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Abstract.  We report the results of a numerical simulation of the 
Langevin equation describing the motion of a transparent nano-
sphere under the action of a resulting light-pressure force in the 
field of a continuous focused Gaussian laser beam. The conditions 
for the localisation of the nanosphere near the focal waist of the 
beam focused by the lens are determined. An analytical solution of 
the approximate (truncated) equation of motion is found, which 
almost exactly coincides with the results of the numerical simula-
tion of the initial equation. 

Keywords: nanosphere, laser beam focusing, light-pressure force, 
Langevin equation, nanosphere localisation.

1. Introduction 

A. Ashkin [1, 2] was the first to demonstrate the optical trap-
ping and levitation of small plastic particles under the action 
of light-pressure forces using cw lasers. After his pioneering 
works, at the junction of optics, mechanics and laser physics 
there emerged and intensively developed a direction associ-
ated with the trapping of small particles by laser radiation. 
The effect of the action of light-pressure forces on small par-
ticles, leading to their manipulation, finds interesting practi-
cal applications in various technologies, in particular, in med-
icine and biology. The apparatus for trapping small particles 
and biological objects created by Ashkin et al. [3, 4] using 
light-pressure forces (so-called laser tweezers) is used in medi-
cine and biology in the study of viruses and bacteria [5], DNA 
molecules [6], processes occurring in living cells [7], etc. 

In addition to biomedical applications, light-pressure 
forces can be used to write concentration patterns in a liquid 
suspension of suspended plastic particles of small size [8]. 
Such suspensions have large values of the optical Kerr coef-
ficient and can be employed as highly effective nonlinear 
media for four-wave mixing [9, 10] and stimulated concentra-
tion (diffusion) light scattering [11 – 13]. Light-pressure forces 
are also used to cool and localise atoms, collimate and control 
atomic beams, which can serve as an additional tool in exper-
imental atomic physics (see, for example, [14]). 

In experiments on manipulation of small particles with 
the help of light-pressure forces, focused laser beams are com-
monly applied to increase the radiation intensity [1,  2]. 

Afanas’ev et al. [15] theoretically investigated light-pressure 
forces acting on a transparent nanosphere located on the axis 
of a focused Gaussian beam and found an expression for the 
resultant force, which made it possible to predict the possibil-
ity of localising a nanosphere having a certain size and optical 
properties near the focal region of the lens. 

In this paper, based on the Langevin equation, we study 
the motion of a nanosphere in the field of a continuous 
focused laser beam and theoretically demonstrate the effect of 
its localisation near the focal region of the lens. 

2. Analysis of the resultant force 

In a laser beam, a transparent nanosphere is subjected to the 
action of two light-pressure force components, i.e. the com-
ponent Fscat arising due to radiation scattering and acting in 
the beam propagation direction and the gradient component  
Fd  associated with the radiation nonuniformity (Fd=  is the 
force component acting across the beam and F zd  is the force 
component acting along its z axis). In the case / 1m n n0 2=  
(n0 and n are the refractive indices of the nanosphere material 
and the surrounding liquid, respectively), the transverse com-
ponent of the gradient force Fd=  will contribute to the trap-
ping of the nanosphere on the beam axis z. 

Figure 1 shows a scheme for focusing a laser beam with a 
lens of focal length f. 

In the case under study, the resultant force Fz = Fscat + 
F zd  acting on the nanosphere located on the z axis of the 
beam is determined by the expression [15] 
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Figure 1.  Scheme for focusing a Gaussian beam with a lens of focal 
length f in a cell with a liquid into which the nanosphere is immersed. 
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where F0 = 2p(n/c)aI0; K = 4k4af /3; zd = kr0
2 is the diffraction 

length of the beam with an input radius r0; k is the wave num-
ber; I0 is the intensity of the beam; 

m
m R R

2
1

2

2 3
0

3/a a=
+
-

is the polarisability of a nanosphere of radius R; and 
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is the coordinate of the beam-waist point. 
Using the results of [15], we will present some characteris-

tic features of the resultant force Fz, which will be required in 
what follows.

