
Quantum Electronics  47 (6)  580 – 588  (2017)	 © 2017  Kvantovaya Elektronika and Turpion Ltd

Abstract.  A scheme of an image jitter measuring device, which uses 
an extended incoherent source as a radiation source, is presented. 
The efficiency of the measuring device is analysed analytically and 
numerically in order to justify the operation of the adaptive optical 
system that does not require special creation or formation of a ref-
erence source. The features of the formed image of incoherent radi-
ation are considered, in particular from the point of view of its pos-
sible application for measuring the phase fluctuations of optical 
waves propagating in a turbulent atmosphere (the adaptive system 
monitors the image of a self-luminous object illuminated by extra-
neous sources). The possibility of utilising a Shack – Hartmann 
wavefront sensor in adaptive systems using the image of an arbi-
trary object (or its fragment) as a reference source is shown. 

Keywords: correction, reference source, image, phase, coherence. 

1. Introduction 

The problem of optical radiation transfer through a medium 
(atmosphere) arises in a number of practical applications, for 
example, in laser energy delivery. Inhomogeneities of a 
medium, including atmospheric turbulence, become a serious 
obstacle limiting the ultimately achievable characteristics and 
capabilities of astronomical telescopes and other optoelec-
tronic systems (OES’s) [1, 2], which construct an image. It is 
known that the use of adaptive optics (AO) systems allows 
these limitations to be substantially reduced [3 – 5]. However, 
in the practical application of algorithms and AO systems, 
one needs current information about the fluctuations in the 
characteristics of an optical wave. This information can be 
obtained, in particular, by using additional (reference) 
sources, which make it possible to measure distortions in a 
radiation propagation channel [6 – 8]. 

2. Reference source as an element 
of an AO system 

Let us explain what a reference source is. On the one hand, in 
the theory of AO systems [6], this element is traditionally con-
sidered to be a model that allows limiting correction capabili-
tie to be estimated with the help of the AO system, and, on the 
other hand, it provides a real scenario for the operation of 

OES’s using AO. Thus, a reference source provides the simu-
lation of the AO system operation in corpore. 

History of the development of adaptive optics itself is 
inextricably associated with the development of views on the 
use of reference sources in various OES’s [9, 10]. This was 
especially evident in astronomical applications of AO systems 
when using so-called laser reference stars. It should be noted 
that the recent revision (see [11]) of the history of the develop-
ment of views on the use of reference sources in astronomy – 
laser reference stars (reference sources formed with the help 
of laser radiation) – makes it impossible to determine the real 
contribution of the works of this or that author. 

All work on the formation of reference stars with the help 
of laser radiation was initially classified in the US, and the 
first data were openly published only in the early 1993. The 
first publication should be considered a thematic issue of the 
Lincoln Laboratory Journal [12]. There had been no other 
open publications in the United States by this time, and one 
can be sure of this, for example, if one becomes acquainted 
with the programme and the texts of the reports at the famous 
Scintillation conference (Seattle, the USA, 3 – 7 August, 1992) 
[13]. At the same time, there were numerous open publica-
tions of Soviet researchers, who in particular studied the fea-
tures of phase and intensity fluctuations of optical waves dur-
ing a double passage through turbulence. A detailed scientific 
analysis of this problem and the first papers, which, in fact, 
led to the creation of the technique of laser reference stars, 
was given in monograph [10] (see Chapter 5). The first open 
western publication on the use of laser reference stars should 
be considered the work of Foy and Laberyrie in 1985 [14]. 

Already the first papers [7, 9, 10] on the use of specially 
created reference sources pointed to the possibility of using 
reflected waves. In this case, for example, such reference radi-
ation can be the radiation reflected from the object itself, on 
which it is necessary to focus coherent laser radiation. A situ-
ation is possible when reference radiation produced by the 
‘illumination’ of an object by a radiation beam from an addi-
tional source is used to provide the operation of a wavefront 
sensor of an AO system [15 – 21]. In this case, ‘illumination’ 
can be either coherent or incoherent. Methods for determin-
ing the phase with respect to both coherent and incoherent 
reference radiation have already been described in the scien-
tific literature [7, 22, 23]. 

3. Calculation of the image intensity 
for an incoherent radiation source 

In the present work, we calculate the distribution of the aver-
age intensity in the image plane of an incoherent object that is 
formed by the OES. The space between the incoherent radia-
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tion source and the receiving aperture of the optical system is 
filled with a turbulent atmosphere that distorts the image 
being formed. 

