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Abstract.  Within the framework of a complete vector analysis, an 
expression for the factor of spontaneous emission into the trans-
verse mode of a dielectric waveguide is found. The results are com-
pared with those previously obtained in the framework of the scalar 
approximation. It is shown that their most significant quantitative 
difference is possible for waveguides used in diode lasers and ampli-
fiers in which the transverse beam size is commensurable with the 
wavelength. The conditions for the applicability of the scalar 
approximation for calculating the spontaneous emission factor are 
obtained.

Keywords: spontaneous emission factor, diode laser, optical ampli-
fier, waveguide.

1. Introduction 

When analysing the effect of spontaneous emission on the 
characteristics of a diode laser or amplifier, a question arises 
as to the intensity of this radiation. This problem is especially 
acute in those problems where the noise characteristics are 
considered and spontaneous emission is a fundamentally 
unavoidable source of noise. Since in most diode lasers and 
amplifiers the generation of radiation and its amplification 
occur in an optical waveguide, these problems are essentially 
reduced to finding the fraction of the total spontaneous emis-
sion of an elementary radiator that is launched (is captured) 
in a dielectric waveguide. Looking ahead, we note that this 
fraction is known to be much less than unity, i.e., spontane-
ous emission is coupled into those modes that are the free 
space modes, and only a small fraction of it is captured by the 
waveguide. The determination of this fraction is the problem 
of finding the factor of spontaneous emission into the wave-
guide mode, the solution of which, due to its importance, has 
a rather long history (see, for example, [1 – 12]). To calculate 
this factor, as a starting point we make use of the almost obvi-
ous fact that the intensity of spontaneous emission into the 
mode is proportional to the fraction of its phase volume in the 
total volume of all the modes in which spontaneous emission 
takes place. 

This situation persisted until the appearance of 
Petermann’s paper [3], where an additional dimensionless fac-
tor K was introduced, whose magnitude depends on the cur-
vature of the wave front of the mode. For modes with a wave-
guide formed exclusively by an index-guided profile and a 

plane wave front, this factor is equal to unity. In lasers with a 
gain-guided (g-g) waveguide, whose modes have a significant 
curvature of the wave front, the value of this factor may 
exceed the order of magnitude. Work [3] received wide recog-
nition, and this factor was called the Petermann’s K factor in 
the literature. Then, however, critical remarks appeared 
about the validity of its use in the expression for the spontane-
ous emission into the mode [4, 9], and a discussion was even 
published on this subject [11, 12]. Critical remarks and dis-
agreements were basically reduced to different approaches to 
the condition of mode orthogonality for gain-guided lasers. 
During the polemic, not only calculations were considered, 
but also qualitative and even heuristic considerations [8]. 
Perhaps this discussion would continue even further if g-g 
lasers, starting from some time, had not lost some of their 
relevance. 

As for the question of the correct calculation of spontane-
ous emission into the mode of a diode laser or amplifier, it has 
remained controversial. However, the interest in solving this 
problem has been preserved to some extent, not only because 
of the lack of a correct solution of one of the fundamental 
problems concerning diode lasers, but also due to the recent 
appearance of new objects – integrated single-crystal multi-
section chips (see, for example, [13, 14]) based on laser hetero-
structures. Such chips can contain g-g regions of active wave-
guides in the form of optical amplifiers, optical branching 
devices and, in particular, power amplifiers considered, for 
example, in Refs [15 – 19]. Spontaneous emission in such 
devices is a ‘natural’ and unrecoverable source of noise, which 
requires its adequate consideration. 

