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Abstract.  The paper adresses the problem of detecting common 
fragments in a sequence of images recorded in volume recording 
medium by the method of superimposed Fourier holograms in the 
joint-transform scheme. As applied to the description of images as 
realisations of a homogeneous random field, the dependence of the 
detection efficiency on the number of superimposed holograms is 
analysed by estimating the image information capacity and the 
common and distinct fragments of images in the recorded sequences. 
Theoretical conclusions are confirmed by the results of numerical 
experiments.

Keywords: superimposed holograms, multiplex hologram, volume 
recording medium, holographic memory, Fourier hologram, data 
processing, correlation, image series, detection of common frag-
ments.

1. Introduction

Systems of holographic memory conventionally utilise the 
technology of superimposed holograms (SHs), that is, holo-
grams that are recorded to the same domain of a holographic 
recording medium (HRM) [1 – 7]. To this end, a working (con-
ventionally quasi-linear) part of the dynamic range of the 
HRM exposure characteristic is divided into subranges for 
recording one hologram into each of them. The set of holo-
grams recorded to a particular HRM domain constitutes a 
multiplex hologram.

The SH method is mainly used for increasing memory 
capacity [1 – 4] and performance [5 – 7]. The main approach 
refers to a volume HRM. This substantially increases the den-
sity of stored data due to the angular selectivity of volume 
holograms; however, the shift invariance is lost in this case.

In addition to memory as such, the SH method is actual for 
realising memory-based models of processing the data pre-
sented by time or spatial sequences [8 – 12], including search 
for regular properties and revealing cause-and-effect relations 
in a chain of events [13]. In this context, the key item in solving 
such problems is to reveal common, that is, completely cor-
related fragments in a sequence of images. This is important, 
for example, for analysing real-time stream video data [14].

One possible approach to solving the problem by the SH 
Fourier method was suggested and preliminarily simulated in 

[15]. The approach was developed in our paper [16], where we 
analysed the dependence of the efficiency of revealing corre-
lated fragments on the image information capacity and the 
conditions of hologram recording while describing images as 
realisations of homogeneous random fields. However, the 
analysis in [16] was only performed for the simplest case, 
namely, the case of completely orthogonal distinct fragments 
of reference images under the assumption that the Fourier 
transformation invariance to shifts is not preserved. Theore
tical conclusions were illustrated by the results of numerical 
experiments on examples of processing realisations of station-
ary random processes.

However, real images are characterised by a partial cor-
relation rather than by orthogonality. For excluding crosstalk 
in dealing with partially correlated reference and signal 
images, additional methods are used, such as the phase cod-
ing by orthogonal masks [17]. Nevertheless, the orthogonali-
sation methods for processed images cannot be employed in 
the considered problem of revealing common fragments, 
because the orthogonalisation breaks correlation of not only 
background but also of searched common fragments. Hence, 
it is topical to analyse the dependence of the efficiency of 
revealing common fragments in the image on the number of 
SHs and the HRM characteristics in a more general and real-
istic case of a partial correlation between distinct fragments of 
image than in [16].

Developing works [15, 16], we consider the Fourier holo-
graphic scheme with volume hologram recording by the joint 
transformation scheme. A more thorough analysis is pre-
sented for the dependence of the efficiency of revealing com-
mon (correlated) fragments on the number of SHs and on the 
information characteristics of images determined, addition-
ally, by the properties of volume HRMs and recording con
ditions. Results of numerical experiments are presented, 
which confirm theoretical conclusions. Terms and notations 
suggested previously in [16] are used in the present work. The 
term ‘image’ is a synonym of ‘pattern’ and ‘field of com
plex amplitudes’. The term ‘sequence’ means a partial cor-
relation of constituting images, which are at least neighbour-
ing. The problem statement in terms of correlation is impor-
tant for juxtaposing the considered method and the more 
general problem of inductive generalisation [18], since it 
assumes that there are no a priori criteria, except for the 
occurrence frequency, for ascribing an image fragment to 
common for the entire sequence (or its part) or distinct (indi-
vidual) fragments. Such a problem statement complicates the 
task because it excludes from consideration the induction 
methods based on the difference in other characteristics of 
fragments.
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2. Optical scheme and model

Below we describe an optical scheme and briefly remind the 
main results of [16] used in the present work, specifying and 
complementing those if needed. A 4f Fourier holography 
scheme is considered with SH recording by the joint-trans-
form method, see Fig. 1. To simplify expressions, whenever 
possible, we will consider images and, correspondingly, holo-
grams as functions of a single variable.

