor 2r/d appears 
as a result of the allowance for the coupling between the 
intensities of the forward and backscattered waves (11). 
Taking into account the smallness of the ratio 2r/d for the 
counterpropagating wave intensities, it is easy to obtain the 
expressions: 
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where c = cccw – ccw is the phase difference of the exciting 
oscillations; and I ( )cw

0  and I ( )ccw
0  are the mean values of the 

intensities of the counterpropagating waves (without allow-
ance for the backscattering fields). 

In moving the mirrors located outside the RR in question, 
the phase difference c varies in the range 0 – 2p, and there are 
also small changes in the intensities of counterpropagating 
waves from the fraction to one percent. The observed shift in 
the positions of the extrema of the interference patterns is due 
to the searched-for total phase shift j. For example, at j = p, 
the position of the intensity maximum of one of the waves will 
coincide with the position of the intensity minimum of a 
counterpropagating wave. 

Important parameters characterising the observed inter-
ference patterns are their contrasts (ccw and cccw), defined as 
the ratio of the difference between the maximum and mini-
mum intensities to their sum. In the case of a scheme with a 
returnable mirror (RM), for contrasts we have expressions
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( r is the RM reflection coefficient), and in the case of a 
scheme with a mixer, we have expressions 
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In deriving relation (18), we assumed that the intensities 
of intrinsic counterpropagating waves in the RR are equal. In 
practice, this is easily attainable, since the excitation of natu-
ral oscillations in opposite directions occurs through a single 
input mirror of the RR. The contrasts of the interference pat-
terns measured in experiments were used to determine the CC 
moduli. The parameters d, T2 and r were measured addition-
ally. 

Optical schemes (Figs 1b and 1 c) have both advantages 
and disadvantages. The main advantage of the RM scheme is 
that the contrast of the interference pattern in the counter-
clockwise direction (17) can be increased in a controlled man-
ner by reducing the RM reflection coefficient. The same effect 
is achieved when an attenuation filter is placed between the 
RR and the RM. Looking ahead, we note that in the course 
of our experiments there were no technical difficulties in mea-
suring the CC moduli that are less than 0.01 ppm. 

The main drawback of the RM scheme is the noticeable 
difference in contrasts for counterpropagating waves due to 
the asymmetry of the excitation of natural oscillations. This 
in some cases makes it difficult to measure the phase shift. 
The optical scheme with a mixer easily ensures the symmetry 
of excitation of counterpropagating waves. In turn, when 
using this scheme, it is necessary to proceed to the measure-
ment of the variable components of the wave intensities 
emerging from the RR. Because of this, it becomes impossible 
to correctly measure the absolute values of the CC moduli, 
which is a significant drawback of the scheme with a mixer. 

Our measurements were carried out in two stages, with 
the main advantages of these two schemes being used. First, 
the absolute values of the CC moduli were measured with the 
use of the RM scheme. Then, using the scheme with a mixer, 
the phase shift j was measured. 

Let us now describe the technical details of our measure-
ment method. First of all, for complex CCs to be measured, it 
is necessary to ‘lock-in’ the PL frequency to the fundamental 
mode frequency of the RR under study. To this end, one of 
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Figure 1.  Schematics of measurement of complex CCs: (a) optical 
scheme for measuring the CC modulus for one of the counterpropagat-
ing waves, (b) scheme with a returnable mirror (RM) and (c) scheme 
with a mixer:	
(PL) probe He – Ne laser with a radiation wavelength of 632.8 nm; (CU) 
control unit; (FSU) frequency stabilisation unit; (OI) optical isolator; 
(SP) semitransparent plate; (PD1) and (PD2) photodetectors; (PZT1 – 
PZT5) piezoelectric transducers; (LA1) and (LA2) lock-in amplifiers; 
(PC) personal computer; fref is the reference frequency of the signal ap-
plied to the input of the lock-in amplifier. 
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the PL mirrors was equipped with a piezoelectric transducer 
(PZT), which allows the lasing frequency to be controlled. 
The frequency was stabilised with respect to the amplitude 
resonances of the intensity of the radiation emerging from the 
RR. The resonance has the form of a Lorentz function. The 
frequency stabilisation unit (FSU) uses an error signal pro-
portional to the first derivative of the given function with 
respect to time. To do this, a small amplitude (of the order of 
the width of the resonance) harmonic modulation with a fre-
quency of about 10 kHz is introduced into the control signal 
of the PZT. The error signal is fed to the input of the PID 
(proportional-integral-differentiating) controller, whose out-
put was connected to the PZT of the RR or PL. A detailed 
description of such stabilisation schemes can be found in [11]. 