To eliminate turbulent distortions, use is made of an AO 
system which relies on a signal from a reference source. In our 
case, we suggest using an image of the most extended object as 
a reference source. With the help of the results of [18, 21], we 
write down the instantaneous image intensity distribution for 
an extended source of incoherent radiation generated through 
a turbulent medium in the approximation of the generalised 
Huygens – Kirchhoff method [2]: 
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Here, X is the length of the atmospheric path between an 
object and an OES; f is the focal length of the OES receiving 
device generating an image of an extended source object; Xim 
is the distance from the OES receiving aperture to the image 
plane; Iob(X, r) is the brightness distribution of the source 
object; W(  r) is the function of the pupil of the receiving lens 
of the system; S(X, r1; 0,  r1) are the phase fluctuations due to 
the action of turbulence; and k is the wave number. 

We shall analyse expression (1) in the so-called conjugate 
plane, i.e., in the plane for which the ‘thin’ lens approxima-
tion is valid: 

1/f = 1/Xim + 1/X.	 (2)

Then, from (1) we obtain 

( , ) ( , ) ( ) ( )d dX
X X

r I X W Wr1 *
,im

im
ob2

2 4
1 22 1 1 1 2g rr r r= yyyy

	 ×  {exp[ ( ) / ]exp [ ( ) / ]i ik X k Xr im1 1 2 1 2r r r r r- - - -

	 +  }[ ( , ; , ) ( , ; , )]i S X S Xr r0 01 1 1 2r r- .	 (3)

To obtain expression (3) in [18, 21], the delta-correlation 
approximation for the coherence function of initial radiation 
was used. Next, we consider some features of the image (3) 
formed by incoherent radiation, in particular the possibility 
of using it to measure the phase fluctuations of optical waves 
propagating in a turbulent atmosphere. 

4. Formulation of the Ehrenfest theorem 
for atmospheric-optical systems 

In known papers [24, 25] it was shown that the problems of 
refraction of optical radiation in atmospheric-optical systems 
are virtually reduced to the calculation of various functionals 
of the quantity r ( , , )x R

0
d g r

r=
, where

( , ) ( , / ) ( , / ),x U x U xR R R2 2*g r r r= + - ;	 (4)

0 )I( , , ) ( ,x xR Rg = ; U (x, r) is the amplitude of the optical 
field, the intensity of which is given by expression (3). 

Such a frequently measured characteristic, as the displace-
ment vector of the energy centre of gravity of the optical radi-
ation formed in the focal plane of the receiving device, can be 
represented in the form [25]: 
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where ( ) ( , ,0)dc RT xR Rt
2 g= y ; T(R) is the transmittance 

with respect to the intensity of the receiving device optics con-
structing an image (telescope); and Ft is the focal distance of 
the receiving device (telescope). 

As is known from [2, 25], expression

r ( , , ) ( , ) ( , )ix I x S xR R R
0 Rd dg r =r=

	 (6)

relates the optical wave field U(x, r) with its phase S and 
intensity I. This expression can easily be proved by differenti-
ating the function g(x, R, r). It should be noted that, strictly 
speaking, the operation of differentiating the function 
g(x, R, r) can be performed only when the phase of the wave is 
a smooth analytic function. Then, in expression (5) for the 
vector rt, after differentiation under the integral, we can pass 
to the limit r ® 0. Thus, this phase S is called analytic.

5. Singular phase of an optical wave 
and its regularisation. Basic relationships 

In some regimes of wave propagation, its phase is strongly 
‘destroyed’ and becomes a singular [25] function rather than 
an analytic one. These cases are usually characterised by a 
small radius rcoh of the spatial coherence of the field. If rcoh is 
much smaller than the effective radius of the beam itself, the 
width of the second-order coherence function ( , , )x R2 rG = 
( , , )x Rg r  coincides with rcoh with respect to the difference 

coordinate r, because ( , , )x R2 .rG  exp(– r2/r2coh). Therefore, 
for rcoh ® 0, we can assume that ( , , )x R2 .rG  exp(– r2/r2coh) 
® ( )d rr  [here ( )d rr  is the delta function]. We can show below 
that since the average value of ( , , )x Rg r  coincides with the 
coherence function, then approximately ( )( , , )x R .g dr r . 
Consequently, for small radii of the field coherence (which is 
true for the case of the formation of radiation from an inco-
herent object), in computing r ( , , )x R

0
4 g r

r=
 there arises an 

uncertainty of the singular type, namely: 

r( , , ) ( ) ( )x R
0 0

2d d dg d dr r r= =r r r r= =
.