In the scheme shown in Fig. 1, a multiplex Fourier holo-
gram is recorded,

H(nx ) = ( )Hk x
k

n

1

n
=

/ ,	 (1)

produced (under the assumption of recording within a linear 
part of the dynamic range of the HRM exposure characteris-
tic) by imposing n pairs of SH images Sk(x) « Rk(x), where

Hk(nx ) = F(Sk(x))F *(Rk(x)) exp[– j w(x x( ) ( )
k
R

k
S

+ )];	 (2)

F is the symbol of the Fourier transform; nx is the spatial fre-
quency; wx = 2pnx is the circular spatial frequency; x

( )
k
R  and 

x ( )k
S  are the coordinates describing the spatial position of the 

corresponding images relative to the principal optical axis in 
the entry plane; and j is an imaginary unit. We will assume 
that Sk(x) is a signal image and Rk(x) is a reference image; 
their sequences we denote by Sk k

n
1=" ,  and Rk k

n
1=" , , respec-

tively. The images can be presented as a sum of their frag-
ments: common, that is, correlated (with the upper index ‘c’) 
and distinct, which play the role of background (with the 
upper index ‘u’):

( ) ( ) ( ), ( ) ( ) ( )S x S x S x R x R x R xc u c u
k k k k k k= + = + ,

( ) ( ), ( ) (1 ) ( )S x m S x S x m S x( ) ( )c u
k

S
k k

S
k= = - ,	 (3)

( ) ( ), ( ) (1 ) ( )R x m R x R x m R x( ) ( )c u
k

R
k k

R
k= = - ,

where m(S ), m(R ) are the specific weights of correlated frag-
ments in the corresponding images. Condition (3) admits both 
the spatial superposition of images and side by side place-
ment, including the case where one fragment flows over the 
other. We will use the latter variant as adequate to some prac-
tical applications, for example, to analysis of a video data 
stream [14].

If the distinct fragments of images are orthogonal, then 
m ( ) ( )S

kl
Sr=  и m ( ) ( )R

kl
Rr= , where ( )

kl
Sr  and ( )

kl
Rr  are the 

correlation coefficients for the corresponding images in the 
sequences Sk k

n
1=" ,  and Rk k

n
1=" , . Then, (3) can be presented in 

the form

( ) ( ), ( ) ( )S x S x S x S x1( ) ( )c u
k kl

S
k k kl

S
kr r= = -` j ,

( ) ( ), ( ) ( )R x R x R x R x1( ) ( )c u
k kl

R
k k kl

R
kr r= = -` j .

If the differing fragments of an image are not orthogonal 
then, when they are presented as realisations of a single ran-
dom field, the cross correlation coefficient r of two realisa-
tions (under the assumption of the ergodic hypothesis – dis-
joint fragments) the fields and specific weights m are related 
by the expression:

rkl = m2(1 – r) + r,   m = 
1
kl

r-

r r-
,	 (4)

where the upper indices at r, m and rkl are omitted.
In was shown [16] that for solving the problem, the condi-

tion of a constant distance between the signal and reference 
images should be fulfilled while recording all HSs:

[ , ]:n x x x x0,
( ) ( ) ( ) ( )

k l k
R

l
R

k
S

l
S

6 ! - = - .

As applied to volume holograms, this condition reduces 
to the condition of a constant position in the entry plane for 
all images of processed sequences Sk k

n
1=" ,  and Rk k

n
1=" , . Then, 

when the kth image Rk (x) is presented to a multiplex holo-
gram (1) recorded in the input plane, in the rear focal plane of 
the second Fourier-transform lens L2 one obtains the field of 
complex amplitudes (while choosing signs, we take into 
account the coordinate inversion related to the fact that the 
inverse Fourier transform cannot be realised with lenses)

Eout(x) = F (F ( Rk(x) )H(nx)) 
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Figure 1.  4f-scheme of Fourier holography: 	
Rk, Sk are a pair of images recorded to one hologram H; x

