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Abstract.  We present an analytical model of a plasma bubble 
excited by a relativistic electron bunch or a high-power laser pulse 
moving in the plasma, with allowance for a surrounding thin elec-
tron layer (delta-layer). It is shown that in calculations of acceler-
ating and focusing fields, the electron layer at the bubble boundary, 
provided the layer thickness is small enough, can be considered as 
two-dimensional and consisting of surface charges and currents. 
This model is compared with the bubble model having a finite thick-
ness of the electron layer, and it is shown that the parameter region, 
within which our model is valid, is small compared to the region 
where the effect of finite thickness is significant. On the other hand, 
the proposed model, representing the simplest model of a bubble in 
a transversely inhomogeneous plasma, allows the transition to a 
model with a finite thickness of the electron layer by means of 
changing the scales of coordinates. 

Keywords: laser wake-field acceleration, strongly nonlinear regime.

1. Introduction

The main methods of electron acceleration in a plasma wake 
wave are laser wake-field acceleration (LWFA) [1] and plasma 
wake-field acceleration (PWFA) [2]. The most effective 
regime of laser-plasma acceleration is the so-called bubble 
regime [3]. In this regime, the laser intensity is high enough, 
which allows all plasma electrons to be expelled out of the 
first half period of the plasma wave. In using PWFA, the bub-
ble regime is also possible, which is achieved in the case of a 
dense relativistic electron bunch [4]. In both methods, a wake 
wave, which is free of electrons and called a bubble, surrounds 
the driver (a bunch or a laser pulse exciting the wave) moving 
at a near-light speed through the plasma [5].

A key feature of the regime of plasma bubble acceleration 
is generation of quasi-monoenergetic electron bunches [6, 7], 
for which a correct driver configuration is required. In pursu-
ing this goal, the main directions of the theoretical approach 
have been the development of analytical models [8] and deri-
vation of similarity laws [9, 10], which have been widely tested 

in 3D modelling using the ‘particle-in-cell’ (PIC) method [11]. 
Until recently, only a homogeneous background plasma has 
been studied, but some recent publications have been dedi-
cated to electron acceleration in a plasma with a hollow 
plasma channel [8, 12 – 15]. These papers consider analytical 
models for the fields inside and outside the bubble in a plasma 
with an arbitrary radial profile of particle densities. To date, 
these models predict the following advantages in the use of 
profiled plasma: 1) independent control over the focusing and 
accelerating forces [12]; 2) possibility of adjusting the length 
of laser pulse depletion and dephasing length, which can 
improve the electron energy increment [13]; 3) addition of 
new degrees of freedom that enable additional adjustment of 
the measured values, such as varying both the particle energy 
in the electron bunch and fraction of trapped particles [13]; 
4)  compensation for defocusing of a relativistic laser pulse 
[6, 16, 17]; 5) possibility of injection a pre-accelerated electron 
bunch that does not need a selection of parameters for match-
ing with a strong focusing field [8]; and 6) possibility of injec-
tion into a plasma bubble of an electron bunch with such a 
density profile that the bunch would only be accelerated in a 
uniform longitudinal electric field, not experiencing any influ-
ence from the focusing force (this allows maintaining small 
emittance and energy spread in the case that the bunch does 
not reach the walls [15]). 

In some of these works, which are based on the use of the 
Lu model [18] applied to the case of a plasma channel, first 
analytical models for the fields inside the bubble in a plasma 
channel with an arbitrary transverse density profile were 
developed. These fields depend on the envelope radius  of 
the bubble (the distance between the electron layer and the 
driver axis), which is determined by a rather complicated 
ordinary differential equation that depends on the electron 
layer shape at the bubble boundary. The electron layer 
shape (rectangular [8, 18] or exponential [19]) defines the 
bubble-surrounding fields, and this information is required, 
in particular, when considering the external injection of elec-
tron bunches.

