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Abstract.  We consider in the low-frequency approximation the 
quasi-classical equations for the ionisation and recombination 
times that arise in the analysis of high harmonic generation in the 
quasi-classical approximation. Based on the assumption that the 
ratio of the time of the subbarrier motion of an atomic electron, Dt', 
to the characteristic period of the laser pulse, T, is small, we have 
constructed a formal perturbation theory with respect to the param-
eter Dt'/T to calculate the ionisation and recombination times. The 
accuracy of the constructed perturbation theory is analysed. Using 
the approach developed, we suggest extending the classical theory 
of rescattering for linear polarisation to the case of fields with two 
spatial components.

Keywords: high harmonic generation, quasi-classical approxima-
tion, strong laser field, analytical theories.

1. Introduction 

One of the most commonly used analytical methods for ana-
lysing nonlinear phenomena induced by a strong laser field is 
the S-matrix approach [1 – 4]. In the framework of this 
approach, a strong laser field is taken into account exactly, 
while a series of perturbation theory is formally constructed 
from the atomic (or molecular) potential. As a result of such 
an expansion, the amplitude of the process induced by a 
strong laser field can be represented in the form of integrals of 
rapidly oscillating functions. For example, in the case of high 
harmonic generation (HHG), it can be written in the form*: 
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where f (t, t' ) is a smooth function; Scl(t, t' ) is the classical 
action of a particle in a laser field; A(t) is the vector potential 
of the laser field; W is the frequency of the emitted photon; 
and Ip is the ionisation potential of the atomic target. If the 
carrier frequency of the laser pulse is much smaller than the 
ionisation potential Ip, then the two-dimensional integral (1) 
can be estimated with good accuracy by the saddle-point 
method [1 – 3, 5], and the HHG amplitude can be presented as 
the sum of the partial amplitudes Aj: 

A Aj
j

=/ .	 (4)

Each partial amplitude Aj is associated with the jth closed 
trajectory (quantum orbit), determined by the times of the 
beginning of the motion (tj' ) and the return to the initial point 
(tj) [1, 5]. From the mathematical point of view, the times tj' 
and tj are the saddle points of integrand (1), and the corre-
sponding system of equations for tj' and tj is determined by 
zeroing the first derivatives with respect to t and t' from the 
phase function of integrand (1): 
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and E = W – Ip.
From the physical point of view, the system of equations 

(5) determines the quasi-classical conditions for realising the 
transition from the bound state to the state of the continuous 
spectrum (5a) and from the state of the continuous spectrum 
to the bound state with simultaneous emission of a photon 
with energy W (5b). Indeed, in the quasi-classical approxima-
tion, transitions occur at the time moment (in the general 
case, complex), for which the energies of the initial and final 
states are equal [6]. 

An elementary analysis of the system of equations (5) 
shows that the solution of the system is possible only on the 
set of complex numbers, and consequently the closed trajec-
tory corresponding to the pair of times {tj', tj} is also complex. 
In most cases, for a physical interpretation of features in the 
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HHG spectra, it is necessary to associate a classical (real) tra-
jectory with a complex trajectory, which is found from the 
classical limit of system (5). As a rule, the classical limit of the 
system of equations (5) is determined by the formal limit 
Ip ®  0. In the case of linear polarisation of the field, this 
means that an electron is released from an atom with a zero 
initial energy, propagates in a laser field along a closed classi-
cal trajectory and, after emitting a photon with energy W, 
forms a bound state. It is obvious that the system of equations 
(5) in its classical limit provides a theoretical justification for 
the classical rescattering model [7, 8]. In contrast, in the case 
of laser fields with two spatial components of the field with 
different projections of the electric vector on the x and y axes, 
the limit Ip ® 0 does not allow one to find a closed classical 
trajectory, in which case the interpretation of the HHG spec-
tra in two-component fields is based on the formalism of 
missed trajectories. Within the framework of this formalism, 
it is asserted that the absence of closed trajectories with a zero 
initial energy causes an effective suppression of the electron 
recombination process in HHG [9 – 13]. A significant draw-
back of this interpretation is that recombination is a purely 
quantum process, and its probability depends only on the 
properties of the atomic target.

In the present paper it is shown that the system of equa-
tions (5) admits limiting solutions to which there correspond 
closed classical (real) trajectories in a two-component laser 
field. Thus, the interpretation of the HHG spectra in a two-
component laser field (as in the case of a linear field) can be 
performed within the framework of the concept of closed tra-
jectories. 

