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Abstract.  Transverse betatron oscillations and the corresponding 
betatron emission are investigated for electrons in a strongly non-
linear wake wave excited by a high-power laser pulse in a hollow-
channel plasma. The expressions for the oscillation period and cri
tical frequency in the synchrotron regime of betatron emission are 
derived. A two-stage scheme is considered, in which an electron 
bunch formed in a plasma possessing a certain set of parameters 
generates betatron emission in a plasma possessing another set of 
parameters. The emission spectrum at the second stage is calcu-
lated in the absence of bunch acceleration.

Keywords: laser-plasma acceleration, betatron oscillations, beta-
tron emission.

1. Introduction

Interaction of laser radiation with gas targets is of interest in 
problems of electron acceleration [1, 2] and generation of 
emission in difficult-to-access ranges, in particular, in the 
X-ray range [3 – 5]. In this interaction, the leading edge of a 
high-power laser pulse ionises a gas and the main part of the 
pulse excites a wake wave in the gas. The wave propagates in 
a plasma at a velocity close to the group velocity of the laser 
pulse and possesses a strong longitudinal electric field, which 
is used for particle acceleration [6]. In addition, the transverse 
fields of the wake wave result in oscillations of accelerated 
electrons. Such oscillations are called betatron oscillations 
and provide generation of betatron emission at a frequency, 
which for strongly relativistic electrons may be in the X-ray 
range. The betatron emission of laser-plasma sources was 
repeatedly observed experimentally [7 – 10], its characteristics 
(collimation, short pulse duration, good spatial coherence) 
proved to be suitable for studying object structures [11, 12].

At sufficiently high laser field intensities [a0 = eEL × 
(m c wL)–1 > 1, where e > 0 and m are the absolute values of 
the electron charge and mass, respectively; c is the speed of 
light in vacuum; EL and wL are the peak strength and fre-
quency of the laser field] in a low-density plasma [with the 
concentration n << ncr = m w2L /(4p e 2)], the wake wave is excited 
in the so-called strongly nonlinear regime (or regime of a 

plasma cavity) [13]. In this regime, the laser pulse completely 
ejects plasma electrons, which leads to the formation of an 
electron-free region behind the pulse. The plasma cavity has a 
shape close to spherical; in the literature, it is called a ‘bub-
ble’. The feature of the strongly nonlinear regime is the elec-
tron self-injection: plasma electrons are trapped in a plasma 
bubble and accelerated in it [14]. This substantially simplifies 
experiments because obtaining accelerated bunches and beta-
tron emission does not need external electron bunches. A 
drawback of plasma acceleration methods is insufficient qual-
ity of accelerated bunches. A promising approach to solving 
the problem is the employment of a plasma with a deep chan-
nel produced in it, in which the plasma concentration along 
the axis of laser pulse propagation is almost zero [15]. The 
channel substantially affects the transverse dynamics of elec-
trons and, hence, the characteristics of betatron emission, 
which attracts interest to studying these effects.

A phenomenological model of a bubble in the plasma 
allows one to describe its shape and the field distribution both 
for a homogeneous plasma [16] and for a plasma with a chan-
nel [17, 18], and to take into account the influence of electron 
bunches on the fields in the bubble [19, 20]. These results give 
a chance to study the dynamics of electrons in the fields of a 
plasma bubble analytically. In the present work we analyse 
betatron oscillations of electrons in a plasma with a channel 
(Section 2) and basing on this analysis, estimate the spectral 
characteristics of betatron emission (Section 3). Using the 
results obtained, in Section 4 we consider a two-stage scheme 
of betatron emission, in which an electron bunch formed at 
the first stage in the homogeneous plasma possessing a certain 
concentration is used for generating betatron radiation at the 
second stage in the homogeneous plasma possessing another 
concentration or in a plasma with a channel.

We use dimensionless variables, normalising charges to e, 
velocities V to c, momenta p to mc, energies to mc 2, time to  
p
1w- , coordinates to c/wp, concentrations n to n 0, electric (E) 

and magnetic (B) fields to m c wp /e. Here, wp = /e n m4 /2
0

1 2p^ h  
is the characteristic electron plasma frequency, and n0 is the 
characteristic electron concentration in plasma (for example, 
outside the channel).

