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Abstract.  A new method is proposed for measuring the field of 
ultrashort pulses by assessing spectral interference between an 
input pulse and the pulse transmitted through a Kerr medium. The 
proposed iterative algorithm allows the pulse amplitude and phase 
to be reconstructed. Our numerical experiments demonstrate that 
the proposed algorithm can be used to reconstruct pulses with 
complex intensity and phase shapes and is stable to a noise in input 
data. The method requires that only one nonlinear element be 
placed in the laser beam to be studied.

Keywords: measuring the field of ultrashort pulses, self-modula-
tion, spectral interference, iterative algorithms.

1. Introduction

The metrology of ultrashort optical pulses remains a topical 
issue in laser physics, even though it has been the subject of 
intense studies in the past few decades [1]. Interest in this area 
of research is aroused, in particular, by the fact that parameters 
of pulses generated by state-of-the-art laser systems reach 
extreme values: ultralarge spectral bandwidth and ultrashort 
duration. Moreover, pulse parameters often lie in spectral 
regions poorly explored from the viewpoint of the physics of 
ultrashort pulses (USPs), where existing methods are difficult 
to apply. In addition, an important aspect of USP measure-
ments, which is currently the subject of intense discussion, is 
the ability to obtain a complete spatiotemporal information 
about an optical beam, which in fact requires that the temporal 
pulse shape be measured at each point in its cross section [2]. 
This issue is of particular current interest for ultrahigh power 
laser systems and experiments on nonlinear interaction between 
ultra-intense laser radiation and matter. In this respect, par-
ticularly promising are single-pulse techniques for measuring 
the shape of an ultrashort pulse and techniques that are easy 
to adapt to simultaneous measurements at many points in the 
cross section of a beam.

Complete characterisation of a USP requires knowledge 
of not only the temporal shape of its intensity but the temporal 
shape of its phase. Among widely used approaches that allow 
such information to be extracted from experimental measure-
ments and require no known reference pulse, it is worth noting 

frequency-resolved optical gating (FROG) methods [3, 4] and 
methods based on spectral phase retrieval from spectral inter-
ferometry data. These latter include spectral phase interfero
metry for direct electric-field reconstruction (SPIDER) of 
USPs [5], a method based on the observation of spectral inter-
ference between two frequency-shifted replicas of an object 
pulse and having a direct pulse shape reconstruction algo-
rithm and approaches in which a reference pulse is generated 
from an object pulse using a nonlinear process [self-referenced 
spectral interferometry (SRSI) [6] ], such as cross-polarised 
wave (XPW) generation [7]. Less widespread are techniques 
that employ autocorrelation measurements with additional 
spectral or interference measurements and the corresponding 
iterative algorithms for solving the inverse problem [8].

There is independent interest in methods based on mea-
surements of the spectrum of a pulse (here and in what follows, 
we mean measurements of the magnitude of a spectrum) after 
it has passed through a medium with third-order (Kerr) non-
linearity. Spectra of such pulses depend significantly on their 
initial spectral phase [9]. A method proposed by Nibbering 
et al. [10] and further developed by Ferreiro et al. [11] attracted 
little attention for a long time, because its applicability is 
subject to significant limitations. Recent work by Anashkina 
et al. [12] has demonstrated that, using an additional, third 
measurement of the spectrum of a pulse, after it has passed 
through a medium with a different Kerr nonlinearity value or 
a different thickness, the application area of the method can 
be considerably extended. The method was successfully used 
to measure the pulse shape in an ultrahigh-power parametric 
system [12] with thin plastic films as third-order nonlinear 
medium. One advantage of this method is that it is relatively 
easy to implement experimentally in the case of a high-power 
laser system with an intensity at a level of ~1 TW cm–2 or 
more in a single-pulse mode. Unfortunately, the necessity of 
taking the spectrum at two thicknesses of the nonlinear 
medium hinders the use of this method for measuring pulse 
characteristics in the cross section of a beam.