2. Analysis of the HHG amplitude 
in the tunnelling limit 

Let us estimate expression (1) by successively calculating the 
integrals in t' and t by the saddle-point method. It is well 
known that in the quasi-classical approximation the major 
contribution is made only by those trajectories that are deter-
mined by the times with minimal imaginary parts [1, 14]. To 
find such trajectories, we use explicitly the real and imaginary 
parts in it t tD= +l l l and expand equation (5a), which deter-
mines the saddle points with respect to t' in a series with 
respect to Dt' to the third order:
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Note that the time of the subbarrier motion of an electron in 
a low-frequency field, determined by the imaginary part of t', 
can be considerably smaller than the characteristic period of 
the laser pulse, T = 2p/w, where w is the carrier frequency 
[15 – 18]. Taking into account that the characteristic order of 
the nth derivative in (7) is proportional to K' 2/T n, one can 
easily see that each successive term in the expansion in (7) 
with respect to the preceding one is on the order of smallness 
Dt'/T. Thus, the range of applicability of expansion (7) is 

determined by the ratio Dt'/T. Selecting the imaginary and 
real parts in equation (7), we obtain two equations:
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Expressing Dt' from equation (8a) as
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and substituting it in (8b), we obtain

2
2

2
2( )'

K
K

K
K

3
1 0

2k
-

+
=l

l
lo

p
q .	 (10)

The solution of equation (10) defines the initial (real) time 
of motion along a closed trajectory and also determines the 
time of subbarrier motion [see relation (9)]. The second term 
in (10) is determined by the time of subbarrier motion and has 
a quantum nature; therefore, we will call this term the quan-
tum correction to the condition on the energy extremum at 
the initial instant tl .

Let us study qualitatively equation (10). The second term 
as a correction to the first term in the zeroth approximation 
can be omitted. Then, equation (10) is transformed to the 
form

K 0
2
=lo .	 (11)

Equation (11) has a transparent physical meaning. Namely, it 
determines the extremum (minimum) points of the electron 
energy at the initial moment of motion along a closed trajec-
tory. We note that at the minimum point the second deriva-
tive is positive ( 2 K lp > 0), which obviously provides a positive 
value of the radicand in (9). Thus, the electron begins its 
motion along a closed trajectory at a time when its energy in 
the laser field is minimal. Note that in the case of linear polar-
isation, condition (11) is equivalent to K' = 0.

When integrating (1) with respect to t' by the saddle-point 
method, it is necessary to find the second derivative of the 
phase function at the saddle point: 
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and also to separate the real and imaginary parts in the phase 
function. Expanding Scl (3) in a series in Dt' to the third sum-
mand, we obtain
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Note that, in deriving (13), we must take into account relation 
(11) rather than (10), since the allowance for the latter leads to 
an excess of the accuracy of approximate calculations. As a 
result of calculating the integral in t' we obtain



	 A.A. Minina, M.V. Frolov, A.N. Zheltukhin, N.V. Vvedenskii218

3

( ) xp[ ( , ) ]e i i dA g t S t t t t2 clp W= +
3-

l/ y ,	 (14)

where

( )
( , ) ( , )

( , ) xp[ ( , ) / ( , )]e
g t

t t F t t

f t t t t F t t33

L

L
=

-

l l
l l l ;	

2
2( , ) ; ( , )' 't t F t tK K

2
2kL = + =l l

p
.

The sum in (14) implies summation over all solutions of equa-
tion (10) (for simplicity we do not introduce the index num-
bering these solutions).

Assuming that the pre-exponential function is a slowly 
varying function, we estimate integral (14) by the stationary 
phase method. The points of the stationary phase are found 
from the solution of equation
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where ( ) ( , )t t tK K/ l . In order to find the derivative /d dt tl , 
we differentiate equation (11) with respect to t and obtain
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As a result of integration in t, the amplitude A can be 
expressed as
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and the pair of real times { jj ,t t l } is the jth solution of the sys-
tem of equations
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Note that the result of (17) coincides in form with (4), but 
in (4) the summation is performed over quantum (complex) 

trajectories, and in (17) – along classical (real) trajectories. 
Thus, expression (17) is a representation of the amplitude of 
harmonic generation by means of partial amplitudes associ-
ated with classical closed trajectories. In the next section, we 
present a comparison of the numerical results obtained with 
the help of systems (5) and (19) (hereinafter referred to as 
‘saddle’ and ‘tunnel’ solutions, respectively). Of practical 
interest are solutions of the system of equations (19), in which 
quantum corrections are neglected, i.e., those satisfying equa-
tions

2
K 0=lo ,	 (20a)

K 2 = 2E	 (20b)

(below we will denote these solutions as ‘classical’). 