In situations when the last relationship is fulfilled, the 
phase of a light wave can be called singular. Hence, the singu-
larity should be eliminated, or regularised. 

Regularisation is necessary when describing an incoherent 
source and a focused beam, and also in the region of strong 
turbulent beam broadening. The simplest method of regulari-
sation in the case of phase singularities is to change the order 
of the transition to the limits. To this end, the initial field, 
which is already described by the singular function ( , , )x Rg r , 
must be represented as a superposition of elementary beams 
with an analytic phase [25]. The limit transition in this super-
position (sum) with respect to some selected parameter must 
ensure that the superposition of these elementary beams is 
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close to the original singular beam. For each such elementary 
beam, the quantity r ( , , )x R

0
4 g r

r=
 is no longer singular, 

and the order of the transition to the limits can be changed: 
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Using the example of random displacements of the image 
of an optical source, we show how to regularise the singular 
phase. To do this, we represent the initial field, which we shall 
call a singular beam, in the form of a sum of elementary 
beams with an analytic phase. Then, 
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where Ik(x, R) and Sk(x, R) are the intensity and phase of the 
elementary beam with the number k, respectively. 

Let us consider in more detail the random component rt' 
of the displacement vector of the centre of gravity of the 
image rt, corresponding to the random component of the 
phase Sk’ (x, R): 
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In expression (9), calculations are performed for an elemen-
tary beam carrying a random energy flux p.

Below, we use the ray approximation in (9), since it is 
known [2, 25] that it well describes the image jitter. In the ray 
approximation, the intensities Ik(x, R) can be replaced by 
their mean values, i.e. ( , )I x Rk . Such a substitution is per-
formed both in the numerator and in the denominator of 
expression (9). This means that the random flux p for the ele-
mentary beam in the denominator of (9) is also replaced by its 
mean value á pñ. It is known that in the ray approximation the 
random phase of the wave S' is represented [2] by the geo-
metrical optics approximation with integration along the tra-
jectory of the mean ray in the beam. Then, for the average 
intensity of any elementary beam (i.e., for all values of k) we 
have
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where aeff (x) is the effective (average) radius of the elemen-
tary beam. 

In the radiation plane (x = 0), the axis of such an elemen-
tary beam is at a distance rk0 from the X axis and intersects 
this axis at x = x*. The point of intersection lies on the positive 
and negative semi-axes of X for x* > 0 and x* < 0, respec-
tively. Below, all elementary beams are assumed to be identi-
cal for simplicity. They differ from each other only in the 
position of their axes, given by the vector rk0 in the initial 

plane. In the ray approximation, the random phase of the 
wave, Sk', is represented by a geometrical optics approximation 
with integration of the deviation of the random dielectric con-
stant of the medium from unity along the path of the mean ray, 
P' (x', x, r), i.e., the value e1 = e – 1. Then, the random phase of 
the elementary beam with the number k has the form: 
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where

,, ,x x x( , ) ( ) ( )P x f x l xeffk k0r r r= +l l l ; ( , , )P x xk r r= ;

, ,,( ) ( ) ( / ) [ ( ) / ]f x x l x x x x l x x x x1 *
eff eff= - + -l l l l ;

f (x, x) = 0; , ( ) / ( )( )l x x a x a xeff eff eff=l l .

The quantities ( , )I xk r  and ( , )x rSkl  chosen in this way [by 
formulas (9) and (10)] allow us to consider as a superposition 
the sum of identical elementary beams whose axes intersect 
the X axis at point x = x* and are located at different distances 
rk0 from this axis in the initial plane x = 0. 

Passing to the integrals, using the Gaussian profile for the 
receiving device’s transmission coefficient of form T(R) = 
T0 exp (–R2/at2 ), we obtain from (9) a regularised representa-
tion for rt' : 
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T0 = const; at is the radius of the receiving telescope; a* is the 
radius of the incoherent source; and aS (x) is the effective 
radius of the composite beam, which is the sum of elementary 
beams with an analytic phase. 