2. Betatron oscillations

The motion of electrons in the fields of a wake wave is deter-
mined by a Lorentz force F. Of most interest is to consider 
electrons trapped by the wave and accelerated or decelerated 
in it. Such electrons are relativistic and mainly move along the 
z axis, i. e., their parameter is bz = Vz /c » 1. In this case, the 
expression for the Lorentz force can be written in the simpli-
fied form:
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Fz » –Ez,   Fr » –Er + Bj,	 (1)

where z is the longitudinal coordinate (along which the laser 
pulse propagates); and r and j are the radial and angular 
polar coordinates. A specific feature of a plasma bubble in a 
plasma possessing an arbitrary transverse concentration pro-
file is that the longitudinal force acting on accelerated elec-
trons is independent of the transverse coordinate, and the 
transverse force is independent of the longitudinal coordi-
nate. In a homogeneous plasma these forces are linear [21]:

Fz » 2
x

- ,   Fr » 
r
2- ,	 (2)

where x = z – bph t (x = 0 corresponds to the centre of the 
plasma bubble); bph is the phase velocity of the wake wave. 
Note that a structure of the wave is conserved as the latter 
propagates in the plasma; hence, one may approximately 
assume that the dependence of the wake wave on time and 
coordinate is only determined by the value of x (so called 
quasi-stationary approximation). From experimental data 
follows [22] that in the case of a linearly polarised laser pulse, 
the electron betatron oscillations have a selected direction in 
the plane of the laser pulse polarisation. For simplicity, we 
will consider the electron trajectories that only lie in the plane; 
for definiteness, let it be the yz plane.

First, consider the motion of electrons without a longitu-
dinal force. In the case when particles are relativistic, with a 
small transverse momentum as compared to the longitudinal 
one (i. e., |pr| << pz), the Lorentz factor for the particle, g » 
pz, can be assumed independent of the transverse momentum, 
which allows one to describe a transverse motion by nonrela-
tivistic Newton equations for an electron of mass g. In this 
case, the focusing force (2) causes the transverse betatron 
oscillations of electrons at the betatron frequency w b0 = 
1 2g  (Fig. 1a).

If the electron undergoing betatron oscillations is acceler-
ated or decelerated, this results in adiabatic variation of the 
amplitude of betatron oscillations by the law r /

max
1 4? g-  

( p /
maxr

1 4? g ). Thus, the amplitude for the transverse momen-
tum oscillations increases in the case of acceleration; how-
ever, the ratio prmax /pz » prmax / g ?  g –3/4 reduces.

In the case of a plasma with a vacuum channel and sharp 
walls, for which the concentration is n (r) = Q (r – rc ), where 
Q (X) is the Heaviside function, the transverse force can be 
found as a derivative of the wake potential Y : Fr » ¶Y / ¶r. In 

view of the general expression for the wake potential [17] this 
force can be expressed in the form:

F r r
r

r r
2c

c
r

2 2

H=- -
-

^ h .	 (3)

Inside the channel plasma ions are absent and the trans-
verse force does not affect electrons; hence, the particle moves 
along a straight line. At channel walls, the electron turns 
around (Fig. 1b). Consider the influence of the channel on the 
period of betatron oscillations Tb. For an electron possessing 
the transverse momentum prmax at the axis r = 0, the period 
can be written as

rmax
2

/( ) ( )

dT
p U r

r2
2max

b

r
20

g
g

=
- l

ly ,	 (4)

where the potential is

( ) ( ) lnU r r r
r r r

r
r

4 2c
c c

c

2 2 2

H= -
-

- ` j; E;	 (5)

rmax is determined from the condition of turning denominator 
(4) to zero. The oscillation period can be presented as a sum of 
two times: T T Tb b