With the optimal adjustment of the FSU, the average 
value of the intensity of radiation emerging from the RR was 
approximately 50 % of its peak value. The time dependence of 
the intensity of radiation emerging from the RR with the 
operating FSU is shown in Fig. 2a. As a PL we used two types 
of monoblock He – Ne lasers made of glass ceramics: with a 
linear and ring resonators. In the first case, the power of sin-
gle-mode lasing was about 1 mW, and in the second, it was 
70  mW. The power of radiation emerging from the RR, as a 
rule, exceeded 1 mW. For the measurements we used silicon 
photodiodes with a photosensitive area diameter of 1 mm and 
a photocurrent – voltage conversion circuit on an LF411CN 
operational amplifier. 

In using the RM scheme, the mean value of the intensity 
of radiation emerging from the RR was measured. To do this, 
the output of the photodetector (Fig. 1b) was connected to 
the input of a lock-in amplifier. The reference voltage was an 
alternating voltage with a frequency equal to twice the modu-
lation frequency of the FSU (about 20 kHz). A triangular sig-
nal with a period of about 20 s and an amplitude correspond-
ing to the longitudinal displacement of the RM for a distance 
greater than l/2 was applied to the PZT RM. Depending on 
the magnitude of the measured CC modulus, a filter was 
selected, which makes it possible to obtain a contrast of the 
interference pattern at a level of 10 %. A typical time depen-
dence of the average intensity of radiation emerging from the 
RR in the counterclockwise direction when the RM is dis-
placed is shown in Fig. 2b. 

In our experiments we used four-mirror RRs with perim-
eters of 16 or 28 cm. The total RR losses varied from 400 to 
1800 ppm. Multilayer dielectric mirrors with TiO2 – SiO2 and 
Ta2O5 – SiO2 layers deposited by ion deposition were used. 
The total integral scattering (TIS) of mirrors did not exceed 
30 ppm. 

As already noted above, when measuring the phase shift 
j, it is necessary to register the variable components of the 
intensities of the waves emerging from the RR (Fig. 1c). This 
is due to the fact that contrasts of interference patterns in the 
scheme with a mixer, as a rule, amount to several tenths of a 
percent. Registration of such small changes in intensity 
against the background of other amplitude noises seems to be 
an unsolvable task in this situation. In measuring variable 
intensity components, harmonic modulation of the measured 
parameter is introduced, which makes it possible to signifi-
cantly increase the signal-to-noise ratio of the measuring 
scheme. 

For this reason, two folding mirrors (Fig. 1c) are installed 
on two PZTs. One of them is fed with a harmonic signal with 
a frequency of about 1 kHz and a deviation amplitude corre-
sponding to a change in the phase shift of counterpropagating 

waves of approximately p. A triangular signal with a period 
of 20 s and an amplitude corresponding to a change in the 
phase shift of counterpropagating waves by more than 2p is 
fed to the other PZT. In this case, the longitudinal displace-
ment of the distance between the fronts of the counterpropa-
gating waves entering into the RR under study is greater than 
l. The time dependences of the variable intensity components 
are recorded by two lock-in amplifiers whose control inputs 
are fed with a harmonic modulation signal. A typical time 
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Figure 2.  (a) Time dependence of the intensity of radiation emerging 
from the RR during the operation of the FSU, (b) time dependence of 
the average intensity of radiation emerging from the RR with the mov-
ing RM (solid curve) and the waveform applied to the PZT of the RM 
(dashed line) (the measured value of the CC modulus is 2.5 ± 0.3 ppm), 
(c) time dependences of the signals of lock-in amplifiers recording the 
variable components of the intensities of counterpropagating waves 
emerging from the RR (curves) and the waveform applied to the PZT of 
the RM (dashed line) and (d) illustration of the procedure of phase shift 
measurements (see the text). 
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dependence of signals from the outputs of lock-in amplifiers 
is shown in Fig. 2c. In contrast to the RM scheme, where 
small (~10 %) changes in the intensity of radiation emerging 
from the RR are recorded, in the scheme with a mixer the 
output voltages of the lock-in amplifiers change the sign when 
the PZT moves. This is due to the fact that the mean intensity 
value is subtracted from the interference patterns. 