3. Numerical results 

Numerical calculations for pairs of times tj, tj' and their cor-
responding values of the classical action determining the 
HHG amplitude were carried out for linearly polarised and 
bicircular fields. In the case of linear polarisation, the vector 
potential has the form
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d
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t

t t
T
t tA R R F

2 2

2

w
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where F = exF is the field strength; w is the carrier frequency; 
T = 2pN/w is the effective pulse duration; and N is the number 
of field periods. In the case of a bicircular field, the vector 
potential is written in the form
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where w1 = w, w2 = 2w; Ti = 2pN/wi; h1 = 1; h2 = –1; and i = 1, 
2. Numerical calculations were performed for the carrier fre-
quency w = 0.775 eV, the intensity I = cF 2/(8p) = 1014  W cm–2, 
N = 3 and Ip = 13.65 eV. The characteristic values of the pon-
deromotive energy for the linearly polarised field are up(lin) = 
F 2/(4w2) = 23.9 eV and in the case of the bicircular field up(bc) = 
F 2/(2w1

2) + F 2/(2w2
2) = 5F 2/(8w2) = 59.76 eV. Figures 1 and 2 

show the calculation results for a linearly polarised field and 
a bicircular field, respectively.

As can be seen from the calculation results (see Figs 1a 
and 2a), an electron is released from the atom every half-cycle 
for a linearly polarised field [5, 8] and every third of the period 
for a bicircular field [19, 20]. It is obvious that the ionisation 
process is most effective in a time interval for which the peak 
intensity is commensurable with the maximum in the laser 
pulse (in our case this interval is defined as –T < t < T ). Note 
that in the case of linear polarisation, ionisation occurs prac-
tically at the maximum of the square of the field strength, 
whereas in the case of a bicircular field, a significant shift is 
observed from the instants of time in which the square of the 
field strength is maximal. As our analysis shows, this time 
shift is due to a nonzero initial energy at the moment of ioni-
sation in the bicircular field.
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Figure 1.  Dependences of (a) Re (t’/T ), (b) Im (t’/T ), (c) Re (t/T ) and (d) exp (–ImStot) on the reduced energy e = E/up(lin) for a linearly polarised 
laser field. Curves (a – b) have a gradient coloration in accordance with the values of exp (–ImStot)[see Stot(t, t’ ) in (2)]. The solutions corresponding 
to systems (5) (‘saddle’), (19) (‘tunnel’) and (20) (‘classical’) in Figs 1a and 1c are indistinguishable. Figures 1b and 1d show numerical results for 
two solutions that determine the largest contribution to the amplitude A. 
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Figure 2.  Same as in Fig. 1, but for a bicircular field. The reduced energy is defined as e = E/up(bc).
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In contrast to a linearly polarised field, for which a return 
to an atomic core with a certain energy is possible with almost 
the same probability along a long ( 't tj j-  > 0.65T ) and short 
( 't tj j-  < 0.65T ) trajectories [5] (see Fig. 1c), in the case of a 
bicircular field, the return is most probable only along a short 
trajectory ( 't tj j-  < 0.4T ) [19] (see Fig. 2c). Suppression of 
motion along a long trajectory is caused by an extremely low 
probability of the exit of an atomic electron into the contin-
uum. The above analysis shows that the dynamics of the elec-
tron (the process of rescattering) in linearly polarised and 
bicircular fields is significantly different, so that the identifi-
cation of analogies in electron rescattering in these fields [21] 
upon transition to a rotating coordinate system [22] is not 
consistent with physical and mathematical points of view. 