In this work, we propose a new method of USP measure-
ments which requires only one nonlinear element in a laser 
beam under study. The method is rather easy to adapt to 
simultaneous measurements at many points in the cross section 
of the beam.

2. Idea of the measurement method

The principle proposed in this study for measuring the ampli-
tude and phase of USPs is as follows. One measures three 
spectra: the spectrum of a pulse before it passes through a 
nonlinear medium, its spectrum after it passes through a non-
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linear (Kerr) medium and the spectrum of the coherent sum 
of the two pulses. From these spectra, an algorithm recon-
structs the initial pulse field. This method differs from those 
above in that it includes an additional observation of spectral 
interference between an input pulse and the pulse transmitted 
through a nonlinear medium, which allows one to subse-
quently gain information about the variation in the spectral 
phase of the pulse as it passes through the nonlinear element.

Figure 1 schematically illustrates the proposed configura-
tion for the practical implementation of the method, convenient 
for performing experiments in systems operating in a single-
pulse mode. A high-power light beam is directed to a thin 
plate of a nonlinear material at a small angle to the normal. 
The signals reflected from the front and back faces of the plate 
are sent to a spectrometer to observe spectral interference. 
The signal reflected from the back face has a considerably 
lower intensity (~4 % at typical refractive indices) than the 
input signal, so the effect of nonlinearity during the backward 
pass of the signal through the plate can be neglected. The 
three spectra in question can be measured by either three 
spectrographs or one if the three beams will be separated in a 
plane normal to the plane of Fig. 1.

At a good visibility of the spectral interference pattern, 
the three spectra can be retrieved from two measurements 
(of  the output spectrum and spectral interference), which 
makes the proposed method one of the easiest to implement 
experimentally: in fact, the setup comprises one nonlinear 
element and a spectrometer.

The proposed configuration is in principle suitable for 
measuring the input, transformed and interference spectra 
at the same point in a cross section of the beam, which may 
be  important for characterising spatiotemporal distortions. 
If two-dimensional photodetector arrays (cameras) are used 
as recording elements in the spectrometers, one can obtain a 
set of spectra in a single-pulse mode along a line parallel to 
the spectrometer slit. This offers the possibility of further 
reconstructing the temporal shape along the line chosen in a 
cross section of the beam.

3. Pulse shape reconstruction algorithm

Let the field of a pulse at the input of a nonlinear medium 
have the form E(x, y, z, t) = Re (Ain(t)) exp (–iw0t), where Ain(t) 
is the complex envelope and w0 is the carrier frequency. We 
introduce the forward and inverse Fourier transform operators 
as follows:
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The experimentally measured spectrum of the input signal 
can then be written in the form

S0(w) = |F [Ain]|2.	 (3)

While travelling through a medium with Kerr nonlinearity, 
the pulse acquires an additional phase in the time domain due 
to the self-phase modulation effect. The complex envelope 
of  the pulse at the output of the nonlinear medium has the 
form [13]

ANL(t) = Ain(t) exp(igd|Ain(t)|2), 	 (4)

where g is the nonlinearity coefficient of the medium and 
d is the thickness of the plate. The maximum shift of the non-
linear phase as the pulse passes through the nonlinear medium 
is characterised by the value of the B-integral:

| | | | ,dB A z d Amax max

d 2
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where |Amax|2 is the peak signal intensity.
The experimentally measured spectral intensity at the out-

put of the nonlinear medium is

S1(w) = |F [ANL ]|2.	 (6)

It should be emphasised that neither the input signal peak 
intensity |Amax|2, nor the nonlinearity coefficient g nor their 
product is presupposed to be known. Dispersion effects and 
higher order nonlinear effects will be neglected, and we will 
assume that the nonlinear medium is sufficiently thin and that 
the spectrum is not very broad.