The foregoing discussion motivated this research. In the 
approach adopted in previous papers, two approximations 
can be singled out, the validity of which is not obvious. The 
first is the scalar approximation for the mode amplitude. It is 
difficult to adopt, especially for diode laser modes, in which 
the transverse sizes of the waveguide are comparable to the 
wavelength, and especially for the case of a curved wave front 
of the mode. It is clear that in this case there is an essential 
component of the Umov – Poynting vector in the direction 
transverse to the wave propagation axis. The presence of a 
gradient of the electric field amplitude leads to a redistribu-
tion of the amplitudes of the components of the field vectors. 
This must be taken into account when calculating the power 
flow along the optical axis. The second approximation (it has 
already been mentioned above) is the orthogonality condi-
tions of the modes in a waveguide having significant optical 
losses and amplification in spatially separated regions, which 
is caused by a significant change in the imaginary part of the 
complex dielectric constant in the direction transverse to the 
waveguide axis. Although the orthogonality condition for 
modes of a lossy waveguide is rather definitely formulated in 
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Vainshtein’s book [20], its use with respect to the modes of a 
dielectric waveguide in the scalar approximation is not 
entirely obvious.

In this paper, in contrast to previous works, the analysis is 
performed in full vector representation. In addition, the cal-
culation does not rely on the condition of the mode orthogo-
nality (in explicit form). 

2. Physical model 

The approach we adopted is based on classical electrody
namics. Taking into account the fact that a consecutive calcu-
lation of spontaneous emission is possible only within the 
framework of quantum electrodynamics, we use the corre-
spondence principle between classical and quantum theories. 
In this case, we assume that averaging over a micro-ensemble 
occurs using a statistical matrix. From our problem, we 
exclude the mechanism of spontaneous emission associated 
with the intrinsic motion of a charge of an elementary radia-
tor, providing it with all the attributes of a classical dipole 
with previously known parameters. Analytical expressions 
for these parameters can be obtained within the framework of 
the quantum theory, and their numerical values are then 
found, for example, directly from the experiment, taking into 
account the analytical relations obtained. They include the 
dipole moment, lifetime, emission spectrum, etc. Thus, our 
problem is reduced to finding in a dielectric waveguide the 
amplitude of a wave generated by an emitting dipole, which is 
placed into this waveguide. 

For a metal waveguide, such a solution is well known and 
is given, for example, in [20]. It was obtained using the field 
expansion in the modes of a waveguide. The approach 
adopted in the present paper is analogous to that presented in 
[20] with some modification for the case of a dielectric wave-
guide with a substantially complex dielectric constant e. 

We will further assume that the presence of a waveguide 
does not in any way affect the character of the internal motion 
of the dipole charge, as if this dipole radiated in a homoge-
neous transparent medium with a refractive index .Ren e=  
For example, the average radiated power p0 of a harmonically 
oscillating dipole at a frequency w0 in this case would be 

p
c
d n
3

0 3
0
4

0
2

0'w
t
w

= = ,	 (1)

where d 20  is the square of the modulus of the dipole moment;  
0'w  is the quantum energy; and t is the spontaneous lifetime. 

From the frequently used similar expression, relation (1) dif-
fers only by the factor n. Equating expression (1) to the 
expression for the average power of spontaneous emission of 
an excited elementary radiator in the form /0'w t , we find the 
value of d 20  for the oscillator in question. In this form, the 
part, related to quantum mechanics, is reduced to finding t 
for spontaneous emission. In our case, the value of t is well 
known both from the calculations and from the experiment, 
and for typical direct-gap semiconductors it is ~1 ns. Within 
the framework of this approach, our problem becomes exclu-
sively classical. 

3. Calculation of the wave amplitude of a wave-
guide mode emitted by an elementary dipole 

The scheme of the waveguide model and the oscillating dipole 
for our analysis is shown in Fig. 1. The complex dielectric 

constant e(x, y) depends only on two transverse coordinates, 
and the radiation wave with the electric field intensity ampli-
tude E(x, y, z, t) propagates unlimitedly along the z axis. Let 
us consider the free propagation of a monochromatic wave in 
a waveguide. To this end, we present the vectors of the ampli-
tudes of the electric field E(x, y, z, t) and magnetic field H
(x, y, z, t) in the complex form as

{ ( , , ) ( ) . .}exp i c cx y z tE
2
1E w= - + ,	

(2)

{ ( , , ) ( ) . .}exp i c cx y z tH
2
1H w= - + .

