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Abstract.  The development of optical frequency standards with a 
relative uncertainty of reproducing the time and frequency units at 
a level as low as 10–17 – 10–18 calls for an unprecedented accuracy in 
estimating the role of higher orders of optical nonlinearity, caused 
by the influence of the optical lattice on the frequency shift of the 
‘clock transition’. This paper presents a systematic calculation of 
the contributions of multipole nonlinear anharmonic effects to the 
error of clocks based on optical lattices for alkaline-earth-like Sr, 
Yb, and Hg atoms.

Keywords: optical frequency standards, ‘magic’ wavelengths, Stark 
effect, polarisabilities, frequency detunings.

1. Introduction 

Currently, the so-called caesium clocks are generally accepted 
international standards of time and frequency. They repro-
duce time and frequency units based on the electron transi-
tion between the components of the hyperfine structure of 
caesium atom 133Cs in its ground state. Today’s definition 
of the time unit (second) in the SI system of units is related to 
the period of radiation corresponding to the transition between 
the aforementioned electron levels in the caesium atom 133Cs.

The next important step in increasing the accuracy and 
stability of atomic clocks is the increase in the frequency of 
the atomic transitions in use; i.e., the passage to optical time 
and frequency standards, the frequency of which is several 
orders of magnitude higher than that of caesium microwave 
standards. Optical clocks can be implemented based on the 
transitions to the long-lived electronic states in single atoms 
or ions trapped into a magneto-optical trap and laser-cooled 
to a temperature of few microkelvins in this trap. Currently, 
the best results in the development of optical clocks based on 
cold atoms and ions have been achieved on laboratory setups 
in the United States (NIST), Germany (РТВ), the United 
Kingdom (NPL), France and Japan. The following relative 
errors have been obtained: ~10–18 for optical clocks on elec-
tron transitions in Аl+ ions placed in an electromagnetic Paul 

trap [1] and 2 ́  10–18 for clocks based on electron transitions 
in neutral Sr atoms located in an optical lattice [2]. This accu-
racy corresponds to a lag (advance) in several fractions of a 
second for the lifetime of the Universe (13.7 billions of years).

Although the achievements of modern laser and spectro-
scopic techniques suggest a further increase in the accuracy of 
optical frequency and time standards, this increase meets a 
number of fundamental physical problems and limitations, 
related, in particular, to the blackbody radiation, which leads 
to a limit on the reproducibility and stability of the frequency 
of measured transitions. At the same time, the achievement of 
a relative error in reproducing time and frequency units at a 
level of 10–17 – 10–18 in optical frequency standards calls for an 
unprecedented accuracy in estimating the role of higher orders 
of optical nonlinearity, caused by the influence of the optical 
lattice on the frequency shift of the ‘clock transition’. One of the 
most successful approaches to the solution of this important 
problem is the use of the so-called magic wavelength (MWL) 
of the laser field forming the optical lattice in a frequency 
standard.

The magic wavelength of the optical lattice that is used 
to  trap cold alkaline-earth-like atoms in the Lamb – Dicke 
regime, allows one to observe a clock transition between the 
ground 6s2(1S0) and excited metastable 6s6p(3P0) states of 
atoms free of Doppler and Stark frequency shifts. The experi-
mental MWL values for strontium, ytterbium and mercury 
atoms were found to be lmag = 813.42727 nm for Sr atoms [3], 
lmag = 759.3537 nm for Yb atoms [4] and lmag = 362.53 nm for 
Hg atoms [5]. In the case of the MWL, the dynamic Stark 
effect in atoms in the ground and excited states leads to the 
same field corrections for these states, which, in turn, pro-
vides their complete mutual compensation in the clock transi-
tion of the optical frequency standard. However, the equiva-
lence of Stark frequency shifts, which are linear in the lattice 
field intensity I and determined by the dynamic polarisabili-
ties ae(wmag) = ag(wmag) at the MWL lmag = 2pc/wmag, does 
not ensure equivalent contributions from higher-order non-
linearities, primarily, the corrections quadratic in intensity I, 
which are determined by the hyperpolarisabilities be(wmag) 
and bg(wmag).