c
b
w

= + , where Tb
c  = 4 rc g /prmax is the time of 

electron motion in the channel (at r < rc ), and Tb
w  is the time of 

electron motion inside the walls of the channel (at r > rc ). The 
curves determined by expression (4) are shown in Fig. 2.
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Figure 1.  Schematic of the trajectory of the betatron oscillation of a 
particle (a) in the homogeneous plasma and (b) in the plasma with a 
channel (the channel is shown by grey colour).
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Figure 2.  Dependences of the ratio of the period of betatron oscilla-
tions in the plasma with a channel, Tb, to the period of oscillations in 
the homogeneous plasma, Tb0, on the transverse momentum of an elec-
tron for the channel radius rc = (a) 0.3 and (b) 1. Dashed curves refer to 
the calculation by formula (7) in the approximation of a small momen-
tum; dotted lines refer to the solution for the homogeneous plasma. The 
Lorentz factor of the electron is g = 400.
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There are two limiting cases, in which period (4) can be 
calculated approximately. In the case when an electron deeply 
penetrates the channel walls (i. e., rmax >> rc ), the oscillation 
period Tb will be close to that of betatron oscillations in a 
homogeneous plasma: Tb » Tb0 = 2p 2 g . This limiting case 
is realised if the condition prmax >> rc g  holds (dotted lines 
in Fig. 2). Since in our consideration the transverse momen-
tum is limited by the condition prmax << g, this approximation 
can only be valid for sufficiently narrow channels.

One more limiting case corresponds to shallow penetra-
tion of an electron into the channel walls, i.e., |rmax – rc| << rc. 
Then, the expression for potential (5) can be written in the 
approximate form

( ) ( )
( )

U r r r
r r
2c
c
2

. H -
-

,	 (6)

and the corresponding force proves to be linear: Fr (r) » 
– (r – rc) at r > rc. The part of the electron trajectory in the 
channel walls is described by the harmonic oscillator equation 
with the focusing force twice that in a homogeneous plasma, 
which, respectively, results in the time of electron turn in the 
channel wall to be by a factor of 2  smaller than in the case 
of the homogeneous plasma:  Tb

w  = 2p g . Thus, in this case, 
the total oscillation period is

2T p
r4
max

b
c

r
p g

g
= + .	 (7)

This approximation is valid at prmax << rcg  (dashed curves 
in Fig. 2).

In adiabatic variation of the Lorentz factor of the particle, 
its transverse momentum cannot vary faster than /1 4g  (in the 
case of the homogeneous plasma). Hence, in accelerating par-
ticles in a plasma channel the parameter prmax / g at a suffi-
cient channel width should become far less than rc, so that the 
second approximation will be valid.

3. Betatron emission

In Section 2, we have considered the betatron oscillations 
both in a homogeneous plasma and in a plasma with a chan-
nel. Here we study the emission of particles resulted from 
these oscillations, which is also called ‘betatron’ emission. An 
instantaneous emission of a relativistic particle is concen-
trated within a very narrow angle (1/ g) in the direction of par-
ticle motion (Fig. 1a). In the case when a relativistic particle 
undergoes betatron oscillations in the plasma, the angle of 
trajectory inclination varies within the limits from 0 to prmax /
pz. If 1 << prmax << pz, then prmax /pz >> 1/ g, i. e., this angle is 
much greater than the angle of the directional characteristic 
of the particle instantaneous emission. This means that the 
betatron emission will be observed mainly in the z-axis direc-
tion at angles less than prmax / g, and for a prescribed direction 
the emission will come from a very small part of the particle 
trajectory being presented in the form of short pulses (by two 
pulses per oscillation period). In this case, the part of the tra-
jectory from which the emission passes in the discussed direc-
tion can be approximated by a circular arc. Hence, the spec-
trum of the betatron emission of a particle in this direction 
will be determined only by the particle energy and the local 
curvature of the corresponding trajectory arc [23].

The power of spontaneous emission is proportional to the 
trajectory curvature squared; hence, the particle emission is 

most intensive from the trajectory point that is mostly distant 
from the z axis. Emission at this point is directed along the z 
axis and its total spectrum is given by the function S [3, 4]:

d
dW S

c
?

w w
w

` j,   
3

( ) ( )dS X X K Y Y/
X

5 3= y ,	 (8)

where W is the energy emitted; K /5 3  is the 5/3-order Macdonald 
function; wc = 3 g3/(2 r) is the critical frequency; and r is the 
radius of curvature for the electron trajectory at the point r = 
rmax.