In many previous works (see, e.g., [20, 21]) dedicated to 
the case of a homogeneous plasma, the impact of the electron 
layer was not taken into account, while the bubble shape was 
assumed to be perfectly spherical. First models of the plasma 
bubble regime were obtained using this strong approxima-
tion. In a more detailed model for a transversely inhomoge-
neous plasma, developed by Golovanov et al. [14], it has been 
established under which conditions the choice of density dis-
tributions of currents and charges in an electron layer does 
not affect the plasma bubble shape. Work [14] also discusses 
the regions of parameters, within which the plasma bubble 
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envelope equation can be represented in a simple form, and it 
is shown that these regions are similar for the similar param-
eters in significantly different electron layer profiles.

From the present work it follows that one of the parame-
ter regions is equivalent to the original assumption that the 
electron layer has a zero thickness, and the current and charge 
densities in this layer can be represented as two-dimensional 
distributions of the surface densities. A comparison with the 
model of a finite-thickness electron layer shows that the 
parameter region for which our approximation is valid is 
rather small. However, changing the longitudinal axis scale 
enables a transition to the model corresponding to another 
limiting case of a plasma bubble, when electrons in the bound-
ary layer are relativistic. Since the latter model often demon-
strates good agreement with the PIC simulation, the use of 
our model in combination with a change in the scales of coor-
dinates allows us to obtain the simplest model of a plasma 
bubble in a transversely inhomogeneous plasma. 

In the proposed model, the electronic response to a given 
driver propagating in a plasma along the longitudinal axis z is 
considered in the quasi-stationary approximation, the use of 
which is stipulated by fact that all of the processes being of 
interest to us occur over the times that are much smaller com-
pared to the characteristic time of the driver evolution. As a 
consequence, we assume that the fields only depend on x = 
ct – z [22]. In our model, coordinates are normalised to the 
inverse plasma wave number kp–1 = c/wp, velocities – to the 
velocity of light in vacuum c, charges – to the elementary 
charge e > 0, fields – to E0 = me cwp/e, and time – to wp

–1. Here, 
wp
2 = 4pe2n0/me is the electron plasma frequency, and n0 is a 

certain density used for normalisation of the electron density 
ne(r) and ion charge density rion(r). In particular, it is conve-
nient to assume that a deep channel is in-built into the homo-
geneous plasma. In this case, the unperturbed density of a 
homogeneous plasma outside the channel can be chosen as n0. 

The following section presents a plasma bubble model 
with a delta-layer in the pre-formed plasma channel, and 
then the results obtained are compared with the results of 
paper [14].

2. Delta-layer model in a plasma channel

In the development of a delta-layer model excited by a bunch 
of particles in a deep plasma channel, following [8] we sepa-
rate the regions with a high electron density (driver and accel-
erated bunch) and the regions inside the bubble, being free 
from electrons (Fig. 1). Regions I (red) and III (black dots) 
include the driver and accelerated electron bunch, respec-
tively. The fields in these regions can be used to describe a 
reverse impact of the plasma bubble boundary on electron 
bunches and their possible self-modulation. Regions II (pale 
red) and IV (blue) are located outside the driver and acceler-
ated bunch, respectively. In these regions, the current in these 
bunches affects both the magnetic field and radial electric 
field. It should be noted that our theory is also valid in the 
case when the laser driver is located in the regions where the 
laser pulse is absent, since the plasma bubble shape in a 
strongly nonlinear regime does not depend on the type of a 
driver.

Because the dimensionless longitudinal velocity of relativ-
istic electron bunches is approximately equal to unity, their 
normalised electron charge density (current) in the plasma 
bubble can be written in the form

re = Je = 
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where xd,b are the coordinates of leading edges of the driver 
and accelerated bunch, respectively; and ld,b and Rd,b are their 
lengths and radii. A scheme of a plasma bubble which corre-
sponds to distribution (1) is shown in Fig. 1. We assume that 
the symmetry of the problem under consideration is cylindri-
cal. If the electron bunch exciting the bubble has a bi-Gauss-
ian distribution with characteristic longitudinal and trans-
verse sizes sx and sr, respectively, the limits correspond to 
R 3d r. s  and l 3d . sx .