( )
k
R , x ( )k

S  are 
their coordinates relative to the principal optical axis; L1, L2 are the 
first and second Fourier-transform lenses with a focal length f; dashed 
lines show the beams reconstructing the field Eout in the output plane 
when the image Rk is supplied in the input plane.
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where * and Ä are the symbols of convolution and correlation 
operations, respectively; terms in brackets in the final expres-
sion, which describe auto- and cross-correlation functions of 
the reference images and fragments, have the sense of the 
pulse responses describing the point diffraction spreading for 
the corresponding terms. Note that in (5), as compared to (12) 
from [16], all the cross-correlation terms, which are partially 
omitted in [16], are taken into account.

Before passing to further analysis, recall that the first 
summand in the final expression (5) describes the field ( )E xout

c  
needed for solving the problem. This field is the common 
(completely correlated) fragment of signal images Sk k

n
1=" , , 

reconstructed by multiplex hologram (1). The second sum-
mand in (5) plays the role of constant noise independent of 
the number of SHs. It was shown [16] that in the case of the 
total correlation of reference images, the third summand, 
dependent on the number of SHs, reduces the effect of this 
constant noise and, thus, helps revealing the correlated frag-
ment.

The mechanism of such revealing is based on the property 
of dispersion of the sum of random processes (fields) [19, 20], 
and the dispersion itself is used as an integral estimate of 
image modulation (contrast). We are interested in estimating 
the efficiency of revealing a correlated fragment ( )E xout

c  on 
the background of the field playing the role of noise, which we 
designate as ( )E xout

u . Such an estimate can be made in terms 
of the ratio of their dispersions Dout

c  and Dout
u : the growing 

ratio with increasing n means that the modulation of the field 
( )E xout

u  reduces as compared to that of the field ( )E xout
c . In 

other words, the noticeably modulated ( )E xout
c  is well distin-

guished on the background of ( )E xout
u  that becomes more and 

more homogeneous (grey) as n increases. As a first approxi-
mation, only the first three summands (5) were taken into 
account in [16]. Below we will perform an analysis taking into 
account all the summands and arbitrary values of the cross-
correlation factor for distinct fragments of the reference 
images. This requires taking into account both the properties 
of hologram (1) from the viewpoint of conservation or non-

conservation of the Fourier transform invariance with respect 
to shift, and the information characteristics of images.

3. Estimate of the efficiency of revealing  
correlated fragments

3.1. Influence of hologram three-dimensionality

Each of the summands included in the description of the 
reconstructed field (5) is a convolution with the terms in brack-
ets that have the sense of pulsed responses: autocorrelation 
functions (ACFs) of the reference images [ ( ) ( )]R x R xk k7  
(for the first three summands) and their distinct fragments 

( ) ( )R x R xu u
k l76 @ (for the fourth summand), or joint correla-

tion functions (JCFs) ( ) ( )R x R xc u
k l76 @ of their fragments (for 

the fifth and sixth summands). The contribution of the field 
components ( )E xout

c  and ( )E xout
u  (5) is directly affected by the 

appearance of the terms in brackets included in the fourth, 
fifth, and sixth summands in (5), namely, by the possibility of 
presenting them via unimodal (having a single maximum) or 
by only multimodal (having several maxima of comparable 
values) functions. Competence or, inversely, incompetence of 
such presentation is determined, in turn, by the conservation 
or nonconservation of the Fourier transform invariance with 
respect to the shift in the scheme from Fig. 1 while using 
volume or thin HRMs, respectively:

– if the shift invariance is not preserved (volume holo-
gram), then the terms in brackets are unimodal functions and 
one should take into account only the value corresponding to 
the origin of coordinates in the correlation space;

– if the shift invariance is preserved (thin holograms), then 
the terms in brackets as JCFs are multimodal functions and 
all the correlation maxima should be taken into account – 
as the global one corresponding to the origin of coordinates 
in the correlation space, so and side maxima.

Since the maximal storage density of holographic memory 
is attained by using volume HRMs [5 – 7], we consider this 
case.