It follows from Maxwell’s equations that the complex 
amplitude E must satisfy the well-known equation

( , ) 0rotrot k x yE E2e- =0 , 	 (3)

where k0 = w/c. The addition of equation (3) with the stan-
dard boundary conditions for waveguide modes leads to the 
fact that the solutions for E have the form

E = uk(x, y)exp(ikz),	 (4)

where k = k' + ik'' = wneff/c + ia/2, and the transverse distri-
bution of the amplitude of the wave is characterised by the 
complex vector-function uk(x, y). In this case, its square of 
the modulus – the scalar product uk(x, y) uk

* (x, y) – rapidly 
enough tends to zero at an unbounded increase in |x|, |y|. 
The discrete set of complex propagation constants k, each 
corresponding to its function uk(x, y) and therefore denoted 
by k, is a set of transverse waveguide modes. The real part 
k' determines the effective refractive index neff, and the imag-
inary part k'' corresponds to absorption a = 2k'' or amplifi-
cation g = –2k'' [if k'' < 0 for a mode with a transverse profile 
uk(x, y)]. 

Note that solutions of form (4) do not exist for all e(x, y) 
profiles, and if so, then the given profile e(x, y) does not sup-
port the waveguide propagation of radiation. We will con-
sider only those waveguides, for which there are solutions of 
form (4) already known to us solutions of a separate problem 
outside the present study. It is obvious that the change of sign 
for k in (4) changes the propagation direction of the wave 
along the z axis to the opposite one. For definiteness we 
assume that the positive sign for k corresponds to the positive 

A–u–(x, y)exp(–ikz) A+u+(x, y)exp(ikz)

e(x, y)

d

x

y
z

0
z = –Dz/2 z = Dz/2 

Figure 1.  Scheme of an optical waveguide containing a radiating di-
pole.
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sign of its real part and characterises the wave moving in the 
positive direction along the z axis. 

In what follows, we shall confine ourselves to considering 
only one, for example, a fundamental, transverse mode with 
its function u(x, y); therefore, the index k for this function is 
omitted hereafter. The amplitudes of the electric-field waves 
travelling in the positive and negative directions along the z 
axis have the form: 

( , ) ( )exp ix y kzE !u=! ! ,	
(5)

( , ) ( )exp
i
rot i

k
x y kzH E u1

0
!= =! ! ! . 

The components of the vector-functions u– and u– are con-
nected with the components of the functions u(x, y) º u+(x, y) 
and u(x, y) º u+(x, y) for the positive direction of motion by 
the relations

u– (x, y) = [ux(x, y); uy(x, y); – uz(x, y)],	
(6)

u– (x, y) = [– ux(x, y); – uy(x, y); uz(x, y)].

Without loss of generality, we place the point and harmoni-
cally oscillating dipole d in the plane z = 0 with transverse 
coordinates x0 and у0. For d we have:

( , , , ) { ( ) . .}exp i c ct x y z d td
2
1

0 wx= - +

	 ( ) ( ) ( )x x y y z0 0d d d# - - , 	 (7)

where x is the complex vector with a unit modulus. The ampli-
tude  Em of the wave excited by this dipole can be written in 
the form: 

{ ( ) . .},exp i c ctE
2
1Em m w= - + 	

(8)

( , ) ( ) 0,
( , ) ( ) 0,

exp
exp

i for
i for

A x y kz z
A x y kz z

Em
2

1

u
u

=
-

+ +

- -
)

where A± are constant coefficients. Relations (8) represent 
two waves originating from the z = 0 plane in the negative and 
positive directions. The complex amplitude Em must satisfy 
the inhomogeneous equation