According to numerical results, the real parts for the 
recombination times obtained from the solution of systems 
(5), (19) and (20) do not differ significantly from each other. 
Let us now analyse the results for the imaginary parts t', 
which determine the imaginary part of the action Scl(t, t' ). 
Figures 1b and 1d and 2b and 2d show the dependences of the 
imaginary part t' and exp(–ImStot) on the reduced energy E. 
The imaginary parts t', corresponding to Fig. 1b are ‘classical’ 
and ‘tunnel’ solutions, were calculated with the help of rela-
tion (9) and real roots obtained from the solution of the sys-
tems of equations (20) and (19). The deviation of the two 
solutions from the ‘saddle’ solution does not exceed 10 %. The 
accuracy of the approximate solutions decreases dramatically 
in the energy region in which the second derivative Scl(t, t' ) 
with respect to t is close to zero. Indeed, following the defini-
tion of Scl(t, t’ ) [see (2)], we have

¶
¶

¶
¶

t
S

t
Kcl

2 2

2 =- ,	 (24)

i.e., in this energy region an extremum (maximum) of the par-
ticle energy is realised at the time of return (rescattering) K 2 
(see, for example, the maxima in Fig. 1c). In the vicinity of 
these energies, a caustic of ‘short’ and ‘long’ trajectories is 
observed [23], and the solution of system (5) changes drasti-
cally: for example, the imaginary part of time t' experiences a 
sharp bend (see Figs 1b and 2b), whereas the value of the 
imaginary part t' sharply increases. In this energy region, the 
solutions lie in the vicinity of the Stokes line [24] and a small 
change in E leads to a jump-like change in the asymptotic 
behaviour of the partial amplitude Aj [determined by the pair 
of solutions {tj', tj} on the jth branch of the solution of system 
(5)], which consists in changing the oscillation (or smoother) 
dependence by a sharp exponentially similar damping. It is 
obvious that the proposed method for estimating the HHG 
amplitude and calculating the times {t, t' } is not suitable for 
the caustic region and requires special consideration [25 – 28]. 
For small energies E, that is, for W ~ Ip, the accuracy of the 
solutions of system (20) deteriorates significantly. Indeed, in 
this case the classical mechanism of the electron energy 
exchange in the continuum ceases to be dominant in compar-
ison with the quantum one; therefore, the quantum correc-
tions in this energy region turn out to be significant. 

Figures 1d and 2d show the dependence of exp (–ImStot) 
on the reduced energy e = E/up(lin) (in the case of linear polari-
sation) and e = E/up(bc) (for a bicircular field). Qualitatively, 
the behaviour of exp (–ImStot) for all three types of solutions 
is the same. Moreover, the dependence of exp (–ImStot) on e 
for ‘tunnel’ and ‘classical’ solutions reduces to a ‘saddle’ solu-
tion by simple scaling: for example, with high accuracy we can 

assume that exp (–ImStot) for the ‘saddle’ solution corresponds 
to 1.2exp (–ImStot) for the ‘tunnel’ solution. This simple scal-
ing of the two results is due to the contribution of higher cor-
rections in Dt' to the imaginary part of the classical action Scl; 
however, their calculation requires a higher degree of expan-
sion of equation (5a) in a series in Dt' and is beyond the scope 
of this paper. 

4. Conclusions 

A method is proposed for estimating the HHG amplitude by 
atoms in an intense laser field with two spatial components. 
The method based on the analysis of quasi-classical equations 
at the moments of transition of a bound electron to a laser-
modified continuum and its subsequent recombination. Using 
the smallness of the time of subbarrier motion of the electron 
with respect to the characteristic period of the laser field, it is 
shown that it is possible to develop a formalism in which the 
harmonic generation amplitude can be represented as a sum 
of partial amplitudes associated with classical closed trajecto-
ries. The classical equations and quantum corrections to them 
are obtained, which determine the classical (real) times of the 
beginning and the end of motion along closed classical trajec-
tories. By the example of linearly polarised and bicircular 
fields, the accuracy of calculating the ionisation and recombi-
nation times is determined in the framework of the developed 
formalism. It is shown that the developed formalism makes it 
possible to abandon the physically unreasonable concept of 
‘missed’ trajectories in the analysis of generation of high har-
monics and perform an analysis within the framework of 
closed classical trajectories, as, for example, in the case of a 
linearly polarised field. 

In conclusion, we note that the presented formalism can 
potentially be extended to problems of harmonic generation 
with allowance for the Coulomb potential, for example, using 
an approach that uses the classical trajectories modified by 
the Coulomb interaction [18, 29, 30]. To date, the inclusion of 
the Coulomb interaction of an optical electron in the genera-
tion of harmonics has been accomplished using the heuristic 
approach [27, 31 – 33], but the accuracy and correctness of 
such a generalisation require additional studies. 
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