As a result, we obtain expression (12), in form coinciding 
with the representation of the vector rt' for the case when the 
phase is analytic and the regularisation is not required, 
namely, with the form: 
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where
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Thus, a singular incoherent beam of radius a is easily 
approximated by the sum of elementary beams propagating 
from the initial plane x = 0, each of which has an initial radius 
equal to the coherence radius of the original incoherent singu-
lar beam [aeff (0) = rk ® 0]. In this case, we can assume in (12) 
that a = a* and the axes of all elementary pencils are parallel 
(x* ® ¥). Strong diffraction divergence leads to the fact that 
the radius of the elementary beam at the end of the path is 
much larger than at the beginning, aeff (x) >> a*. Therefore, in 
expressions (12) and (13) we can set 

( , ) / , ( ) ( )l x x x x a x a xeff
2 2 2
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6. Image jitter of extended incoherent 
astronomical sources 

Using representation (13) of the energy centre of gravity (vec-
tor rt'  ), we can calculate the cross-correlation function  

, ) 1t=t2r(B 1t t2r r rl l l l  of two such vectors, 1tr  and 2tr . In 
the calculations we use the model of the turbulence spectrum, 
which takes into account the finiteness of the outer scale of 
turbulence [2, 9, 24]: 
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2 11 3 2

0
2k x x k k k xF = - -- ,	 (15)

where Cn
2(x) is the structural parameter of the refractive index 

of the atmosphere; k is the wave number;  k0(x) = 2p/L0(x); 
L0(x) is the outer scale of atmospheric turbulence; and A0 = 
0.033. 

In this case, a turbulent medium is given by a set of atmo-
spheric profiles of the structural parameter of the refractive 
index Cn

2(x) and the outer turbulence scale L0(x), which are 
the functions of the coordinates along the propagation path 
of the optical wave. 

Let us elaborate the optical scenario: suppose that two 
identical receiving telescopes are used, separated by a distance 
R in the observation plane, provided with the same instru-
ments that measure the centre of gravity of the random dis-
placement of images due to the turbulence of the atmosphere. 
These telescopes are aimed at two identical incoherent radia-
tion sources, spaced by a distance r in the original plane. 
Incoherent sources and receiving telescopes are separated 
from one another by a distance x. The entire space between 
the initial plane and the viewing plane is filled with a turbu-
lent medium. Proceeding from such a scenario, the authors of 
Refs  [24,  25] calculated the cross-correlation function 

, )(B t t1 2r rl l  of random displacements 1trl  and t2rl  of two 
images of incoherent sources was calculated. Such a correla-

tion function in the ‘flat-Earth’ approximation [2] is given in 
the form: 
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where 1F1 is the Gauss hypergeometric function; h0 is the 
height of the location of receiving telescopes above the under-
lying surface; q is the zenith angle of the centre between two 
incoherent sources; and x is the distance between the plane of 
the sources and the plane of observation. 

This optical measurement scenario and formula (16) are 
the most common; simpler situations are also possible. 
Thus, if the incoherent source is only one and it is observed 
by two receivers, then r = 0 and in formula (16) only the 
distance R between two receivers varies. If there are two 
sources and they are observed simultaneously by only one 
receiving telescope, then R = 0 and only the distance r 
between two sources varies. For a point source (a spherical 
wave) a* = 0, and we obtain the well-known expression for 
the correlation function of the displacement of images of 
two point sources, each taken by its own telescope. Using 
expression (16), it is possible to perform calculations for 
various scenarios of optical observations. 

7. Calculation for astronomical paths 

Let us consider the case of practical use of incoherent 
astronomical sources and the operation of the system 
through the entire thickness of the atmosphere. This case is 
realised, for example, when using sunspots for measuring 
the image jitter in the focal plane of a solar telescope. The 
measurements are carried out using a Shack – Hartmann 
wavefront sensor. In this case, in expression (16) it is neces-
sary to pass to the limit x ® ¥. We introduce two new 
parameters: a0 = a*/x is the angular radius of the receiving 
telescope and b0 = r/x is the angular distance between two 
astronomical extended incoherent sources. We also assume 
that atmospheric turbulence is described by the 
Kolmogorov model, i.e., L0(x) ® ¥, then 
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where st2 = B(0, b0, a0) is the image jitter variance. 
Next, we present numerical estimates of the mutual jitter 

of two images for one extended incoherent astronomical 
source on inclined paths. They can be two images of the same 
sunspot, measured by two spatially separated sensors. For the 
Shack – Hartmanm sensor, these can be different sub-aper-
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tures of the same sensor. It is easy to show from (17) that for  
b0 = 0
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Then all the characteristics (18) become functions of one gen-
eralised parameter a0 heff secq/at. In numerical calculations we 
use the well-known generalised model of the vertical profile 
Cn
2(h) [2, 25]:

Cn
2(h) = Cn

2(h0)(h/h0)–2/3 exp (– h/heff),  h H h0,	 (19)

where heff is the effective thickness of the turbulent atmo-
sphere (for the model used,  heff » 3200 m); and h is the cur-
rent height above the underlying surface. 