In addition, along with the dipole polarisabilities ( )( )
1

e g
E

maga w  
(Е1), there are higher-order multipole polarisabilities, primarily, 
the magnetic dipole, ( )( )

1
e g
M

maga w  (М1), and electric quadrupole, 
( )( )

2
e g
E

maga w  (Е2), polarisabilities of atomic states, which make 
a nonzero contribution to the dynamic Stark effect (linear 
in intensity I). The correction caused by the multipole interac-
tions, although having an order of smallness of ~10–6 – 10–7 
with respect to the electric dipole approximation (E1), leads 
to a peculiar spatial field distribution in the lattice, which sig-
nificantly differs from that in the case of E1 approximation; 
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hence, it must be correctly taken into account in precise fre-
quency measurements. In particular, the corrections for the 
E2 and M1 approximations may affect the MWL, depending 
on the specific experimental conditions. For example, the 
Stark shift (linear in intensity I ) in the travelling wave, which 
is characterised by a uniform spatial distribution of field 
intensity along the laser beam axis, is determined by the sum 
of the polarisabilities

( ) ( ) ( )( ) ( )
1

( )e g mag
t

e g
E

mag
t

e g
qm

mag
ta w a w a w= +

S , 

where ( ) ( ) ( )( ) ( )
2

( )
1

e g
qm

mag
t

e g
E

mag
t

e g
M

mag
ta w a w a w= +  is the sum of the 

E2 and M1 polarisabilities. However, in the standing wave of 
the optical lattice, the E2 and M1 polarisabilities lag in phase 
by a quarter wave from the E1 polarisability. Hence, they must 
be subtracted from the E1 polarisability; i.e., ( )( )e g

dqm
mag
sa w =

( ) ( )( ) ( )e g
E

mag
s

e g
qm

mag
s1a w a w-  and the MWL 2 /c( ) ( )

mag
t s

mag
t spl w=  is 

determined differently for the travelling and standing waves 
of the optical lattice:

( ) ( )e mag
t

g mag
ta w a w=

S S 	 (1)

for the travelling wave and 

( ) ( )e
dqm

mag
s

g
dqm

mag
sa w a w= 	 (2)

for the standing wave [6]. It should be noted that the measure-
ment of the difference in the two MWLs, mag

tl  and mag
sl , is 

in principle within the possibilities of a modern experiment 
based on the use of laser lattices. Nevertheless, as will be 
shown below, even the minimum MWL detuning can be used 
to control the contribution of the higher-order effects to the 
error of optical frequency and time standards. Up to recent 
time, this analysis has not been performed in the metrological 
practice.

There are two main types of the MWL, corresponding to 
two different ways of trapping cold atoms: (1) the use of an 
attractive potential in the trap, for which the potential energy 
of atoms has a minimum, and the trapped atoms are located 
in the vicinities of laser lattice antinodes (red-detuned MWL) 
and (2) the use of a repulsive potential in the trap, in which 
the atoms are located in the vicinities of laser lattice nodes 
where I = 0 (blue-detuned MWL). Obviously, in the latter 
case, the role of higher-order effects may be significantly 
reduced in comparison with the case of red detuning. 
However, the blue MWL detuning calls for a three-dimen-
sional modification of the optical lattice design, because its 
one-dimensional modification can hardly be implemented in 
view of the properties of the repulsive potential. In this paper, 
we will consider both optical lattice versions for the one-
dimensional case in order to analyse and estimate the role 
of  ‘nonmagic’ effects and elaborate possible strategies when 
developing optical frequency standards based on optical lat-
tices.