The spectral intensity of the coherent sum of the signals at 
the input and output of the nonlinear medium has the form

S01(w) = |F [Ain ] + F [ANL(t + t) ]|2.	 (7)

Here we take into account that the signal arriving at the 
spectrometer from the output of the nonlinear medium has a 
time delay t = 2nd/c relative to the input signal, where n is the 
refractive index of the plate and c is the speed of light.

The problem of reconstructing the shape of the pulse 
under consideration can now be formulated as follows: from 
known S0, S1 and S01 spectra, we should find such a complex 
envelope of the input field Ain(t) that relations (3), (4), (6) 
and (7) are fulfilled for some value of the gd|Amax|2 product. 
At the present stage, we do not know whether this inverse 
problem can be solved directly; nevertheless, such problems 
can be successfully solved using various iterative algorithms.

The first step – determination of the difference between 
the spectral phases at the input and output of the nonlinear 
medium, f(w) = arg(F [ANL]) – arg(F [Ain]) – can be per-
formed using a direct algorithm that has been discussed many 
times in relation to problems of spectral interferometry [1, 6]. 
The algorithm is based on separating out the rapidly oscillat-
ing component of an interference spectrum using the inverse 

Input
pulse

Nonlinear medium

|ANL(w)|2

|Ain(w)|2

|Ain(w) + ANL(w)|2

Figure 1.  Schematic configuration for measuring the field of ultrashort 
pulses.



	 A.V. Andrianov, A.V. Kim, E.A. Khazanov238

Fourier transformation to the time domain S01(t) = F –1[S01(w)], 
the filtering off of the component in the time interval around 
t, the forward Fourier transformation of the filtered signal 
S'01(t) to the frequency domain S'01(w) = F [S'01(t)] and phase 
retrieval from the resultant complex function. The phase retrieval 
from an interference spectrum is exemplified in Fig. 2.

Further, to find an approximate solution to the problem 
of reconstructing the pulse shape, we propose an iterative 
algorithm schematised in Fig. 3. The algorithm employs prin-
ciples basic to iterative algorithms for phase reconstruction 

from frequency-domain and time-domain intensity data, such 
as the Gerchberg – Saxton algorithm [14].

The operation of the algorithm begins in step 1. In the first 
iteration, an initial conjecture as to the complex spectrum of 
the pulse at the output of the nonlinear medium, A0(w), e.g. a 
noise signal with a random spectral phase, is fed to its input. 
Below, we will explain why the output signal, rather than 
the  input one, is chosen as the starting point. In step 1, the 
magnitude of the spectrum is replaced by the experimentally 
measured spectrum S1 , without changing the spectral phase. 
The resultant complex spectrum is fed to the input of step 2. 
In addition, the time-domain signal A1(t) obtained by inverse 
Fourier transformation is sent to input of steps 5 and 3. 
Step 2 uses information about the measured difference between 
the spectral phases of the signal before and after it passed 
through the nonlinear medium, f(w), and information about 
the measured magnitude of the spectrum at the input of the 
nonlinear medium, S0. After step 2, the complex spectrum 
of the signal at the input of the nonlinear medium, A2(t), is 
computed. The spectral bandwidth of the input signal is typi-
cally smaller than that of the output signal, so the effect of 
inaccurate spectral phase determination, especially at the edges 
of the spectrum, becomes reduced in step 2. It is for this reason 
that the broadest spectrum is taken as the starting point of the 
algorithm. If the output spectrum is narrower than the input 
one (e.g. when the input pulse has a corresponding phase), the 
algorithm can readily be modified by replacing S0 with S1, 
f with –f and g with –g.

Steps 3 and 4 are used to take into account the nonlinear 
propagation of the signal. In step 3, backward propagation 
from the output to the input is modelled by adding a proper 
time-domain phase (4), and in step 4 the amplitude of the 
resultant spectrum is replaced by the experimentally measured 
one, S0 . Since the nonlinearity of the medium is supposed 
to be unknown, it can be adjusted in each iteration in the 
simplest implementation of the algorithm. This can be done 
via several passes of steps 3 and 4 at different test nonlinearity 
values, gd. The best of them is the one minimising the discrep-
ancy between resultant spectrum |A3(w)|2 and the experi-
mentally measured spectrum S0.