Figures 1 and 2 present the results of numerical calcula-
tions of the correlation function and variance. Figure 1 shows 
the dependence of the ratio st2 to the variance of the jitter of a 
spherical wave ( , , )B x 0 0,t sp

2s =  on the angular size of an 

extended incoherent source a0. It is seen that for a typical tur-
bulence model and a typical size of a measuring telescope, 
~15 cm, deviations from the jitter of a spherical wave will not 
exceed 5 % – 10 % for an extended source with a size of no 
more than 20 arcsec.

Figure 2 shows the dependences of the cross-correlation 
coefficient of random displacements of images of an extended 
source with an angular size of 100 arcsec and a point source 
on the normalised distance between two receiving telescopes. 
In particular, it was found that even for R/at ~ 10, the corre-
lation for an extended source differs significantly from that 
for the limiting case, i.e. a point object. 

8. Operation of a Shack – Hartman wavefront 
sensor in the differential regime 

Based on the results of the calculations performed, we can 
evaluate the efficiency and correctness of the operation of a 
differential turbulence meter using a signal from a 
Shack – Hartmann wavefront sensor, which represents a cor-
relation Shack – Hartman sensor operating in the differential 
image motion monitor regime [26 – 28]. In this case, the dif-
ferential circuit is formed by several pairs of segmented sub-
apertures of the sensor. The use of such a sensor is equivalent 
to the following observation scheme: on an astronomical path 
there is an incoherent extended radiation source with a cer-
tain angular size. Such an object may be a solar pore, a sun-
spot or the edge of the solar disk. Let us distinguish in this 
sensor two identical receiving sub-apertures, which, for the 
sake of simplicity of further analysis, will be assumed to be 
Gaussian. Then, we can use the results of calculations [25] for 
vertical and inclined paths, on which turbulence is described 
by the Kolmogorov model. It is known that the differential 
measuring device actually estimates the average square of the 
difference of random displacements (the jitter effect) of two 
images characterised by two displacement vectors of the cen-
tre of gravity, 1trl  and t2rl , of two images, i.e., measures the 
magnitude of the structural function of the random angle of 
arrival , )(D t t1 2r rl l  = t t1 2 ]

2[ r r-l l . In this case, the averag-
ing t t1 2 ]

2[ r r-l l  is performed over an ensemble of turbulent 
fluctuations. 

For the variance of the difference t t1 2 ]
2[ r r-l l , it is easy 

to obtain from (18) the expression 
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which can be analysed from the point of view of the influence 
of the size of the incoherent extended source on the measure-
ment data obtained with the help of this sensor. To simplify 
the analysis as much as possible, we consider the case of verti-
cal paths, i.e., q = 0, and set also h0 = 0; then, 
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For the case of a point reference source, the parameter a0 = 0, 
and from (21) we obtain 
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Figure 1.  Dependence of the ratio st2/ ,t sp
2s  on the angular size of an 

astronomical extended source a0. Here and in Figs  2 and 3, heff = 
3200  m, h0 = 6 m, q = 45°, at = 0.15 m.
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Figure 2.  Dependences of the cross-correlation coefficient  Bt/st2 on the 
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This expression contains only two parameters, i.e., the size of 
the receiving apertures at and their mutual separation R. It is 
known that the degenerate Gauss hypergeometric function 
from (21), (22) has the following properties: 

for small values of the argument (R < a) 
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Then, for the most interesting case (R > a), we obtain from 
(22) the expression
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This formula is used by virtually all the developers of wave-
front sensors to estimate the Fried radius. However, it is not 
difficult to see that for a telescope using extended objects on 
the Sun, the application of this formula can lead to an error. 
We will estimate it. To this end, formula (21) is calculated for 
the case of large separation of sub-apertures: 
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To carry out a comparative analysis, it is necessary to intro-
duce a model for the vertical evolution of the quantity Cn

2(h), 
and also for the ratio between R and a0. The simplest model 
for Cn

2(h) is exponential, which has the form: 