The most thoroughly investigated version of optical clocks 
based on Sr atoms was described in detail in our recent paper 
[6]. The analysis was performed in the basis of the Fues 
model potential (FMP) as applied to the calculation of atomic 
polarisabilities and hyperpolarisabilities [7]. In this study, we 
calculated anew the atomic characteristics reported in [6]; 
this new calculation is based on redetermination of the FMP 
parameters. The quality criterion for choosing the FMP 
parameters was the goodness of fit between the theoretically 

calculated and experimental MWLs for the alkaline-earth-
like Sr, Yb and Hg atoms.

Three different strategies for determining MWLs are 
considered for each of the Sr, Yb and Hg atoms. In addition 
to the MWL definitions given by formulas (1) and (2), we 
consider the intermediate case of equivalence of only dipole 
polarisabilities for the ground and excited states:

( ) ( )1
e
E

mag
d

g
E

mag
d1a w a w= .	 (3)

The MWL definition (3) is most frequently used in the 
modern literature. As was noted for the first time in [6], the 
influence of multipole effects may lead to additional contribu-
tions to the error of optical time and frequency standards, 
even when the effects of spatial distribution for electric dipole 
and multipole interactions in the optical lattice field are dis
regarded.

In this paper, we report the results of careful analysis of 
the difference in the spatial distributions for electric dipole 
(E1) and multipole (M1 and E2) interactions for two configu-
rations of optical lattices with MWL red and blue detunings. 
For brevity, we consider only the particular case of a one-
dimensional optical lattice. The results of theoretical calcula-
tions for the frequency shifts of transitions in Sr, Yb and Hg 
atoms in an optical lattice are presented. A precise estimation 
is performed for the contributions of nonlinear optical higher-
order effects, which cannot be compensated for by choosing 
an appropriate MWL and, therefore, must be correctly taken 
into account when analysing the results of measuring the 
clock transition frequency in optical frequency standards. We 
applied the atomic system of units, where the condition e = 
m = '  = 1 holds.

2. Optical lattices in the case of MWL  
red detuning 

The frequency shift induced by the lattice laser field arises as 
a difference in the Stark energies for the ground and excited 
states of the clock transition. The Stark energies are deter-
mined from the interaction of the atom in the trap with the 
electric field vector

E(X, t) = 2E0 cos(kX) cos(wt) ,	 (4)

which oscillates in time with a frequency w and propagates 
in space with a wave vector k = kex (k = w/c); X is the dis-
placement of an atom from the equilibrium position in the 
laser lattice. The interaction between the atom and lattice is 
described by the operator ( , ) [ ( ) ( )]Re exp iV X t V X tw= -t t ; the 
spatial factor is given by the expression

( ) ( ) ( ) ( )cos sinV X V kX V V kXE E M1 2 1= + +t t t t 	 (5)

and the operators of the E1, E2 and M1 interactions have the 
form

2, { } ( , )V V rrE E n C
6

E E1 0 2
2

0 27
aw q j= =t t ^ h,	

(6)
{[ ] ( )}V n E J S
21M 0
a

#= +t t t .

Here, r  =  rn is the radius vector of the valence electron; 
C2(q, j) is the modified spherical harmonic of the unit vector 
n for the angular variables q and j; and Jt  and St  are, respec-
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tively, the total and spin moments of the atom. With allow-
ance for the second- and fourth-order terms in the interaction 
of atoms with the lattice field (which are linear and quadratic 
in the lattice field intensity I [8]), formulas (6) determine the 
lattice potential well U [6] in the ground or excited state:

( , )U X I( )g e
latt  » ( ) ( ) ( ) ...D I U I X U I X( ) ( ) ( )g e g e

harm
g e
anh2 4

- + - + ,	 (7)

where the potential energy is counted from its lowest value 
( , )U I0( )g e

latt  = –Dg(e)(I ); the well depth

( ) ( ) ( )D I I I( ) ( )
1

( )g e g e
E

g e
2a w b w= + 	 (8)

is determined by the electric dipole polarisabilities ( )( )g e
E1a w  

and hyperpolarisabilities bg(e)(w) of atoms in the ground or 
excited state. The coefficient before the squared displacement,