3.2. Estimation of the revealing efficiency for a volume 
hologram

If we deal with a volume HRM then, due to the nonconserva-
tion of the Fourier transform invariance with respect to the 
shift, both the auto- and cross-correlation terms in brackets 
included in expression (5) can be approximated by unimodal 
(with a single maximum) functions. In this case, for JCFs the 
only maximum is important for which the coordinate in the 
correlation space coincides with the coordinate of the ACF 
global maximum, that is, the maximum corresponding to a 
zero shift. Then, by expanding the signal images included in 
the fourth-sixth summands (5) into the sum of common 
(totally correlated) and distinct fragments according to (3), 
the reconstructed field (5) can be presented as the sum of the 
two fields:
the field of common fragments

( ) [1 ]E x m n 1( )
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c R 2

= + -^ ^h h

	 ( ) ( )S x x R x R x( )c
k k

S
k k7# + *^ h 6 @" ,
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l

k l
k
S

k l5+ +
!
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and the field of distinct (partially correlated) fragments
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Consider the field of common fragments ( )E xout
c (6). The 

global maximum amplitude of ACFs for the reference images 
[ ( ) ( )]R x R xk k7  can be estimated [19, 21] as

( ) ( )max R x R x D L L( ) ( ) ( )ACF
outk k k
R

x
R

y
R7m = =6 @ ,	 (8)

where D ( )
outk
R  is the dispersion of the reference image recon-

structed with the nonlinearity of the hologram exposure char-
acteristic of HRM filtration on the hologram taken into 
account; and L( )x

R , L( )y
R  are the reference image dimensions 

assuming a rectangular shape of the frame window.
In the case of JCFs for distinct fragments of reference 

images ( ) ( )R x R xu u
k l76 @, we, due to the nonconservation of 

the shift invariance by volume holograms, are interested in 
the amplitude of only one maximum, whose average value 
can be estimated by the formula
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where angular brackets denote averaging over the ensemble; 
r outk  is the correlation radius of the reconstructed field; k is 
the coefficient dependent on the correlation function shape; 

/( )L L( ) ( ) ( )u u u
out

R
x
R

y
R 2pW = r  is the correlation estimate of the in- 

formation capacity for distinct fragments. For an exponential 
correlation function at not very small estimates of informa-
tion capacity, we can take k » 0.25 [21]. Since, according to 
(3), L L( ) ( )u u

x
R

y
R

= m L L1 ( ) ( ) ( )u uR
x
R

y
R

-^ h  we have ( )uRW  = 
m1 ( ) ( )R RW-^ h  ( ( )RW  is the estimate for the information capa

city). The final expression for the average amplitude of the 
term under the sum sign in the third summand (6) can be pre-
sented in the form convenient for further comparison:
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W

= -^ h .	 (9)

The estimate of the contribution from the third and fourth 
summands in (6) depends on mutual disposition of common 
and distinct fragments in the reference images. If they are 
superimposed, then the correlation maximum should be taken 
into account, which amplitude is determined by the dimen-
sion of the smallest fragment of the reference images ( )R xcl  
and ( )R xu

k . For this purpose, let us introduce the ratio of 
their dimensions t taking into account (3) in the following 
way:

t = m(R)  if  m(R) £ 0.5,

t = 1 – m(R)  if   m(R) ³ 0.5.	 (10)

Then, by analogy with derivation of expression (9) and in 
view of (10) we have
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Taking into account (11) we obtain the expression for 
upper estimate of the reconstructed field of common frag-
ment:
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where

K m m m t1 2 2 2( ) ( ) ( )
( ) ( )

R R R
R R

2 k k
W W

= + - +^ ^ ^h h h; E

is the term dependent on the information characteristics of 
the reference image sequence and on the specific weight m(R ) 
of the common fragment in the reference image.

If the common and distinct fragments of reference images 
are not superimposed, then the maximum of the JCF should 
be taken into account, which is in a falling part of the latter. 
In this case, for obtaining the lower estimate one should sim-
ply neglect the corresponding term (11) in expression (12).