Cn
2(h) = Cn

2(0)exp(– h/hx),	 (25)

where hx is the effective atmospheric thickness of turbulence. 
In analysing such a model, it is necessary to consider the 

relationships between the sizes of receivers at and the product  
a0hx. Note that the actual values of the parameters in question 
can be determined on the basis that the size at is usually cho-
sen to be ~r0 (the Fried radius). Then, the size of the object in 
the image of the Sun must be limited by the condition: 

a0 < r0 /hx .	 (26)

In the experiment, these two parameters entering into condi-
tion (26) are easily estimated: if the vertical profile of turbu-
lence is known, they are calculated from the first moments of 
this profile: 

/3 5-3 3 3
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0 0 0
? =x0 c my y y 	 (27)

However, as the analysis of various schemes for introducing 
AO systems into solar telescopes shows, not all equipment 
designers provide in practice the fulfilment of a simple condi-
tion (26). This, in turn, leads both to distortions in the work 
of the developed wavefront sensor and to errors in estimating 
the integral value of turbulence, and consequently, the Fried 
radius. 

We shall calculate these possible errors by using formulas 
(23) and (24). Equating their values, we obtain the relation 
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Here, in the left-hand side, we have introduced the notation 
of the integral profile 

3 2
( )dhC hn

0
ty , measured with an error in 

view of the use of the assumption that the reference object is 
point-like, and in the right-hand side a correct estimate of the 
integral turbulence profile 

3 2
( )dhC hn

0
y  is presented, which is 

obtained on the assumption that the object is extended. Then, 
from (28) we approximately obtain that this assumption leads 
to an underestimation of the ratio 
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by approximately h1 / ( / )a t0
2 2 21

6 a- x  times. For example, an 
estimate at a Fried radius of r0 = 5 cm (for a wavelength of 
0.55 mm) and an atmospheric turbulence thickness of hx =  
1000 – 1500 m yields that with an angular size of the reference 
object on the Sun, 3 and 5 arcsec, an understatement lies in 
the range from 5 % to 30 %. And this, accordingly, will over-
state the estimate of the Fried radius. Formula (24) shows 
that a correct estimate of the integral profile of turbulence 
and, consequently, of the Fried radius can be obtained only in 
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Figure 3.  Dependences of the ratio of the structural displacement func-
tion of the image of one astronomical extended source to the structural 
displacement function of the image of the spherical wave on the nor-
malised distance R/at between two receivers at a0 = ( 1 ) 0, ( 2 ) 40 and ( 3 ) 
100 arcsec. 
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the presence of information about the behaviour of the inte-
gral profile or moments (27). 

Similar calculations were also performed numerically, 
using a more realistic model of atmospheric turbulence. 
Figure 3 shows the calculated dependences of the ratio of the 
structural function of a random displacement for the opera-
tion of a differential measuring device for objects of different 
sizes on the normalised distance between two receivers. 

The results of these calculations provide complete infor-
mation about the choice of the necessary separation of the 
two sub-apertures to ensure correct measurements of the inte-
gral profile of turbulence on a vertical path. 

9. Experiment for vertical (astronomical) paths 

To verify the theory’s conclusions, we performed optical 
meteorological measurements at the Sayan Solar Observatory 
(Institute of Solar-Terrestrial Physics of the Siberian Branch 
of the Russian Academy of Sciences) using an automated 
horizontal solar telescope [26]. The design of the telescope 
includes a siderostat, i.e., a system of two flat mirrors 800 mm 
in diameter, which provides continuous tracking of the Sun. 
The siderostat reflects sunlight to the main spherical mirror 
800 mm in diameter with a focal length of 18 m. The mirror 
constructs the image of the Sun on the photodetector. The 
variance of the image jitter s t2 of the edge of the solar disk was 
measured as a function of the radius of the receiving mirror at. 
As a jitter measuring device, we used a Brandt photoelectric 
sensor, which was successfully tested for several decades and 
used previously in similar studies in Russia and abroad. 

Simultaneously with optical measurements, the state of 
the atmosphere was controlled by a Meteo-3M mobile ultra-
sonic meteorological system. The main averaged parameters 
of the experiments are as follows: the zenith angle of the 
observed object, q » 60°; the structural characteristic of fluc-
tuations of the refractive index at a height of 4.5 m from the 
underlying surface, Cn

2 = 1.7 × 10–15 cm–2/3; the average surface 
wind speed, 6 m s–1; and the angular size a0 of the astronomi-
cal incoherent source (the edge of the solar disk) correspond-
ing to the angular resolution of the receiver used varied from 
0.1 to 1.5 arcsec. 