In step 5, the time-domain shape of the pulse intensity 
profile is corrected. In doing so, use is made of the fact that 
the pulse intensity profile should be the same at the input and 
output of the nonlinear medium: |A1(t)| = |A2(t)| [see rela-
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Figure 2.  (a) Spectrum (shaded area) and phase (solid line) of a pulse at 
the input of a nonlinear medium and spectrum (dotted line) and phase 
(dashed line) at the output of the nonlinear medium; (b) interference 
spectrum (shaded area) and phase difference f(w) obtained by direct 
calculation (solid line) and extracted from the interference spectrum 
(dotted line).
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Figure 3.  Flow chart of the iterative pulse shape reconstruction algorithm; FFT and FFT–1 are forward and inverse fast Fourier transformations.
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tion (4)]. Moreover, in the case of the convergence to the cor-
rect solution, the intensity profile obtained in step 4 should 
also coincide with this profile: |A3(t)| = |A1(t)| = |A2(t)|. 
As the corrected intensity profile, the geometric mean of the 
intensities (|A1(t)|| A2(t)|| A3(t)|)1/3 was chosen for the next 
iteration. This choice ensured good results with various test pulse 
shapes. Nevertheless, other functions, such as the arithmetic 
mean, including the one with various weighting schemes, may 
occasionally ensure better results.

The convergence of the algorithm to the correct solution 
was verified by computing the discrepancy between the recon-
structed spectral intensities A1(w) and A3(w) and the experi-
mentally measured S0 and S1, as well as the discrepancy 
between the reconstructed pulse envelopes at the input and 
output of the nonlinear medium, A1(t) and A2(t):
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and N is the number of grid points in the time domain (and 
frequency domain). The algorithm minimises the dimension-
less discrepancy D = D0 + D1 + D2, which tends to zero as the 
correct solution is approached.

An interesting feature of the algorithm is that, for many 
test pulse shapes, the correct solution can be found without 
using the ‘nonlinear branch’ (steps 3 and 4). In such a case, 
the operation of the algorithm was essentially based on the 
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requirement that the pulse intensity profiles at the input and 
output of the nonlinear medium be identical, without using 
relation (4) for the time-domain phase, and the discrepancy to 
be minimised was D0 + D2. Most likely, in this implementation 
the problem may occasionally have a few correct solutions 
or very different solutions with rather similar reconstructed 
spectral intensity shapes – such examples were indeed found in 
test computations. Nevertheless, an operation mode without 
‘nonlinear branch’ feedback can be used to accelerate the 
algorithm operation in a few intermediate iterations, with 

periodic checks of the solution with allowance for nonlinearity. 
In this version, a search for the gd value is needed only in some 
iterations. In our implementation of the proposed algorithm, 
we adjusted the nonlinearity value in every fifth iteration via 
several passes of steps 3 and 4. The search was performed by 
merely trying B-integrals in the range 0.3 – 6 at a step size of 
0.05, which, according to our observations, ensured sufficient 
reconstruction accuracy and a sufficient algorithm operation 
rate. In addition, a mechanism preventing algorithm stagnation 
was implemented. If the discrepancy did not decrease over 
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150 iterations, the pulse intensity profile was replaced by the 
best profile found by that time, with the addition of random 
perturbations.

4. Numerical simulation

To verify the feasibility of using the proposed method, we 
carried out various numerical experiments in which we used 
several test shapes of input pulses, under both idealised condi-
tions, with no noise, and nearly experimental conditions.

The choice of test pulse shapes capable of adequately 
revealing potential problems in the operation of reconstruc-
tion algorithms has been repeatedly discussed in analysing 
previously proposed methods, such as FROG [3] and spectral 
interferometry [15], and in searching for ambiguities in their 
application.