Due to their large masses, ions remain motionless on the 
time scales of interest, while their density rion(r) is homoge-
neous along the z axis. In the direction perpendicular to the z 
axis, the density rion(r) only depends on the radial coordinate 
r (distance to the axis). The distributions of the current den-
sity Jz and charge density r are separated into three regions: 
the inner part of the plasma bubble, the boundary layer, and 
the region outside the bubble. Since these densities and fields 
vanish outside the bubble, we restrict ourselves to the case r G 
rb, so that 

( , ) ( ) ( ) ( )S r J s r s r rion bz 0x r x d= - = + - .	 (2)

This source inside the electron layer only depends on x, whilst 
inside the plasma cavity (r < rb) S = S(r) = sion(r) = – rion(r). 

The continuity equation formulated in a cylindrical geom-
etry in the quasi-stationary approximation appears as
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Figure 1.  (Colour online) Partition of the plasma bubble into five re-
gions: (0) region in which electron bunches are absent; (I) region inside 
the electron bunch exciting the bubble (driver) (I); (II) region outside 
the driver; (III) region (points) inside the accelerated electron bunch; 
(IV) region outside the accelerated electron bunch. 
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and leads to a relationship between the sources located on the 
plasma bubble boundary and inside it:

( )
( )
( ( ))

s
r

c S r
b

I b
0

0x
x

x
=

- - ,	 (3)

where c0 is an arbitrary constant. Here we introduce the inte-
gral source ( ) ( ) dS r s r r rI ion

r

0
= l l ly  and observe the first differ-

ence from works [8, 14], where it was necessary to determine 
a relative thickness of the plasma bubble boundary.

If the wake potential is expressed in terms of the vector 
potential A and the wake potential Y = j – Az, the Lorenz 
gauge ∂(rAr)/∂r = – r∂Y/∂x allows us to obtain the normalised 
Poisson equation:

¶
¶

¶
¶

¶
¶

¶
¶,r r r r

A J r r r r J1 1z
z zrY

=- =- +b al k .	 (4)

From the second equation, we derive the most general wake 
potential:

( , ) ( , ) ( ) ( , ) ( )
d

dr y
y

xS x x I r
r y

0
0

0
0x x x x xY Y Y= + = +y y .	 (5)

To determine I and Y0 in each plasma bubble region, we start 
with the simplest one, namely the neutral plasma region. In 
that region Y = 0 and r > rb, i.e. Y0 = –I. Since I is the radial 
integral over all internal regions, then I = I1 + I2, where
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It follows from Eqns (2) and (3) that
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then,

( )
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dI y

S y
yIr

0
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b

xY =- = y ,	 (9)

Inside the plasma bubble, 
r
( , ) dI S y y yI

0

1x= -y . Summarising, 
we have

( , )
( )
dr y

S y
yI

r

rb
xY =- y 	 (10)

for r G rb and Y(x, r) = 0 for r > rb. If we compare expression 
(10) for the wake potential with that found in [8], we can see 
that they are virtually identical, except that the function b in 
[8], which depends on the electron layer thickness, is absent in 
Eqn (10). Since the radial component of the vector potential 
in our theory
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( )

d
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is also a derivative of Y0, the calculations are greatly simpli-
fied. Next,
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which bring us to the differential equation for the plasma 
bubble envelope:

b b( ) ( ) ( ) ( )
( )

A r r B r r C r rb b b
b

2 xL
+ + =lm .	 (13)

Here b ( ) ( ) /d dr rbx x x=l ; b ( ) ( ) /d dr rb
2 2x x x=m ;
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x xL =- l l ly 	 (15)

is the integral of the longitudinal current density formed by 
electron bunches.