The results of astronomical and parallel meteorological 
measurements have shown (Fig. 4) that when coherent turbu-
lence is recorded in the atmosphere (the temperature fluctua-
tion spectrum, WT ~ f  – 8/3) [26], our data coincides with the 
coherent theory [sa » const, open symbols and line ( 3 ) in Fig. 
4]. In the case of incoherent Kolmogorov turbulence (WT ~ 
f  –5/3), our results for a point source (a0 = 0.1 arcsec) coincide 
with the conventional Kolmogorov theory [filled symbols and 
line ( 1 ) in Fig. 4]. 

For Kolmogorov turbulence, the theoretical curve in 
Fig. 4 is plotted taking into account the regularisation of the 
image jitter of an incoherent extended source. This corre-
sponds to taking into account the deviation of a real astro-
nomical incoherent object (the edge of the solar disk) from the 
point one. As can be seen from Fig. 4, a satisfactory agree-
ment of the theory with the experiment is observed. In accor-
dance with theoretical data, the jitter of the image of the edge 
of the solar disk (a0 ¹ 0) with decreasing diameter of the 
receiver 2at should approach a constant value; the standard 
deviation of the image jitter of the edge of the solar disk for 
Kolmogorov-type turbulence with decreasing receiver diam-
eter 2at also tends to a constant value. 

The data obtained with a Brandt sensor can be used to 
simultaneously determine the Fried radius r0 and the effective 
outer scale of atmospheric turbulence. In paper [27], it is pro-
posed to perform measurements of the variance of the jitter of 
the star image in the focal plane of the telescope simultane-
ously with several (at least two) values at of the receiving aper-
ture of the telescope. In this case, an expression is used for the 
variance of the image jitter of the radiation source in the focal 
plane of the telescope, calculated for the model of atmo-
spheric turbulence (15), which takes into account the finite-
ness of the magnitude of the outer scale of turbulence 
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The effective (integral) outer scale of turbulence (k0*)–1 in [27] 
was introduced on the basis of the formula: 
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10. Assessment of the requirements to the size 
of the reference source 

Let us consider the requirements to a multichannel correla-
tion Shack – Hartmann wavefront sensor of the. In analysing 
the situation, we will start from the formula that determines 
the dependence of the variance of the image jitter on the size 
of the sub-aperture and the size of the incoherent source itself. 
This leads to the fact that the variance of the random (linear) 
displacement of the image of such an incoherent source object 
st2, measured with a sensor having a receiving aperture of the 
effective radius at, on an inhomogeneous path (for example, 
propagating into the zenith) can be calculated from formulas 
(17) and (18). 

It makes sense to consider two cases: a homogeneous path 
and a vertical path to an object located outside the atmo-
sphere (in the case of an artificial Earth satellite). Using our 
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Figure 4.  Dependences of the standard deviation sa of the angular jitter 
of the astronomical image of the edge of the solar disk on the diameter 
of the input aperture of the telescope 2at in the case of (○, 9) coherent 
turbulence and (●, ▲) incoherent Kolmogorov turbulence for (▲, 9; 
a0 = 0.1 arcsec) a point source and (●, ○; a0 = 1.1 arcsec) an extended 
incoherent source; ( 1 ) Kolmogorov turbulence and a point source, ( 2 ) 
the same for an extended source, ( 3 ) calculation for coherent turbu-
lence conditions.
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results, the expression for the variance of the image jitter (18) 
on the vertical path can be rewritten in the form: 
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s x x x a= + -y .	 (32)

Because the atmospheric turbulence is limited in length by the 
effective thickness [8, 15] of the atmospheric turbulence hx, we 
obtain the condition, in which the receiver size at can be con-
sidered ‘large’ and the tracking object ‘small’: 

at > a0 hx .	 (33)

It should be noted that since the measuring device of the 
image fragment displacement on the sub-aperture can react to 
the edge shift of the image, the angular ‘image size’ can be 
taken to be the minimum angular size that the optical system 
is capable of resolving. Let us consider a hypothetical case 
when the tracking object has many contrasting fragments, 
allowing one to measure the jitter of its image. Then, when the 
system operates under turbulent conditions, the minimum 
angular size of the object beyond which the tracking can be 
performed is the limiting angular resolution for the optical 
system in a turbulent medium, namely, l/r0se, where r0se is the 
radius of coherence of the turbulent atmosphere under ‘a 
short exposure’; and l is the wavelength of the radiation. In 
this case, condition (33), to which the minimum required size 
of the sensor sub-aperture must satisfy, transforms to the con-
dition: 

at > /h r se0l x .	 (34)

It is known that always r0se > r0 [24, 25]. From the analysis 
of the last expression, it is easy to conclude that if for a verti-
cal atmospheric path we use a minimally resolved object 
under a short exposure as the size of an effective tracking 
object, then such an object can be considered almost point-
like. Indeed, such an object can be effectively used to measure 
and correct the phase. 