The procedure for measuring the phase shift j is explained 
in Fig. 2d. The absolute value of the phase shift is found by 
processing the time dependences of the variable intensity 
components of counterpropagating waves. In this case, the 
position of each of the extrema of dependences on the time 
axis is determined by parabolic approximation of its shape. 
The calibration value is the time shift between the positions of 
the minimum and maximum of one of the waves, which is 
taken as the phase shift equal to p. The shift j is calculated by 
the formula 

t t
t t
max min

max max

cw cw

cw ccwpj =
-

- . 	 (19)

Here, tmaxcw  and tmincw  are the positions of the maximum and 
minimum of the variable intensity components of the wave 
directed clockwise; and tmaxccw  is the position of the maximum 
of the wave directed counterclockwise. 

When processing interference patterns of the variable 
intensity components of counterpropagating waves, it is nec-
essary to answer the question: Is the total phase shift due to 
backscattering higher or smaller than p? The answer allows 
one to take into account the fact that the left and right fronts 
of the slow-scan voltage pulse of the PZT of the optical mixer 
are distinguished by the sign of the change in the phase differ-
ence of counterpropagating waves. On one of the fronts the 
difference grows, and on the other it decreases. Hence it fol-
lows that the measured value of j could both exceed p, and be 
less than it. 

3. Results of measurements 

We measured complex CCs in about thirty RRs. The CC 
moduli lied in the range of tenths to a few ppm. The relative 
uncertainty of these measurements did not exceed 10 %. In a 
number of cases, there was a significant (by 2 – 3 times) differ-
ence in the CC moduli of counterpropagating waves. 

As for the phase shift j, its value in the resonators in ques-
tion varied over a wide range: from 2 to 4 rad. The uncer-
tainty of these measurements can be estimated as ~0.05 rad.

Of course, the goals of our research were not limited to the 
development of a method that would allow us to measure 
complex CCs in the RR. During the experiments and analysis 
of their results, many questions arise that require clear physi-
cal explanations. For example, why can CC moduli in the RR 
with mirrors that have approximately the same TIS values 
differ by more than an order of magnitude? Or, why can CC 
moduli differ by 2 – 3 times for counterpropagating waves? 
Even more incomprehensible is the large spread in the magni-
tude of the total phase shift. 

The unusual behaviour of complex CCs in the RR can be 
attributed to the peculiarities of the backscattering field 
interference of the entire set of sources located on the sur-
face of RR mirrors. We tried to simulate the interference 
processes using the antiphase movement of two PZTs 
installed on the mirrors of the RR under study. Let us briefly 
describe it. 

With the antiphase movement of PZTs, the RR perimeter 
remains the same and the observed changes in complex CCs 
are determined by the interference of waves of two backscat-
tering sources (Fig. 3). For simplicity, the complex plane has 
CCs for one of the counterpropagating waves. Each of the 
mirrors is characterised by its partial complex CC. The total 
complex CCs are the vector sums of their partial parts. In the 
antiphase movement of two PZTs, the total vector of the CCs 
of mirrors 1 and 2 (denoted by r1) remains fixed in the com-
plex plane, and the total vector of the CCs of mirrors 3 and 4 
(denoted by r2) makes a circular motion. It is easy to see that 
for an antiphase movement of the PZTs, we have periodically 
alternating maximum and minimum values of the modulus of 
the total CC: 

r max = |r1| + |r2|, 	 (20)

r min = ||r1| – |r2||. 	 (21)

From the results of measurements of these values, it is 
possible to determine the moduli |r1| and |r2|, equal to the half-
sum and half-difference of the maximum and minimum val-
ues, respectively. The period of alternation of these extrema is 
equal to l (in terms of the change in the RR perimeter when 
one PZT is displaced). The only difficulty in interpreting the 
results of such measurements is that it is impossible to deter-
mine to which particular pair of mirrors the found values of 
the moduli belong. 

In measuring complex CCs in counterpropagating direc-
tions, we obtain three periodic dependences: for the CC mod-
uli of counterpropagating waves and the total phase shift. 
Figure 4 shows some of these dependences. 