4rotrot ik c
kE E jm m0

2 0pe- = 	

	 4 ( ) ( ) ( )k d x x y y z0
2
0 0 0p d d dx= - - .	 (9)

The right-hand side of (9) contains a factor corresponding to 
the external current density j, which is a time derivative of the 
dipole moment. Obviously, for z > 0 and z < 0, expressions 
(8) are one of the particular solutions of equation (3). At 
point z = 0 the solution has a singular point, which is deter-
mined by the presence of d-functions on the right-hand side of 
(9). Note that solution (9) in form (8) cannot be considered 
complete, since the dipole is emitted not only in the wave-
guide mode, but also in waves radiated into the open space. 
However, because of the uniqueness of the solution for the 

accepted boundary conditions (the asymptotics z ® ±¥), we 
exclude the fields that represent the near field of the dipole 
and the free-space waves satisfying equation (9) but not satis-
fying the boundary conditions.

To find A±, we use the identity known from vector analy-
sis, which is a vector analogue of Green’s formula:

( )rotrot rotrot dF VF Q Q
V

-y

	 ( )rot rot dSQ F F Q n
S

= -y ,	 (10)

where F and Q are regular vector functions for which there 
exist integrands and integrals over the volume V and the sur-
face S bounding this volume; and n is the outer normal to the 
surface S. As the function F we use the expression Em from 
(8), and as Q we first take the expression E– defined by (5), 
i.e.,

Q = E– = u–(x, y)exp(–ikz).	 (11)

By V we mean the volume of space enclosed between the 
planes z = –Dz/2 and z = Dz/2 (see Fig. 1). By omitting cum-
bersome but simple calculations of integrals (10), which do 
not require additional comments, and taking into account 
equalities (5), (7) and (9), we obtain 

2
( , )

iA k d
S
x y

0 0
0 0p u x

=+
- ,    [ ] d dS x yu eu #= y ,	 (12)

where e is the unit vector along the z axis. In calculating inte-
grals (10), we assume that the integral over the remote part of 
the surface S (|х|, |у| ® µ) tends to zero for all finite values of 
Dz. This is the requirement that the value of |u(x, y)| rapidly 
decreases with increasing |х| and |у|, which has already been 
mentioned as one of the boundary conditions for finding 
u(x, y). 

Then, choosing Q = E+ = u+(x, y)exp(ikz) and performing 
similar integration of identity (10), we obtain 

2
( , )

iA k d
S
x y

0 0
0 0p u x

=-
+ .	 (13)

For definiteness, we choose the coordinate system x, y 
and the normalisation of the functions u(x, y) such that the 
maximum of Re([u(0, 0) × u*(0, 0)]e) is at the origin and equal 
to unity. In view of the foregoing, the total power P+ emitted 
by the dipole in the positive direction will be as follows:

| |Re d dP c x y c A n SE H e
8 8

*
eff

2
0#p p= =+ + + +c m6 @y ,	 (14)

where

Re d dS n x yu e1 *

eff
0 #u= c m6 @y . 

Taking into account the normalisation u(x, y), we can 
understand by S0 some effective transverse area of the optical 
beam. In both directions, the total power has the form

8
| | | |P c A A n Seff

2 2
0p= ++ -^ h . 	 (15)
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Now we can find the total power DPm in the mode from 
the micro-ensemble of DN mutually incoherently radiating 
dipoles located in some neighbourhood of the point with the 
coordinates x, y, z. Using equations (12) – (14), we obtain

| |
| ( , )|P nk

S
S n d x y Nm

eff2
2

0
0
2 2G Hp uD D= 0 ,	 (16)

| ( , )| | | | | | |x y x x y y z z
2 2 2 2G Hu u z u z u z= + + .	 (17)