All the numerical experiments were carried out using time- 
and frequency-domain grids of 512 points, which corresponds 
to a typical resolution of IR cameras. The thickness of  the 
plate corresponded to a time delay of 2.9 ps. Below, we pres-
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Figure 6.  Reconstruction algorithm results for double test pulses. The pulse parameters are indicated in text. Designations are the same as in 
Figs 4 and 5.
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ent the spectral phases of signals at the input and output of 
the nonlinear medium, rather than interference spectra, which 
carry no useful visual information.

The first series of numerical tests demonstrates the feasi-
bility of reconstructing pulses with a quadratic and a cubic time-
domain phase using the proposed algorithm. The complex 
envelope of an input pulse has the form A(t) = exp(–t2/T 2 + 
iat2 + i bt2), where T is the pulse duration and a and b are 
coefficients of the quadratic and cubic pulse phases. Figure 4 
presents algorithm operation results for pulses with various 
parameters. It is seen that, in all instances, both the shape and 

phase of the time-domain pulse envelope were reconstructed 
almost ideally. The spectral phases of the starting and trans-
formed pulses were also adequately reconstructed, which 
suggests that the nonlinearity coefficient was properly adjusted.

Next, we tested various more complex shapes of the pulse 
envelope and shape. Figures 5a – 5c present results for a super-
Gaussian pulse with a polynomial phase A(t) = exp(–t4/T 4 + 
iat2 + ibt3 + idt4), where T = 200 fs; a = 2 ps–2; b = 100 ps–3; 
and d = 100 ps–4. Figures 5d – 5f exemplify the reconstruc-
tion of a pulse with a pedestal, which has an envelope A(t) = 
a exp(–t2/T1

2) + exp[–(t – s2)2/T2
2 + ia(t – s2)2], where a = 0.3; 
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Figure 7.  Reconstruction algorithm results for noisy input data. The pulse parameters are indicated in text. Designations are the same as in 
Figs 4 – 6.
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T1 = 400 fs; T2 = 200 fs; s2 = –400 fs; and a = 2 ps–2. The 
example in Figs 5g – 5i examines a pulse with an oscillating 
tail and complex phase. The starting Gaussian pulse with a 
polynomial phase (T = 200 fs, a = 2 ps–2 and b = 100 ps–3) 
was passed through a medium with a dispersion that intro-
duced a spectral phase of the form y = sw2 + i rw3, where s = 
0.0072 ps2 and r = 0.00084 ps3. Not only the intensity profile 
of the oscillating pulse tail but also the complex time-domain 
phase were adequately reconstructed. The example in Figs 5j – 5l 
presents an asymmetric pulse with a very long pedestal and a 
strong nonlinear time dependence of its phase. Owing to the 
special pulse and phase shapes, the spectrum of the pulse 
broadens rather weakly when it passes through the nonlinear 
medium. The intensity profile reconstruction is nonideal; never-
theless, the time-domain phase is adequately reconstructed, 
up to several tens of radians. Except for a small part in the 
high-frequency region, the spectral phases of both the input and 
transformed signals are adequately reconstructed. Inadequate 
reconstruction results are noticeable in the spectral intensity 
curves of the input signal. Thus, the algorithm offers the 
possibility of assessing the quality of the solution obtained. 
Characteristic D = D0 + D1 + D2 discrepancies decrease to 
10–7 – 10–4 in the case of good convergence (the cases repre-
sented in Figs 5a, 5d and 5g). If the reconstruction result is 
nonideal, the discrepancy is at a level of 10–4 to 10–2 (D = 0.006 
in Fig. 5j).

The above examples show successful time axis direction 
determination, which is impossible in the case of algorithms 
based on the use of quadratic nonlinearity without additional 
measurements (second-harmonic FROG method and auto-
correlation method).