( ) ( ) ( )
( )

U I I I k
M I

2
2( ) ( ) ( )
( )

g e
harm

g e
dqm

g e
g e2 2
2

a w b w
W

= + =8 B ,	 (9)

where M is the atomic mass, is determined by the intensity-
dependent oscillation eigenfrequency Wg(e)(I ) for the ground 
and excited states of the atom in the potential well (7). The 
coefficient before the fourth power of X depends on the low-
est anharmonic correction to the Stark potential in the stand-
ing wave of the lattice and on the combinations of the E1, E2, 
and M1 polarisabilities ( ) ( ) ( )( ) ( )

1
( )g e

dqm
g e
E

g e
qma w a w a w= -  and 

hyperpolarisabilities, in correspondence with the formula

( ) ( ) ( )U I I I k5
3( ) ( ) ( )g e

anh
g e
dqm

g e
2

4
a w b w= +8 B .	 (10)

Equation (7) describes the lattice potential in the spatial 
region |X| << l/4, where l is the lattice laser field wavelength; 
the atoms in the lattice are located with a spatial periodicity of 
l/2. An atom trapped into the laser lattice continues an oscil-
latory motion in the stationary state with the energy

( , ) ( ) ( )I n D I I n
2
1E ( ) ( ) ( )g e

vib
g e g eW=- + +` j

	 ( )I n n
2
1E ( )g e

anh 2
- + +` j,	 (11)

where the second term is the harmonic oscillator energy in the 
state with the principal vibrational quantum number n, and 
the third term takes into account the anharmonic corrections 
caused by the last term in the expression for the potential 
energy (7). Thus, the frequency shift induced by the lattice 
field arises as a difference in the oscillator energies (11) of the 
atom in the ground and excited states. On the assumption that 
the principal vibrational quantum numbers n are equivalent 
for the transitions between the states of the clock transition 
(the Lamb – Dicke regime), the frequency shift of this transi-
tion is given by the expression

( , ) ( , ) ( , )I n I n I nE Ecl
latt

e
vib

g
vibTn = -

	 ( ) ( ) ( )D I I n I n n
2
1

2
1Eanh 2T T TW=- + + - + +` `j j,	 (12)

where 

DD(I ) = De(I ) – Dg(I );   DW(I ) = We(I ) – Wg(I );	
(13)

( ) ( ) ( )I I IE E Eanh
e
anh

g
anhT = - .

The differences in (13) correspond to: 
(1) the potential well depths (8);
(2) harmonic-oscillation frequencies of the atom in the 

potential (7),

( ) ( ) ( , )I I I2 2E( ) ( ) ( )g e
rec

g e
dqm

g e
2a w b x wW = +8 B ,	 (14)

which are determined by the photon recoil energies E rec  = 
k2/(2M) and the coefficient (9) of the harmonic part of poten-
tial (7) [x is the degree of circular polarisation (–1 £ x £ 1)]; 
and

(3) the anharmonic corrections to the atomic vibrations in 
a trap with separated potential wells of the optical lattice,

( )
( )

I
2

1E E
( )

( )

( )
g e
anh

rec

g e
dqm

g e

a w
= +

( , )I3b x w> H,	 (15)

which correspond to the last term in the right-hand side of 
formula (7).