Here, DN = N(x, y, z)DxDyDz; zx = á|xx|2ñ; zy = á|xy|2ñ; zz = 
á|xz|2ñ; N(x, y, z) is the concentration of dipoles (electrons); 
and á|u(x, y)|2ñ is the square of the modulus of the vector func-
tion u(x, y) averaged over the micro-ensemble with the weight 
vector of the squares of the moduli of the dipole moment pro-
jections; the angular brackets in (16), (17) denote averaging 
over the micro-ensemble. To find á|u(x, y)|2ñ, one should know 
the values of zx, zy, zz determined in (17), from which it fol-
lows that zx + zy + zz = 1. It can be seen that if the modulus of 
the dipole moment is independent of the orientation direction 
(an isotropic medium, for example, ‘volume active region’), 
then it is obvious that zx = zy = zz = 1/3. In the case of a 
quantum-well active region, it is necessary in general to intro-
duce for zi = x, y, z some positive definite correction factor g, i.e., 
z = g(1/3). It is obvious that the value of g is bounded and can-
not differ much from unity. 

Note that, since averaging over the micro-ensembles 
yields áxzñ = 0, the powers radiated in the positive and negative 
directions are equal, and this has already been taken into 
account in (16). Next we represent N(x, y, z) in the factorized 
form: 

( , , ) ( ) ( , )N x y z N z f x y= , ( , )f 0 0 1= ,

	 ( , )d df x y x y Se=y ,	 (18)

where Se is the effective area occupied by electrons. Passing to 
the limit Dx, Dy ® 0, we write the power Pm(z) of spontaneous 
emission into the mode from a layer of thickness Dz occupied 
by electrons, as 

| |
( )P

S
ck n S

d N z zS
3

m
eff

a2

2
0 2pg D= 0

0 .	 (19)

Here

| ( , )| ( , )d dS x y f x y x y3
a

2

g u= y

is the effective area of the active region. Replacing d 20  by its 
value determined by equality (1), we finally obtain:

( )P h N z S zm e
0

t
w D= b,   

| |k n
n

S
S

S
Seff

e

a
2 2

0p
b

g
=

0

. 	 (20)

Equation (20) has a transparent physical meaning. The 
expression for Pm consists of the co-factors: hw/t is the power 
radiated by a single dipole into the whole space; N(z)SeDz is 
the number of dipoles in the layer; and b is a dimensionless 
quantity that can be interpreted as a spontaneous emission 
factor, which is the average fraction of the power, launched 
into the waveguide from each dipole, with respect to the entire 

power radiated by this dipole. Knowing the vector function 
u(x, y), the f (x, y) value and using equalities (12), (14), (18) 
and (19), we find the values of S, S0, Sa and Se entering into 
(20). In particular, it is not difficult to find the explicit form of 
S and S0:

3 3
( , ) ( , )S

k
k x y x yx y
0

2 2u u= +
33 --

6 @'yy

	
¶
¶

¶
¶i d d

k x y
x yx

z
y

z

0
u u u u

+ +c m1 ,	 (21)

 
33

| ( , )| | ( , )|S x y x yx y0
2 2u u= +

33 --
'yy

	
¶
¶

¶
¶Re i d d

k x y
x yx

z
y

z

0
u u u u

- +
* *

c m; E1 .	 (22)

It was assumed above that the oscillations of the dipole 
are strictly harmonic. However, it is clear that if the dynamics 
of a dipole is expressed by quasi-monochromatic oscillations 
described by a random time function, then equation (7) can 
be considered as a definition of the Fourier components of 
this random function. Then, the dynamics of the dipole is 
characterised by its correlation function or spectral density 
H(w). It follows that instead of hw0/t in (20) it is necessary to 
use the spectral density hw0H(w)/(Dwspt) corresponding to this 
value. In this case, the power Pm will correspond to its spec-
tral density

( )
( )

( ) ,P
h H

N z S z
sp

e
0w

t w
w w

D D= b ,	 (23)

where H(w) is the form factor of the spontaneous emission 
line; H(w0) = 1; òH(w)dw = Dwsp; and Dwsp is the spectral line 
width. The function H(w) is the result of summing the spectral 
densities of individual independent elementary radiators in 
accordance with the sum (16) and the integral (19). Then the 
spontaneous emission power entering the spectral interval dw 
has the form 