It should be noted that each of the studied RRs is charac-
terised by a unique set of these three dependences. This greatly 
complicates the analysis and generalisation of the results of 
measurements of complex CCs. Of course, we can limit our-
selves to the fact that based on the results of these measure-
ments one can provide the LG developers with the predicted 
values of the lock-in threshold and the nonlinear scale factor 
correction. However, in order to understand the physics of 
the formation of the backscattering fields in the RR, it is nec-
essary to develop a model that adequately describes the results 
of our experiments. This description is presented in the sec-
ond part of this work. 

r2

r11

2
3

4

D

D

RR

Figure 3.  Illustration of the regime of antiphase movement of two 
PZTs: optical scheme of a RR with two PZTs and the motion of the 
vectors of complex CCs in the complex plane (see the text) (D is the mir-
ror displacement). 
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4. Model of backscattering field interference  
for conservative and dissipative sources 

Let us start with the simplest case. Suppose that in the RR 
there are only two point backscattering sources whose size 
is much smaller than the wavelength l. Each of these 
sources is characterised by a partial CC modulus, a phase 
shift arising due to backscattering and a longitudinal coor-
dinate on the optical axis of the RR. We note that in the 
case of a point source, the CC moduli of counterpropagat-
ing waves are equal. The total complex CCs of this system 
can be expressed as: 

( ) ( 2 ) .exp expi i ir R r kl,cw ccw
sum

R r !j j= +u  	 (22)

Here,  k = 2p/l is the wave number; R and r are the CC moduli 
for two sources: jR and jr are the phase shifts arising due to 
backscattering; and l is the distance between the point sources, 
measured along the optical axis of the RR. The reference 
point coincides with the position of the source with the CC 
modulus equal to R. The ‘–’ sign in the second term refers to 
the complex CC of a wave scattered in the counterclockwise 
direction. 

The physical meaning of the sign ‘–’ in (22) is that a wave 
scattered from a point source in the counterclockwise direc-
tion falls into the starting point after a complete round trip of 
the RR perimeter (a multiple of an integer number of wave-
lengths) minus the distance l. The factor 2 in front of the wave 
number in the exponent takes into account the fact that in the 
case of backscattering, the phase shift is formed from two 
equal-sized terms: the first is due to the arrival of the main 
wave to the source of the scattering, and the second is due to 
the return of the scattered field to the initial point. 

It is easy to see that if point sources introduce the same 
phase shifts due to backscattering (Fig. 5a), then we are deal-
ing with symmetric backscattering. When the distance 
between the sources is changed, the CC moduli remain the 
same for counterpropagating waves. Depending on the dis-
tance l, they vary from a maximum value equal to R + r to a 
minimum value equal to R – r (we assume that R > r). The 
total phase shift when the sources are displaced does not 
change and is equal to 2j (j = jR = jr). 

The situation changes qualitatively when point sources 
introduce unequal phase shifts. When the longitudinal dis-
tance between the sources changes, a difference appears in the 
CC moduli of counterpropagating waves, described by the 
relation

4 (2 )sinr r rR klcw ccw
2 2
- = . 	 (23)
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Figure 4.  Dependences of the CC moduli of counterpropagating waves, phase shift and conservative and dissipative CC components in the anti-
phase movement of two PZTs for three (I – III) resonators on the voltage applied to the PZT. The solid curves are approximations, and the points 
are the experiment. 
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Figure 5.  Vector diagrams of addition of two complex CCs of point 
backscattering sources at (a) jR = jr and (b) jR ¹ jr; z = 2kl is the phase 
shift. 
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The total phase shift also does not remain constant and, 
when moving sources, can vary over a very wide range 
(depending on the ratios between R, r, jR and jr). 

We will also consider that there are two types of backscat-
tering sources – conservative and dissipative. These types of 
sources are considered in theoretical works [2, 12], where the 
influence of the backscattering effects on the RL character-
istics is analysed. The first of them introduces a phase shift 
jR = p/2, and the second one – jr = p. In this case, dissipative 
backscattering sources determine the parameter S+ (or the 
lock-in threshold), while conservative sources determine the 
parameter S–. 

Despite all the seemingly primitive nature of the model in 
question, it describes well the main results of our measure-
ments of complex CCs. The model can be complicated by pre-
senting each of the resonator mirrors in the form of a set of 
dissipative and conservative point backscattering sources ran-
domly ‘scattered’ over its surface. However, even in this case, 
complex CCs will be formed in the process of interference of 
the fields of two effective conservative and dissipative point 
sources displaced relative to each other by a distance l. 