The difference of the dipole and multipole polarisabilities 
( )( )g e

dqma w  (instead of the sum ( ) ( ) ( )( ) ( )
1

( )g e g e
E

g e
qma w a w a w= +

S , 
which arises in the case of interaction between the atom and 
the travelling wave of the optical lattice) is due to the shift by 
a quarter period (both for the temporal and spatial variables) 
between the E1 and (E2 + M1) polarisabilities of the atom 
interacting with the standing wave of the optical lattice [9]. As 
follows from Eqns (8) – (15), the intensity-dependent energy 
differences, determining the frequency shift (12), have the 
form [6]

( ) ( ) ( , ) ( , )D I Ie
E

g
E

e g
1 1 2T a w a w b x w b x w= - + -6 6@ @ ,

2 ( ) 2 ( , )Ie
dqm

eT a w b x wW = +8

	 ( ) ( , )I I2 Eg
dqm

g
reca w b x w- + B ,

( )
( , )

( )

( , )
.I

2
3E Eanh rec

e
dqm
e

g
dqm
g

T
a w
b x w

a w

b x w
= -= G 	 (16)

Finally, the lattice-field-induced frequency shift of the 
clock transition, with allowance for the corrections quadratic 
in the field intensity I, can be written as

( , , )n Icl
lattTn x  = c1/2(n)I1/2 + c1(n, x)I

	 + c3/2(n, x)I3/2 + c2(x)I2.	 (17)

Having performed frequency detuning for the laser lattice 
field in the vicinity of the MWL, one can minimise the field-
intensity-independent coefficients ci (i = 1/2, 1, 3/2, and 2). 
The fractional exponents of intensity I in formula (17) are due 
to the root dependence of the eigenfrequencies (14) on I. In 
particular, the coefficient c1/2 is determined by the difference 
in the combinations of polarisabilities ( )( )g e

dqma w . The term 
linear in I depends mainly on the difference in the dielectric 
dipole polarisabilities ( )( )

1
g e
Ea w  [the hyperpolarisability correc-

tion for the term linear in I (having a much smaller amplitude) 
is due to the anharmonic correction in (16)]. The coefficients 
c3/2 and c2 depend on the difference in the hyperpolarisabilities 
Db(x, w) = be(x, w) – bg(x, w), entering the formulas for the 
eigenfrequencies Wg(e) and potential well depths Dg(e). Along 
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with the dependence on the laser lattice frequency, hyperpo-
larisabilities depend also on the polarisations of the lattice 
field [10]. This dependence can be written as a combination of 
the hyperpolarisability tensor components:

( , ) ( ) ( ) ( )( ) ( ) ( ) ( )g e g e
lin

g e
circ

g e
lin2b w x b w x b w b w= + -6 @ ,	 (18)

where ( )( )
( )

g e
lin circb w  is the frequency-dependent hyperpolaris-

ability for the linear (circular) polarisation of the laser lattice 
field.

The Db lin and Dbcirc values have opposite signs when 
there  is a ‘magic degree of circular polarisation’, xmag = 
1/ /1 circ lin! T Tb b- , at which the difference in the hyper

polarisabilities for the clock transition in (18) may vanish. 
This effect, as follows from Table 1 (which contains the char-
acteristics of Sr, Yb and Hg atoms calculated within the model 
potential approximation [7]) can be observed for the MWL in 
Yb atoms at xmag = 0.777 and in Hg atoms at xmag = 0.705. 
For Sr atoms, the differences mag

linTb  and mag
circTb  at the MWL 

are negative; thus, the magic ellipticity does not exist in this 
case, and the minimum difference in the hyperpolarisabilities 
corresponds to linear polarisation. The additional row for 
strontium atoms in Table 1 corresponds to the MWL with 
blue detuning lmag = 389.889 nm [11].

Magic ellipticity can be observed for Yb atoms at lattice 
wavelengths in the range of 758.5 < llatt < 759.7 nm, which is 

close to the region of two-photon resonance at the 6s8p (3P0) 
level for a linearly polarised lattice wave (Fig. 1); this region 
corresponds to the MWL lmag = 759.3537 nm [4]. Here, the 
hyperpolarisability differences Dblin and Dbcirc have opposite 
signs, as follows from the calculation data. This situation 
does not occur in the vicinity of lmag = 813.42727 nm [3] for the 
Sr atom, although in this case there is a similar range of oppo-
site signs of Dbcirc and Db lin between the lattice nodes at l = 
800 and 803 nm, respectively, which are at a rather large dis-
tance from lmag, as shown in Fig. 2.