( )
( )

( ) .P
h H

N z S z
sp

e
0d dw

t w
w w

wD D= b 	 (24)

In a number of cases, it is necessary to know the power Plon of 
spontaneous emission into one longitudinal mode of a diode 
laser. Then, as dw it is necessary to use in (24) the intermode 
interval /( )c Lnm effd pw = u , where neffu  is the effective group 
refractive index and L is the resonator length. Besides, we 
should set, for example, Dz = L in the case of a uniform distri-
bution of the electron concentration throughout the resona-
tor length [N(z) = N = const]. As a result, we obtain 

P h NS Llon e sp
0

t
w b= ,   

( )
n L
c H

sp
eff sp

pb b
w
w

D= u
.	 (25)

Expression (20) together with equations (12), (14), (18) and 
(19) allows us to find b in the most general variants, starting 
from the known solutions of the waveguide problem [the 
known vector function u( , )x y  with its derivatives], known 
electronic properties of the active region (known values of zx, 
zy, zz) and known spatial distribution of the electron density 
N(z) f (x, y). 
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4. Comparison of the result obtained  
with the result of Petermann’s work [3] 

Let us find a simplified expression b for for one particular 
case, namely, for a plane dielectric waveguide. Such a wave-
guide is formed, for example, by a profile e(x, y) with a trans-
verse size D along the x axis, which is substantially larger than 
that along the y axis and is much longer than the wavelength; 
in this case, zx = zy = zz = 1/3. Then 

¶
¶

¶
¶

k x y
1

x
z

y
z

0
u u u u

+
* *

 » 
| ( , )|
k D
x y,x y

0

2u
 << | ( , )|x y,x y

2u , 

and the amplitude of the waveguide mode is determined by 
one scalar function u(x, y). This case corresponds to the phys-
ical model adopted in [3]. Then we obtain 

S0 » 
33

| ( , )| ,d dx y x y2u
33 --
yy   S » 

33

( , ) ,d dn x y x yeff
2u

33 --
yy

	 Sa » | ( , )| ( , )d dx y f x y x y2uy 	 (26)

and find the factor of spontaneous emission into the longitu-
dinal laser mode 

bsp »	 (27)

33

33 33

( , ) ( , )

( ) | ( , )| | ( , )| ( , )

d d d d

d d d d

nn n x y x y L x y x y

c H x y x y x y f x y x y

sp eff eff
2 2

2 3 2p

w w u

w u u

D
33

33 33

--

-- --
2

2

u yy y
yy yy

.

This expression completely coincides with the analogous 
expression derived by Petermann ([equality (19) in [3]) if we 
use identical notations: 

( , ) (0,0) ( , ),E x y E x y0 0 u=  (0,0) ( , ),i i f x ysp sp=  ( )
( )

h
H

sp
w

w
w

D= .

5. Discussion and conclusions 

A comparison of the results obtained in this paper with the 
results of [3] shows that the validity of formula (25) is based 
on the dominance of one vector component of the electric 
(magnetic) field over other vector components of the field. 
This follows from the necessity of satisfying relations (26), 
which implies a quantitative condition in the form of the 
inequality 

33

( , ) ( , )d dx y x y x yx y
2 2u u+

33 --
yy 	

	 >> 
33

¶
¶

¶
¶ d d

k x y
x y1

x
z

y
zu u u u

+
33 --

c myy ,	 (28)

that is equivalent in turn to the inequality 

33

( , ) ( , )d dx y x y x yx y
2 2u u+

33 --
yy 	

	
33

¶
¶

¶
¶

d d
k x y

x y1
z

x
z

y
2 u u u

u
+

33 --

c myy .	 (29)