Graphics of the function S (X) is shown in Fig. 3. The 
spectrum width is determined by the critical frequency wc , 
which depends on the radius of the trajectory curvature at the 
point most distant from the axis. The curvature, in turn, is 
related to the transverse force acting on the electron r = 
g / Fr (rmax). The critical frequency in this case is

( )F r
2
3

maxc r
2w g= .	 (9)

Consider the ratio between the critical frequencies in the 
homogeneous plasma and in the plasma with a channel. In 
view of (2) the critical frequency for the homogeneous plasma 
is written as

3r p
4
3

2

/

max maxc r0
2

3 2

w g
g

= = c m .	 (10)

The frequency linearly increases with increasing electron 
transverse momentum.

For a plasma with a channel, the critical frequency can be 
found from expressions (3) and (5). In the limiting cases, ana-
lytical expressions can be obtained. In the case when an elec-
tron deeply penetrates into the channel walls (rmax >> rc ), the 
critical frequency will be close to that in the homogeneous 
plasma wc0. In the contrary case, where |rmax – rc| << rc, by 
using the quadratic approximation for potential (6), we 
obtain wc » 2 wc0. Making allowance for the next infinitesi-
mal order yields

wc » 
r

p
2 1

3

max
c

c

r
0w

g
-e o.	 (11)

Dependences of the ratio of the critical frequencies on the 
electron momentum for the plasma with a channel and the 
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Figure 3.  Graphic of function S(X).
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homogeneous plasma are presented in Fig. 4. In the regime of 
electron moderate penetration into the channel walls, which is 
realised when the electrons are accelerated in a sufficiently wide 
channel, the critical frequency in the plasma with a channel is 
greater than in the homogeneous plasma by a factor of 2 , 
which corresponds to twice increased plasma concentration.

4. Two-stage method for obtaining betatron 
emission

A two-stage scheme is interesting for obtaining betatron emis-
sion. In this scheme, an electron bunch is trapped and acceler-
ated in a plasma bubble possessing one set of parameters, 
whereas the main emission occurs in a plasma with another 
parameter set. Because of the different plasma parameter sets, 
in this section we will use dimensional parameters, so that the 
critical frequency (10) in the homogeneous plasma will be 
written in the form

r

4
3 max

c
p

2 2

w
g w

=
c

.	 (12)

A bunch formed in the homogeneous plasma with a con-
centration n has the electron distribution over the transverse 
coordinates and momenta, in which the bunch radius r0 and 
the maximal transverse momentum pr0 are related by the 
expression

p m r
2 pr0 0
g

w= .	 (13)

Here, g corresponds to the Lorentz factor averaged over 
bunch electrons under the assumption about the quasi-
monoenergetic character of the bunch. Experiments show 
that laser-plasma accelerators allow one to obtain quasi-
monoenergetic bunches with the electron energy spread on 
the order of several percent [24] that will not substantially 
affect the spectrum of betatron emission.

Since the emission power is proportional to the oscillation 
amplitude, the most intensive emission will be from electrons 
possessing the maximal oscillation amplitude; hence, the 
emission spectrum will approximately correspond to the spec-
trum of oscillations with the amplitude rmax = r0. In addition, 
since the power of the synchrotron emission is proportional 
to g 4/r (where r varies not faster than /3 2g ) and, thus, strongly 
depends on the Lorentz factor of electrons, the greatest con-
tribution will be made by the emission from the trajectory 
part where electrons have the highest energy (in the case of 
acceleration it is the final part, in the case of deceleration it is 
the first part), and the critical frequency will be determined by 
the Lorentz factor g at this trajectory part. Also, we assume 
that electron acceleration at the second stage can be neglected.

The transfer between the two stages possessing different 
parameters is assumed sufficiently short so that the parame-
ters of the electron bunch remain almost constant. Since the 
electron bunch is ultrarelativistic, the forces of Coulomb 
repulsion for electrons at this part can be neglected, because 
their influence reduces inversely to g 2. The nonstationary cha
racter of the wake fields along such a transfer, observed at the 
distances on the order of several plasma wavelengths (that is, 
much less than the length of betatron oscillations), cannot 
substantially affect the bunch parameters as well. Hence, the 
bunch radius will vary due to the bunch angular divergence q 
» pr0 /(m c g). Trajectories of electrons near the axis r = 0 have 
the greatest divergence; hence, the admissible length l of the 
transfer between the two stages can be approximately esti-
mated from the inequality l q < r0, which, in view of (13), 
results in the relationship  kp l < 2g , where kp is the wave 
number of plasma oscillations at the first stage. If this condi-
tion does not hold, an external action is needed for maintain-
ing the bunch parameters.