A more general theory by Golovanov et al. [14] considers 
a simplified differential equation for a finite-size electron 
layer with a source S(r > rb) = s0(x)g[(r – rb)/D]. It is shown 
that in the general case, two approximations exist, in the 
frame of which the solution to this differential equation does 
not depend on the thickness D and profile g of the electron 
layer. The fields of applicability of these approximations turn 
out similar for different profiles. It can be shown that when 
use is made of a rectangular profile of the electron layer: g(x) 
= q(1 – x), where q(x) is the Heaviside step function, the dif-
ferences between the exact (numerically obtained) values of 
the coefficients A, B, C for small D and their approximate 
values in the infinitely thin layer approximation are small 
(Fig. 2).

In general, Golovanov et al. [14] single out two classes of 
thin layer approximations: the infinitely thin layer approxi-
mation and the relativistic approximation. In the first case 
D ® 0, so that the relation D << | /( ( ) ( )) |r S r M 0b I b 1  is valid, 
where
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Figure 2.  Maximum relative difference O between the coefficients A, B, 
and C calculated in the infinitely thin layer approximation and their 
exact values obtained numerically, in the space of parameters rb and D 
for an electron layer of rectangular profile and in the case of a homoge-
neous plasma. The solid line corresponds to the level of 0.25.
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( ) ( )dM x yg y y
x

1 = y .	 (16)

In the second case, the relation D >> | /( ( ) ( )) |r S r M 0b I b 1  
holds true, which physically corresponds to the fact that elec-
trons in the bubble boundary layer are relativistic (this is why 
this approximation is called relativistic).

If we compare the expressions derived in this paper for 
coefficients (14) with those obtained in [14], we can see that 
our assumption of two-dimensionality of the electron layer 
corresponds to the first approximation (infinitely thin layer 
approximation). Our assumption is also equivalent to the 
choice g(x) = d(x) for which M1(0) = 0, and therefore the cri-
terion D << | /( ( ) ( )) |r S r M 0b I b 1  is always fulfilled. 

The relativistic approximation D >>   | /( ( ) ( )) |r S r M 0b I b 1 , 
D  < rb in which the coefficients A = –SI/2 and C = –SI/(2rb), 
cannot be obtained in the framework of our consideration. 
Thus, the applicability area of the delta-layer approximation 
is limited to the parameter region marked by dark colour in 
Fig. 2. However, since for any given value of D we can find a 
sufficiently large size of the plasma bubble rb, for which the 
relativistic approximation is satisfied, this approximation is 
often in good agreement with the results of PIC simulations. 
Therefore, it makes sense to find a way to transform Eqn (13) 
with coefficients (14) into the equation in the relativistic 
approximation, for which C = –SI/(2rb).

Such a transformation is possible by changing the scale of 
the longitudinal coordinate / 2"x xu  and substitutions 
( ) ( )r rb b"x xu  and ( ) ( )2"x xL Lu u . Then b b( ) ( )r r2"x xl l u , 

b( ) ( )r r2"x xm m u , and Eqn (13) for electron layer takes the form
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which coincides with the result for the relativistic approxima-
tion in the case | SI | >> 1.

3. Conclusions

It is shown that the assumption about the existence of an infi-
nitely thin two-dimensional electron layer on the plasma bub-
ble boundary corresponds to the nonrelativistic limit of the 
model with a finite-size electron layer. Since a large part of the 
PIC simulation results corresponds to the relativistic approxi-
mation for a finite-size electron layer [14], our approach 
allows a transition to a more appropriate model by changing 
the x-axis scale. The quantitative differences between the 
results obtained using our model and the model with a finite-
size layer show that the parameter region, for which our 
model is valid, is small. At the same time, it is the simplest 
model of a plasma bubble in a transversely inhomogeneous 
plasma.
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