It is pertinent to note here that the essential difference of 
the K-factor from unity in [3, 8] is due to a decrease in |S2| 
with decreasing width of the region occupied by the field, but 
in this case the validity of the scalar approximation becomes 
not fully justified. With the transverse optical beam size com-
parable with the wavelength, the derivatives of the function 
u(x, y) increase so much that the values of the right- and left-
hand sides of inequalities (28), (29) become commensurable. 
In any case, for the so-called fast axis, normal to the plane of 
the structure layers, this is almost always true. If we also take 
into account a small beam size (comparable to the wave-
length) along the other axis, it is difficult to hope for a satis-
factory fulfilment of inequalities (28), (29). In addition, it can 
be seen from (22) that simultaneously with the deterioration 
in the accuracy of the scalar approximation, the accuracy of 
S0 calculation also deteriorates in the calculation of S. These 
remarks can also be fully attributed to [8]; therefore, the dif-
ference in the results of the above papers may lie within the 
accuracy range due to the approximations adopted.

In view of what was said above, in order to adequately 
calculate the spontaneous emission factor, it is necessary to 
know all the components of the vector function u(x, y) and its 
derivatives appearing in (21) and (22). Nevertheless, there is a 
version of the waveguide for which the expressions for S and 
S0 are simplified. This is a waveguide formed mainly by the 
refractive index, i.e., in the case when e(x, y) is an exclusively 
real function. It is easy to show that in this case k is also a real 
quantity, and u(x, y) can be chosen so that ux(x, y) and uy(x, y) 
are real quantities, and uz(x, y) = ± i|uz(x, y)| is an imaginary 
quantity. The sign for uz(x, y) is chosen in accordance with the 
signs for ux(x, y) and uy(x, y). For such values of u(x, y), S = 
neffS0, and then the spontaneous emission factor has the form 

k nn S S
S

eff e

a
2

0

p
b

g
=

0

 » 
k S nneff
2

0

pg

0

.	 (30)

The approximate value of b on the right-hand side of (30) is 
obtained due to the fact that for the vast majority of laser 
diodes Se » Sa, since the active region, as a rule, is inside the 
optical beam. Expressions analogous to formula (30) were 
used in numerous papers earlier, beginning with [2]. The same 
formula appears in [18], with the only difference that it was 
used there for unidirectional radiation (therefore, it contains 
the factor 1/2) and with an optical confinement factor G, 
which is erroneously present in formula (9) of this work. It 
can be concluded from (30) that the spontaneous emission 
factor is practically independent of the thickness of the active 
layer of the laser diode. Note nevertheless that despite the 
similarity of expression (30) with the expressions for b used 
previously, we should bear in mind that while the quantity S0 
in (30) has a physical meaning of the cross-sectional area of 
the optical beam, its quantitative expression is not identical to 
that used previously. A particularly significant discrepancy is 
expected for small (commensurate with the wavelength) cross 
sections of optical beams, and this is the result of taking into 
account the vector nature of the optical wave field. Therefore, 
even for a waveguide formed due to the profile of the refrac-
tive index, the result of the vector analysis is different from 
the result obtained in the scalar approximation.

In conclusion, we note that although we have not used the 
orthogonality condition for the modes of the waveguide 
explicitly, it is nevertheless used implicitly in integrating equa-
tion (8) in combination with the uniqueness property of the 
solution (see [20]).
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Thus, in the present paper, in the framework of a com-
plete vector analysis, an expression for the factor of spontane-
ous emission into the waveguide mode is obtained in the form 
of equality (20). This expression is valid for dielectric wave-
guides, regardless of their parameters. For a particular case of 
a waveguide with a refractive index profile, a simplified 
expression for b [see (30)] is found that contains essentially 
only quantity, S0, depending on the transverse distribution of 
the field amplitude. It is shown how the previously used 
approximate formulas follow from the derived expression 
and what are the conditions for the validity of the approxima-
tions.
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