Consider how the critical frequency in the spectrum of the 
betatron emission of this bunch will change if at the second 
stage the bunch passes to the homogeneous plasma with the 
concentration n¢. If n¢ > n then the amplitude of the bunch 
oscillations will not change in such a transition, that is, r0l  = r0. 
Then, according to formula (12) the critical frequency at the 
second stage is

n
n

c c
p

p
c

2

w w
w

w= =wl
l le o .	 (14)

If n¢ < n then the bunch radius at the second stage will be 
determined by the amplitude of oscillations of electrons pos-
sessing the greatest transverse momentum r0pl  = pr0. In this 
case, according to (13) the amplitude of oscillations is 

/r n n r0 0=l l , which leads to the following relationship for the 
critical frequency at the second stage:

n
n

c cw=wl
l .	 (15)
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Figure 4.  Dependences of the ratio of the critical frequency in the plas-
ma with a channel to the critical frequency in the homogeneous plasma 
on the transverse momentum of an electron for the channel with radius 
rc = (a) 0.3 and (b) 1. Dashed curves refer to the calculation by formula 
(11) in the small-momentum approximation; dotted curves refer to the 
solution for the homogeneous plasma. The Lorentz factor of electrons 
is g = 400.
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Now consider the case when the electron bunch of radius 
r0 formed in the homogeneous plasma with a concentration n 
passes to the plasma with a channel of radius rc > r0 and the 
concentration outside the channel n¢. As shown in Section 3, 
in the case when electrons do not deeply penetrate into the 
channel walls, that is, max(r – rc ) << rc, the critical frequency 
for the same transverse momentum of an electron will be 
greater by a factor of 2  than the critical frequency in the 
homogeneous plasma with the same concentration. In view of 
this fact, from relationships (12) and (13) one obtains

n
n2

c cw=wl
l .	 (16)

Dependences of the critical frequency at the second stage 
on the plasma concentration are shown in Fig. 5 for the cases 
of the homogeneous plasma and the plasma with a wide chan-
nel. Thus, we have calculated the emission spectrum for an 
electron bunch at the second stage under the assumption that 
the bunch is not accelerated.

5. Conclusions

We have considered the transverse betatron oscillations of 
electrons and the corresponding betatron emission in a 
strongly nonlinear wake wave excited by a laser pulse in the 
plasma for the cases of a homogeneous plasma and a plasma 
with a cylindrical channel having sharp walls. It is shown that 
for strongly relativistic particles (|pr| << pz) the period of 
betatron oscillations in the plasma with the channel depends 
on the transverse momentum of electrons. For greater trans-
verse momenta, this period corresponds to that of oscillations 
in the homogeneous plasma, and for small momenta, it grows 
in inverse proportion to the momentum. If electrons are 
accelerated in a sufficiently wide channel, the regime of a 
small transverse momentum is realised, which substantially 
increases the oscillation period as compared to the case of the 
homogeneous plasma.

The influence of the channel on the betatron emission has 
been analysed in the synchrotron regime ( prmax >> 1). The 
expression for the critical emission frequency as a function of 
the transverse electron momentum has been derived. It has 

been shown, that at large momenta, the critical frequency 
coincides with that of emission in the homogeneous plasma, 
and at small momenta it turns to be greater by a factor of 
approximately 2 .

A two-stage scheme of betatron emission is considered in 
which an electron bunch formed at the first stage in the homo-
geneous plasma possessing a certain concentration is used for 
generating the betatron emission at the second stage in the 
plasma possessing another concentration. The cases of the 
homogeneous plasma and the plasma with a wide channel at 
the second stage are separately considered. It has been shown 
how the critical frequency of the emission spectrum depends 
on the concentration in these two cases in the absence of 
acceleration.
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