For example, we will use the following values: let the 
thickness (height) of the turbulent atmosphere be hx = 2 km 
and the radius of coherence under ‘a short exposure’, r0se, be 
set for the visible wavelength range of 10 cm. We then obtain 
from (34) that the necessary minimum size of the sensor sub-
aperture reduced to the input aperture should be greater 
than 1 cm. 

Let us analyse this problem for homogeneous paths [when  
Cn
2(x) = Cn

2)] in the case of Kolmogorov-type turbulence. In 
this case, expression (32) transforms into 
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Thus, for small linear sizes of the incoherent source object (b 
< at ), such that we can use in (35) the expansion in a series 
with respect to the small parameter b/at, we obtain 
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Calculating the integrals in (36), we arrive at the expression 
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Because the first term in (37) is an expression for the variance 
of the displacement of the point-source image at the aperture, 
it is seen that with an increase in the linear size of the reference 
source b, there is a slight decrease in the useful signal in com-
parison with the case of a point source. If in expression (35) 
we put, for example, b = d, we obtain 
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An approximate calculation of integral (38) gives 
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Thus, the signal level indeed decreases, since 1/3 < 3/8; 
however, this decrease is insignificant. Therefore, it turns out 
that on a horizontal path, even in conditions when the size of 
the receiver becomes comparable with the linear size of the 
source (b = at), the signal level of the image jitter decreases 
only by 6 %. We can make an interesting conclusion: on hori-
zontal paths, the dependence of the jitter signal weakly 
depends on the size of the incoherent source. 

Let us emphasise once again that in these estimates the 
parameter at is the size of the wavefront sensor sub-aperture, 
reduced to the input of the optical system. It is precisely when 
condition (34) is satisfied for each of the channels of the wave-
front sensor that a measurement, analogous to the measure-
ment by the sensor as a whole in the case of a spherical wave, 
is performed [25 – 27]. It should be noted that in some works 
on the use of wavefront sensors for solar telescopes, the angu-
lar size of a separate sub-aperture is in the range of 8 – 20 arc-
sec [28, 29]. If we assume that the height of the atmosphere, 
hx, is from 1 to 2 km, then using formula (21) instead of for-
mula (22), taking into account the finite size of the tracking 
region, can be sufficiently justified only for sufficiently strong 
turbulence. For example, r0 should be greater than 7 – 10 cm, 
so that condition (31) can be met. As our analysis [26, 27] 
shows, this condition does not always take place in reality; 
therefore, instead of formula (21), use should be made of for-
mula (22) in processing the signal from the wavefront sensor, 
in which the finiteness of the tracking region is taken into 
account. Correct allowance for this factor requires a prelimi-
nary study of the structure of turbulence in the region [26, 27]. 
The dependence of the image jitter on the wavelength of refer-
ence radiation can be also taken into account, for example, as 
in [30]. 

11. Conclusions 

We have presented a scheme of the operation of an adaptive 
optical system that does not require the creation or formation 
of a special reference source. The adaptive system uses the 
tracking of an image of a self-luminous object or an object 
illuminated by extraneous sources. Note that for the effective 
operation of the correlation sensor during tracking, we should 
use the smallest but the most contrasting element of the 
image. In the atmosphere on long paths, a strong aerosol blur 
of the reference source image is possible, and only a suffi-
ciently extended object, i.e., an object with low spatial fre-
quencies, will be clearly visible against the background of 
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other objects. This is due to the fact that the frequency-con-
trast characteristic of the aerosol atmosphere has a maximum 
in the low-frequency region and decreases at high spatial fre-
quencies [31]. The deterioration in the visibility of the object 
due to the presence of aerosol frequencies in the atmosphere 
reduces the potential of this measuring device. 

In general, we have shown the possibility of employing a 
Shack – Hartmann correlation sensor in adaptive systems 
using the image of an object (or its fragment) as a reference 
source. 
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