Within the framework of this model, it is possible to 
reduce the result of any measurement of complex CCs to the 
determination of three parameters: conservative (R) and dis-
sipative (r) CC components and phase shift z = 2kl. These 
parameters are determined by the relations: 

/2cosR r r r r2cw ccw cw ccw
2 2 j= + - , 	 (24)

/2cosr r r r r2cw ccw cw ccw
2 2 j= + + , 	 (25)

( ) 4
arcsin

cosr r r r

r r

cw ccw cw ccw

cw ccw
2 2 2 2 2

2 2

z
j

=
- -

-= G. 	 (26)

From the presented relations it is seen that the conservative 
component of the CC modulus for the mirror is R = ½S–, and 
the dissipative component is r = ½S+. 

Thus, the physical process of backscattering in a RL can 
most clearly be characterised by three parameters: R, r and z. 
The regime of antiphase movement of two PZTs in the RR is 
described in the framework of the backscattering field inter-
ference model of two pairs of conservative and dissipative 
sources: 

( /2) ( )exp expi i ir R r,cw ccw
sum

1 1 1!p p z= +u

	 [ ( /2) ( )] ( 2 )exp exp expi i i iR r k l2 2 2! !p p z D+ + . 	 (27)

Each of the pairs of the mirrors (1 – 2 and 3 – 4 in Fig. 3) 
has its own set of parameters: R1, r1, z1 or R2, r2, z2. The 
movement of PZTs is accompanied by a change in Dl of the 
longitudinal distance between the pairs of the mirrors. As in 
the case of relation (22), the sign ‘–’ refers to a wave propagat-
ing in the counterclockwise direction. 

Equation (27) was used to solve the inverse problem asso-
ciated with the determination of six parameters characterising 
the antiphase movement of PZTs: R1, r1, z1 and R2, r2, z2. 
Their values were obtained by approximating the depen-
dences of complex CCs on the displacement of PZTs. In the 
framework of this paper, we cannot describe in detail the 
algorithm for solving the inverse problem. We only note that 
the initial experimental material including three dependences 

[rcw, ccw (U ) and  j(U ), where U is the voltage applied to one of 
the PZTs] is sufficient (mathematically) to determine the six 
parameters. 

Of course, we cannot determine to which specific pair of 
the mirrors these parameters refer (this has already been men-
tioned above). However, it is possible to ‘inter-relate’ the val-
ues of the conservative and dissipative components of the 
CCs for the pairs of the mirrors. This allows one to answer an 
important question: Is there a correlation between the conser-
vative and dissipative backscattering components? The exper-
iments carried out by us indicate the absence of such a corre-
lation. 

The measured dependences of the CC moduli (Fig. 4) 
were approximated by relation (27). The results of this 
approximation are shown in Fig. 4 by solid curves. Figure 4 
also presents the calculated dependences of the conservative 
and dissipative CC components. One can see that the model 
of backscattering field interference of conservative and dissi-
pative sources describes well the results of our experiments. 
Within the framework of this model, it is possible to explain 
the noticeable difference in the CC moduli (rcw ¹ rccw) 
observed in a number of experiments, as well as the behaviour 
of the total phase shift in the antiphase movement of PZTs.

The effect of speckle structures on the formation of the 
backscattering fields should be specially mentioned. A mirror 
of a modern LG is a slightly rough surface with a height of 
irregularities of the order of 1 Å and a correlation length not 
exceeding a fraction of a micrometer. As a result, the back-
scattering field of a wave in the RR is formed as a result of the 
interference of the fields of a very large number of sources 
with uncorrelated phases. A similar problem was first consid-
ered by Lord Rayleigh in 1880 [13] in describing the statistics 
of the resultant field A of a large number of harmonic vibra-
tors having random phases Yp: 

A p
p

a= ( )exp iY/ . 	 (28)

In this case, A is also a random variable whose probability 
density is described by the well-known Rayleigh distribution:

( ) expf A A A
22 2

2

s s
= -c m, 	 (29)

where s is the scale factor. 
With such statistics, the spread in the measured values of 

the CC moduli can be comparable with their average value. 
Note that this distribution is also used in describing the statis-
tics of speckle structures of scattered-light fields [14]. 

The results of our experiments indicate (although indi-
rectly!) the effect of the speckle structure of the backscattering 
fields on the formation of complex CCs. We investigated 
twelve RRs assembled from the mirrors having approxi-
mately the same quality. The value of the TIS of the mirrors 
with layers of TiO2 – SiO2 did not exceed 20 ppm. As a result 
of the measurements, twenty-four values of the conservative 
and dissipative CC components were obtained. Their average 
values (standard deviations are given in parentheses) are as 
follows: áRñ = 1.4 ppm (sR = 0.82 ppm) for the conservative 
component and árñ = 0.24 ppm (sr = 0.24 ppm) for the dissipa-
tive component. 