339Detection of common fragments in a series of images by superimposed

Dispersion of the reconstructed field of the common frag-
ment is

D n K m D1 1 ( ) ( )c
out
cR

k
S2

= + -S ^ ^h h6 @ ,	 (13)

where D ( )
out
c

k
S  is the dispersion of the reconstructed image of 

one SH in the common fragment. In view of (4) one can see 
that at the total correlation of the reference images ( ( )

kl
Rr  = 1) 

it coincides with an approximate estimate given in [16].
Consider the field of distinct fragments ( )E xout

u  (7). Since 
the summation order for all summands in (7), except for the 
first, is the same, it suffices to estimate the specific weights for 
the terms under the summation sign. The specific weight of 
the second-fifth summands in (7) is determined by the corre-
sponding terms in brackets; hence, one can employ the analy-
sis of expressions (8) – (11) performed above. By using results 
of the analysis, one may present (7) in the form
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From this, the dispersion of the field-noise ( )E xout
u can be 

presented in the form
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where D(...) is the dispersion; D ( )
out
u

k
S  is the dispersion of the 

first summand; and D12 are the covariances of the summands 
in the upper line (15).

The second summand in the final expression (15) can be 
presented, with the neglected multiplier K m ( )R2^ h, in the form
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where D ( )
out
u

kl
S  is the covariance of the reconstructed distinct 

fragments in signal images; and ( )uSW  is the correlation esti-
mate for the information capacity of fragments.

Covariance D12, by using the definition of the correlation 
factor rxy = Dxy /(sx sy), where sx and sy are the root-mean-
square deviations [19], can be presented in the form
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where ( )
out
u

kl
Sr  is the correlation factor for distinct fragments 

with the filtering on a hologram taken into account. According 
to [21], we have ( )

out
u

kl
Sr  = /2 ( ) /uS 1 2k W^ h , and the dispersion of the 

noise-field is
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Now we obtain the estimate for the efficiency of revealing 
common fragments on the background of distinct fragments 
in terms of the ratio of their dispersions
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3.3. Analysis and discussion

Since we assume that all the images are realisations of the 
same homogeneous random field, we have D ( )

out
c

k
S  = D ( )

out
u

k
S . In 

further consideration, it is convenient to represent (19) in the 
form

( )V n
D
D

n K m1 1 ( )
u

c
R 2

?= + -
S

S
^ ^h h6 @

	 K m n n1 1 1 2 2( )
( )u

R
S

2
k

W
# + - + -^ ^ ^h h h= G)) 3

	 2K m 1 2( )
( )u

R
S

k
W

- -^ ch m

	 n n1 1 2 2
( )uS

1
k

W
# - + -

-

^ ^h h= G3 .	 (20)

From analysis of (20) one may draw the following conclu-
sions:

1. With a growth of the SH number n, the estimate satu-
rates; the saturation level is determined by the information 
characteristics of signal images, namely, by the correlation 
estimate of the information capacities of their fragments 



	 A.V. Pavlov340

( )uSW  and the parameter k, which depends on the shape of the 
ACF field [21]. Omitting cumbersome formulae, for practical 
use one can employ the approximate estimate of the satura-
tion level:

( )limV n
n"3

 » 
2

( )uS

k
W  » ( )

out
u

kl
S 1

r
-

^ h .	 (21)

The dependence of the saturation level (21) only on the 
information estimate of distinct fragments of signal images 

( )uSW  relates to the mechanism of revealing common frag-
ments by background smoothing: with a growth of the SH 
number n, only the normalised estimates of the dispersion for 
distinct fragments vary, whereas the normalised dispersion of 
common fragments is independent of n.

From the practical point of view, this effect determined in 
the context of the inductive generalisation problem as the 
phenomenon of cognitive saturation [22] implies the existence 
of a certain effective SH number neff, determined by reaching 
a prescribed threshold for the first derivative (19) with respect 
to n. Above the threshold, there is no further noticeable 
increase in the estimate of the revealing efficiency for corre-
lated fragments with an increase in the number of SHs.

In turn, the estimate of the information capacity for dis-
tinct fragments of signal images ( )uSW  depends on the HRM 
properties and conditions of hologram recording: a limited 
dynamic range of the HRM results in a narrowed frequency 
band, which, according to the Wiener – Khintchine theorem, 
leads to a change in the correlation radius included in the 
expression for ( )uSW . A thorough analysis of this relationship 
is beyond the scope of the present consideration and warrants 
separate investigation.