It follows from (1) that at a0 > 0 the longitudinal compo-
nent of the gradient force F zd  µ 1 – z/zw in the region z < zw 
is co-directed with the scattering force Fscat µ K. At the waist 
point z = zw, it is zero, and in the region z > zw it reverses the 
direction. It was shown in [15] that under the condition G = 
Kzw/zd £ 1 in the region 
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the resultant force is Fz £ 0. From the relation G = 1 we find a 
critical radius of the nanosphere 
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where Fz = 0 at point z = zw + f /K. Thus, nanospheres with 
R £ Rf can be localised in region (2). For example, for a latex 
nanosphere in water (n0 = 1.58, n = 1.33) at f = 2 cm, r0 = 
0.1 cm and k = 105 cm–1, we have  Rf » 25 nm. Figure 2 shows 
the dependence of Fz on the dimensionless coordinate x = z/f 
for different values of R and the parameters given above. 

In the absence of beam focusing (for f ® ¥), from (1) fol-
lows the expression 
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which can also be obtained from the corresponding formulas 
of paper [16]. Obviously, in this case, because of the diffrac-
tion spreading of the beam at a > 0, the longitudinal compo-
nent of the gradient force F zd µ z/zd2 and the scattering force 
Fscat µ a are always the opposite. The critical radius of the 
nanosphere is found from the relation
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For the above parameters
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Thus, in the absence of focusing, the condition Fz £ 0 can be 
reached for very small nanospheres. 

3. Motion of a nanosphere and effects  
of its localisation 

The Langevin equation for a nanosphere under the action of 
force (1) has the form 
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where m = 4pR3r/3 is the mass of a nanosphere made of a 
material with a density r; and h is the dynamic coefficient of 
viscosity of the resting liquid surrounding the nanosphere. 
For the analysis, taking into account expression (1), it is con-
venient to write this equation in the form
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where d = 9h/(2rR2) is the coefficient of friction; G0 = na0I0/
(2crf  2); xd = zd /f ; and xw = (1 + 1/xd

2)–1. Below, equation (7) 
is solved in the general form by numerical methods, and in the 
case of its simplification, analytically.

3.1. Discussion of the results of the numerical solution 

Figure 3 shows the results of a numerical solution of equation 
(7) with zero initial conditions x(t = 0) = 0 and dx/dt|t  =  0 = 0. 
One can see that there occurs a localisation of nanospheres 
with radii R £ Rf = 25 nm [curves ( 1 ) and ( 2 )]. In this case, 
the time needed to reach the localisation point of a nano-
sphere with R = 20 nm is about three times greater than that 
for a nanosphere with R = 25 nm. Although the coordinates 
of the localisation points depend on R [see (2)], for the given 
parameters in the scale used in Fig. 3, they almost coincide 
and are close to the coordinate of the lens focus point x » 1. 
In this case, a nanosphere with R = 30 nm > Rf [curve ( 3 )] 
after passing through this point continues to move at a much 
slower velocity due to a decrease in the intensity of the diver-
gent beam and a change in the direction of the longitudinal 
component of the gradient force. 

It is seen from Fig. 3a that the velocity of motion of nano-
spheres approaching the localisation points increases. This 
obviously does not correspond to a ‘rapid’ decrease in the 
resultant force in the region x » 1 (see Fig. 2). This apparent 
discrepancy is due to the relatively ‘rough’ scale of Fig. 3a. 
The velocity of the nanosphere as it approaches the localisa-
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Figure 2.  Dependences of the resultant force Fz on the normalised coor-
dinate x = z/f for R = ( 1 ) 20, ( 2 ) 25 and ( 3 ) 30 nm. 
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tion point tends to zero at small distances and small time 
intervals, which remains practically invisible on the scale of 
Fig. 3a. The process of a monotonous decrease in the velocity 
of nanospheres is illustrated in Fig. 3b, on which curves ( 1 ) 
and ( 2 ) are plotted on a scale with a substantially larger spa-
tiotemporal resolution. 