We also note that we did not find a correlation between 
conservative and dissipative components for the pairs of the 
mirrors. This means that in the case of a ‘large’ conservative 
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component, a ‘large’ dissipative component is not always 
observed. 

As for the mean values of áRñ and árñ, the measured values 
are not surprising. In particular, the numerical estimate of áRñ 
can be carried out under the assumption that the light is iso-
tropically scattered by the mirror into a solid angle 4p sr. Let 
us make use of the relations from [10]: 

L
w

4 4
0 2

p
F

= ` j , 	 (30)

4
R S

p
F

= . 	 (31)

Here, w0 is the waist radius of the fundamental RR mode; S is 
the TIS of the mirror; and F is the solid angle of the funda-
mental mode into which the radiation scattered by the mirror 
is incident. The estimate of R in our case gives 1.5 ppm, which 
in order of magnitude coincides with the value of áRñ mea-
sured by us.

Note that the model of an isotropically scattering mirror 
does not allow us to explain such a large spread in the values 
of the measured parameters. For the data of this experiment, 
the ratio of the maximum and minimum values of R was ~15. 
Taking into account the fact that the intensity of the scattered 
radiation is proportional to the square of the CC modulus, it 
will be necessary to assume that the TIS of the mirrors differ 
by more than 200 times (!). To explain such a significant 
spread in the values by the presence of individual dust-like 
particles (not seen at the stage of assembly and alignment!) on 
mirrors seems to us extremely doubtful. The only reasonable 
explanation for such a huge spread in the values of the CC 
moduli may be the presence of a speckle structure in the back-
scattering fields. 

This feature of the behaviour of the measured complex 
CCs should be taken into account when analysing the results 
of measurements by averaging over a sufficiently large array 
of the RRs studied. 

5. Conclusions 

First of all, we should mention the main result of our work. 
Complex CCs in the RR in the absence of a working gas mix-
ture have been directly measured for the first time. Thanks to 
this, we have been able to study more deeply the physical 
aspects of the backscattering field interference processes in 
the RR. Based on the results of our experiments, we have pro-
posed a physical model of backscattering field interference of 
conservative and dissipative sources. This model makes it 
possible to explain a number of features of the formation of 
complex CCs. These include a significant difference in the CC 
moduli of counterpropagating waves and a variation in the 
total phase shift over a wide range. It is easy to show that the 
method proposed by us allows (in principle!) the complex 
CCs of individual RR mirrors to be measured. 

Of course, all this is of undoubted practical value. To 
date, during assembly and alignment of LG RRs, the follow-
ing parameters are controlled: the polishing quality of mirror 
substrates, coefficients of transmission, total integral scatter-
ing and phase anisotropy of mirrors, as well as losses for the 
main types of vibrations of the assembled RRs. The backscat-
tering parameter is not controlled. Ring resonators are assem-
bled and aligned ‘blindly’. As a result, a noticeable number of 

produced RRs are rejected because of the entry of large dust-
like particles into the working area of the mirrors. 

The use of the proposed method for measuring complex 
CCs in the metrological system for monitoring the RR param-
eters will make it possible to fill this gap and help increase the 
percentage of output of high-quality LGs. Using the results of 
measurements of complex CCs, it is possible to formulate a 
criterion for rejecting assembled RRs, based, for example, on 
the predicted magnitude of the LG lock-in threshold [15, 16].

It also seems extremely interesting to use the method for 
measuring complex CCs when developing an alignment sys-
tem that allows one to minimise the partial values of the dis-
sipative and conservative CC components for individual mir-
rors. Attempts to design similar alignment systems were made 
in the 1980s – 1990s. The main idea of the approach of the 
authors of patents [8, 9] is based on the fact that when turning 
a mirror around its axis, it is possible to direct the dark part 
of the speckle into the counterpropagating mode of the RR 
being adjusted. 

It was assumed a priori that there is a direct correlation 
between the backscattering intensity into the counterpropa-
gating RR mode and the lock-in threshold in the RL. The 
results of our experiments have shown that such a correla-
tion is absent. However, the main idea of the approach to 
the problem of minimising the LG lock-in threshold pro-
posed by the authors of the patents mentioned above seems 
to us promising. It is only necessary to equip such devices 
with means of measuring complex CCs and displacement of 
the aligned mirror.
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