2. The characteristics of the reference images, such as the 
correlation factor ( )

kl
Rr  and the estimate of the information 

capacity W (R), comprised in the expression for term K (m (R )) 
play a noticeable role mainly in the range of small n at large 
values of W (R) and affect the rate of reaching saturation (21), 
but not the saturation level itself.

3. If the distinct fragments of signal images are orthogo-
nal, then by definition D ( )

out
u

kl
S  = 0 and in view of (16) and (17) 

we have  (2k/ ( )uSW )1/2 º 0, and (19) takes the form
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In the first approximation for not small n, expression (22) can 
be approximated by a linear function.

If the reference images are totally correlated, then K (m (R )) = 
1 and we obtain the linear dependence:
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which coincides with results presented in [15, 16].
4. Expressions (19) and (20) are sufficiently cumbersome; 

hence, it is worth finding a simpler approximation expression 
suitable for practical use. From this point of view, the approx-
imating formula should provide acceptable estimates for the 
saturation level, that is, for the effective number of SHs neff. 
Then for not small estimates of the information capacity of 
distinct fragments of reference images ( )uRW  one can take 
K (m (R )) » (m (R ))2 which entails
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In practice, the common fragment does not dominate in 
the signal image, that is, (2k/ ( )uSW )1/2 << 1 and one can neglect 
the third summand in the denominator of this formula to 
obtain the approximating expression
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Formula (24) yields, as compared to (19), a noticeable 
inaccuracy in the range n < neff; however, at n ³ neff the esti-
mates by (19) and (22) become comparable.

4. Numerical simulation

The theoretical conclusions were illustrated by modelling a 
classical variant of inductive generalisation on an example of 
the converse syllogism ‘Darii’:

Socrates is a man, Socrates is mortal;
Plato is a man, Plato is mortal;
...
All men are mortal.

The images ‘Socrates Men’ (reference in holography terms 
or index in terms of the inductive conclusion) and ‘Socrates 
Mortal’ (signal or induced, respectively) and all following 
images were realisations of a random field of size 256 ́  256 
pixel and comprised the two fragments:

– common realisations of the field in the form of strings 
‘Men’ for the entire sequence of the reference images and in 
the form of string ‘Mortal’ for signal images; their specific 
weights (3) were 1 – m(R ) = 0.369 and 1 – m(S ) = 0.375, respec-
tively;

– distinct fragments comprising individual names as well, 
i.e. various realisations of the field with the same statistical 
characteristics.

a b

Figure 2.  (a) Reference image ‘Socrates Men’ and (b) signal image ‘So
crates Mortal’ in realisation of the two-dimensional fractal Brownian 
motion.
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The first pair of images is shown in Fig. 2. These are pre-
pared as realisations of the field described by the model of the 
two-dimensional fractal Brownian motion with the Hurst 
coefficient Н = 0.1. Several image sequences have been pre-
pared by the method of spatial filtering (Gaussian filter), 
which differed by the field correlation radius r: it varied from 
r < 1 (delta-correlated field) to r = 10 pixel. The estimates of 
the information capacity varied correspondingly, including 
estimate ( )uSW  comprised in (19). In Fig. 3, the same images 
as in Fig. 2 are shown, but for the delta-correlated field. One 
can see that in this case, the internal correlation of images is 
broken and strings readable in Fig. 2 are not visually distin-
guished now.

A record n = 63 SH was modelled, and the ratio of disper-
sions V(n) for common and distinct fragments was measured 
in the field, reconstructed in the output plane. At this stage, 
an unlimited dynamic range of the HRM was assumed. 
Amplitudes of the reconstructed field were normalised taking 
into account a limited dynamic range of the sensor. Cha
racteristics of recorded images are given in Table 1, the cor-
relation radii correspond to blurring radii for the initial delta-
correlated field of the Gaussian function.

Examples of reconstructed fields are shown in Fig. 4 at the 
SH number n = 59 for the case of delta-correlated field and at 
the correlation radius r = 2 and 10 pixel (see Table 1). In Fig. 5 
one can see dependences V(n) measured in a numerical exper-
iment for various estimates of the information capacity for 
distinct fragments of signal images. For clarity, the theoreti-
cal estimates (19) are not presented in Fig. 5 because those 
well agree with the experimental values. In Fig. 6, relative 

errors of the experimental data (Fig. 4) are given as compared 
to the theoretical estimates (19).