One commonly accepted test for checking algorithms 
of  pulse shape measurements is the use of double pulses. 
Examples of algorithm operation with such pulses are pre-
sented in Fig. 6. Figures 6a and 6d demonstrate the ability of 
the algorithm to determine the absolute phase between pulses, 
which is a nontrivial problem for many methods. Test pulses 
spaced 600 fs apart were Gaussian in shape and had poly
nomial phases with parameters T = 100 fs, a = 0 and b = 
100 ps–3 (first pulse) and T = 200 fs, a = 2 ps–2 and b = 0 
(second pulse). The absolute phase between them was zero 
(Fig. 6d) or p (Fig. 6a).

Figures 6g – 6l present reconstruction results for Gaussian 
pulses identical in duration (T = 200 fs) but differing in 
intensity (intensity ratio of 0.64). The pulses had the same 
polynomial phase with the following parameters: a = –2 ps–2 
and b = d = 0 (Fig. 6g) and a = –2 ps–2, b = –100 ps–3 and d = 
–100 ps–4 (Fig. 6l). In the latter instance, the double pulse 
intensity profile reconstruction is nonideal. Nevertheless, it is 
worth noting the adequate reconstruction of the complex T 
phase, which varies over more than 8 rad between pulse 
centres. Numerical experiments indicate that the B-integral 
values at which the method yields adequate results lie in the 
range 1.5 – 4.5, depending on the particular pulse shape.

Next, algorithm operation was tested under nearly typical 
experimental conditions. To this end, we used a rather com-
plex test signal in the form of the sum of a few pulses differing 
in amplitude and phase, which was then passed through a 
dispersive medium. In addition, a random noise was added to 
the spectra at the input and output of the nonlinear medium. 
The reconstruction algorithm results are presented in Fig. 7. 
Noise was added by two procedures. In one of them, noise 
was added to both the real and imaginary parts of the complex 

spectra before taking the square of their magnitude. This 
may correspond to some random components of light coming 
together with the pulse. In the other procedure, noise was 
added to the squares of the magnitudes of the spectra, which 
corresponds to the intrinsic noise of the spectrometer and an 
incoherent component of light. In Figs 7a – 7c, no noise is 
added. In Figs 7d – 7f, a 1 % noise is added to the complex 
amplitude (peak-to-peak relative to the amplitude of the S0  
and S1  spectra, which corresponds to a 10 % deviation at 
the maximum of the square of the magnitude of the spectrum). 
In Figs 7g – 7i, a 10 % noise is added to the complex envelope 
(which corresponds to a 30 % deviation at the maximum of the 
square of the magnitude of the spectrum). In Figs 7j – 7l, a 3 % 
noise is added to the square of the magnitude of the spectrum. 
It is seen that, in all cases, the reconstruction result is non
ideal. Nevertheless, even in the presence of a considerable 
noise component in input data, the general pulse structure is 
adequately reconstructed. A characteristic discrepancy is at a 
level of 0.01 to 0.08. Thus, the proposed algorithm is suffi-
ciently stable even in the case of a rather complex input pulse 
shape, and the presence of an additional noise in input data 
causes no catastrophic distortion of reconstruction results.

The characteristic number of algorithm iterations after 
which the discrepancy does not decrease is about 100 in simple 
cases and increases to several thousand (usually no greater 
than 10 000) for complex pulses and noisy input data. A typical 
operating time of our program implementation of the algo-
rithm on a personal computer with an Intel Core i5 processor 
(1.7 GHz) is several seconds to several minutes.

In conclusion, note that the proposed method for mea-
suring the amplitude and phase of ultrashort pulses is based 
on measuring spectral interference between an input pulse 
and the pulse transmitted through a medium with third-order 
(Kerr) nonlinearity. Our numerical experiments have demon-
strated that the proposed algorithm is effective in reconstructing 
pulses with complex intensity and phase shapes and stable to 
a noise in input data. The method allows for measurements 
in a single pulse mode and requires that only one nonlinear 
element be placed in the laser beam to be studied.
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