A criterion for the stable localisation of a nanosphere near 
the point x » 1 is a significant excess of the kinetic energy of 
its thermal (Brownian) motion by the potential of the gradi-
ent force Fd  [3, 16]. In our case, this criterion is determined by 
the condition 
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where P is the radiation power; r = f /(kr0) is the focal spot 
radius; kB is the Boltzmann constant; and T is the tempera-
ture of the surrounding liquid. Using the experimental data of 
[3], we estimate the minimum value of the nanosphere radius 
Rmin at which equality (8) is satisfied. In the experiment, 
Ashkin et al. [3] used polystyrene nanospheres in water 
( .m 1 24=  and a0exp = 0.15) and an argon laser ( l = 514.5 nm) 
with a beam radius r exp = 0.29 ´ 10–4 cm. For the conditions 
of this experiment, the minimum radius Rmin

exp  of the nano-
sphere was estimated by Harada and Asakura [16] and found 
equal to 9.45 nm. Combining equality (8) with an analogous 
equality for the experimental parameters [3], we can obtain an 
expression 
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For k = 2pn/l0 = 1.62 ´ 105 cm–1, r0 = 0.1 cm and f = 1 cm, we 
find from (9) that Rmin » 16.9 nm and, thus, Rf = 24.5 nm. 
The minimum radius Rmin of the nanosphere obtained by us 
was 1.8 times larger than Rmin

exp  [16], which is due to the differ-
ence in the polarisabilities of the nanospheres (a0 and a0

exp) 
and the radii of the focal spots of the beam (r and rexp). Thus, 
for a given pump power W exp [3], the localisation of nano-
spheres in our case (in a single-beam trap) is possible if their 
radii satisfy the condition 16.9 nm £ R £ 24.5 nm. 

3.2. Analysis of the analytical solution  
of the truncated equation 

It follows from Fig. 3 that for the given parameters the aver-
age velocity áuñ of motion of nanospheres in the region x £ 1 
is estimated as 10–1 – 10–2 cm s–1. The process of establishing 
the velocity of motion of nanospheres occurs in a time t » 
1/d, which in our case at h = 10–2 P and r = 1 g cm–3 is very 
small: t = 10–10 s. During this time, the nanospheres travel a 
distance Dz £ 10–11 cm. At the same time, the motion velocity 
of the nanosphere ‘quasi-statically tracks’ the changes in the 
resultant force, and the second derivative in (7) can be 
neglected. The resulting so-called truncated equation admits 
separation of variables, and, therefore, at x(t = 0) = 0 its solu-
tion can be represented as the integral:
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Calculating integral (10) and performing simple algebraic 
transformations, we find the expression
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The function W(x), depending on the parameter G (or R), is 
determined by the relations [17]: 
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Figure 4 shows the dependences x(t), calculated by for-
mula (11) for the same parameters as in Fig. 3. The compari-
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Figure 3.  Time dependences of the nanosphere coordinates at G0 = 105 
for R = ( 1 ) 20, ( 2 ) 25 and ( 3 ) 30 nm.
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son of the curves in Figs 3 and 4 shows that they completely 
coincide. Thus, the obtained truncated equation admitting an 
analytic solution is equivalent to the initial equation (7). 
Consequently, the proposed method of simplifying the initial 
equation can be used in a wide range of R values to study 
analytically transport and localisation of transparent nano-
spheres by light-pressure forces. 

4. Conclusions 

Based on the Langevin equation, we have studied displace-
ment and localisation of a transparent nanosphere by the 
resultant light-pressure force in the field of a focused Gaussian 
laser beam. Using the numerical solution of this equation, we 
have obtained the time dependence of the nanosphere coordi-
nate for various values of its radius. It is shown that for the 
radius of the nanosphere, R £ Rf, its localisation at point 
z » f occurs due to the compensation of the scattering force of 
the longitudinal component of the gradient force (Fscat + 

0F z =d ). A criterion for the stable localisation of nano-
spheres in a focused beam of an argon laser is presented and 
the necessary values of their minimum radii Rmin are given.

The use of the truncated Langevin equation (for d2z/dt2 
= 0) is justified, the validity of which is due to the ‘quasi-static 
tracking’ of the change in the resulting force Fz(z) by the 
nanosphere velocity as a function of the coordinate. The exact 
analytical solution of the truncated equation of motion is 
obtained and it is shown that it completely coincides with the 
result of the numerical solution of the initial equation.
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