From analysis of Figs 5 and 6 one may conclude:
1. The accuracy of theoretical estimate (19) increases with 

the SH number n. In analogue processing, the accuracy of 
10 % is normal; hence, the accuracy of estimate (19) at n ³ 15 
for the curves (3 – 7) is quite satisfactory.

2. Estimate (19) fails for the images as realisations of 
delta-correlated fields [curves (1) and (2)]. This is explained by 
the fact that the internal correlation of images is totally bro-
ken and the information transfers to white noise, which is 
accompanied by a sharp increase in the image dispersion. The 
latter factor was not taken into account in deriving (19).

The method discussed efficiently reveals information hid-
den in noise – inscription unreadable on the etalon (Fig. 3b) 
image is reliably readable in the image reconstructed at n = 59 
SHs (Fig. 4a).

3. Expression (19) also gives an unsatisfactory estimate at 
a very low estimate of the information capacity for the com-
mon fragment ( )cSW  [curve (8)]. The reason is well seen in 
Fig. 4c: the mechanism of background smoothing ( )E xout

u  (7) 
works as efficiently as in other cases; however, the fragment 
to be revealed (string ‘Mortal’) is so spurious ( ( )cSW  = 78) that 
actually cannot be read on the homogeneous background.

5. Conclusions

Thus, the scheme of Fourier holography with SHs recorded 
to a volume recording medium from a sequence of image 
pairs allows one to solve the problem of revealing common 

a b

Figure 3.  (a) Reference image ‘Socrates Men’ and (b) signal image ‘So
crates Mortal’ in realisation of the delta-correlated field.

Table  1.  Information characteristics of images used in the numerical 
experiment.

Curve 
number 
in Figs 5
and 6

Correlation 
radius 
r/pixel

Estimate of the 
information 
capacity for 
distinct 
fragments ( )uSW

Estimate of the 
information 
capacity for a 
common 
fragment ( )cSW

Saturation 
level (21)

1 < 1 (delta-
correlated 
field)

¥ ¥ ¥

2 1 13050 7815 161
3 2 3260 1954 80
4 3 1450 868 54
5 4 815 488 40
6 5 521 312 32
7 7.5 232 139 21.5
8 10 130 78 16

a b c

Figure 4.  Reconstructed n = 59 SH image for realisation of delta-correlated field (a), and with the correlation radius r = 2 (b) and 10 pixel (c).
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fragments of signal images. The revealing efficiency is deter-
mined by the estimate of the information capacity for distinct 
fragments in the signal images, except for the case of a very 
low estimate of the information capacity of the common frag-
ments to be revealed. The theoretical estimate obtained yields 
a satisfactory accuracy as compared to experimental data at 
‘reasonable’ values of the information characteristics of an 
image, first of all, at a sufficient information capacity of the 
common fragments themselves.

It is shown that the dependence of revealing common 
fragment on the number of SHs exhibits a nonlinear character 
attaining saturation at the level determined by the informa-
tion capacity estimate for distinct fragments of signal images. 
This fact is related to the mechanism that provides revealing 
common fragments, namely, smoothing of distinct fragments 
as a background with a raising number of SHs. Dependence 
of the information characteristics of recorded images on the 
number of SHs is determined by a limited dynamic range of 
HRM. In turn, this results in a change of the saturation level. 
This mechanism deserves a particular investigation. The 
author hopes to present the corresponding results elsewhere.

Thus, new possibilities of volume Fourier SHs are shown 
in the frameworks of developing optical information technol-
ogies. Such possibilities are interesting for practice, in partic-

ular, in real-time analysis systems of replenished archive data-
bases including supervisory control systems [5 – 7, 14]. The 
method suggested can be also applied for revealing hidden 
common fragments in delta-correlated images, which look 
like white noise.
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Figure 6.  Relative error of experimental and theoretical (19) depen-
dences of the ratio of dispersions of common and distinct fragments in 
the reconstructed field on the SH number n at the image characteristics 
from Table 1.
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Figure 5.  Dependences of the ratio of dispersions for common and dis-
tinct fragments in the reconstructed field on the SH number n at the 
image characteristics given in Table 1.