Note that, along with the frequency shift associated with 
the real part of hyperpolarisability Db lin(circ), the excited states 
of clock transitions of Hg atoms at the MWL undergo a com-
parable (in amplitude) broadening, which is caused by the 
two-photon ionisation and described by the imaginary part 
of  hyperpolarisability. The Im Db lin(circ) value is positive for 
an arbitrary polarisation of the laser lattice field. The afore-
mentioned effects are described by the coefficients ci (except 
for the coefficient c1/2, which does not contain any hyper
polarisability corrections), related to the imaginary part of 
the shift (17).

In contrast to Hg atoms, the imaginary part of hyper
polarisability for Sr atoms in the lattice at blue MWL detuning 
is three orders of magnitude smaller than the real part. Thus, 
the broadening of the clock transition line is negligible in 
comparison with the frequency shift in this case.

Table  1.  Characteristics of the Sr, Yb and Hg atoms in an optical lattice of the MWL.

Atom lmag /nm

1
mag
Ea /

kW cm
kHz

–2

mag
qma /

kW cm
mHz

–2

Re mag
linTb /

(kW cm  )
µHz

–2 2

Im mag
linTb /

(kW cm  )
µHz

–2 2

Re mag
circTb /

(kW cm  )
µHz

–2 2

Im mag
circTb /

(kW cm  )
µHz

–2 2

/ ImagW /

kW cm

kHz
–2

¶ ¶10 ( ) /1
mag
E9 Ta w/

kW cm
1

–2

E rec /
kHz

Sr
813.42727 45.2 1.38 –200.0 0 –311.0 0 25.05 0.254 3.47

389.889 –92.7 –13.6 1150 2.48 1550 2.37 74.8 10.3 15.1

Yb 759.3537 40.5 –8.06 –366.3 0 240.2 0 18.03 0.720 2.00

Hg 362.53 5.70 8.25 –2.50 4.34 2.53 6.37 13.1 0.134 7.57

754 756 758 760 762 764 l/nm

–2000

–1000

1000

2000

0

Db
(kW cm–2)

mHz
2

Figure 1.  Dependences of the hyperpolarisability on the wavelength l 
for a clock transition in Yb atoms at (dashed line) linear and (solid line) 
circular polarisations of the optical lattice laser wave. The vertical lines 
indicate the positions of two-photon resonances on the levels 6s8p (3P2) 
( l = 754.226 nm), 6s8p (3P0) ( l = 759.71 nm; this resonance arises only 
in the case of linear polarisation) and 6s5f (3F2) ( l = 764.953 nm).

795 800 805 810 815 820 l/nm

–1500

–500

–1000

1000

500

1500

0

Db
(kW cm–2)

mHz
2

Figure 2.  Dependences of the hyperpolarisability on the wavelength l 
for a clock transition in Sr atoms at (dashed line) linear and (solid line) 
circular polarisations of the optical lattice laser wave. The vertical lines 
indicate the positions of two-photon resonances on the levels 5s7p (3P2) 
( l = 795.5 nm), 5s7p (3P0) ( l = 797 nm; this resonance arises only in the 
case of linear polarisation), and 5s4f (3F2) ( l = 818.6 nm).
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3. Strategies for determining the MWL in the 
case of red detuning

Obviously, the main contribution to the Stark energy (11) 
of a  trapped atom at the laser field MWL is determined by 
the E1 polarisability, which exceeds the M1 and E2 polaris-
abilities by more than six orders of magnitude. Therefore, the 
difference in the MWLs found from formulas (1) – (3) may 
manifest itself only at the level of the sixth decimal place. 
Nevertheless, this difference may significantly affect the 
numerical values of the coefficients at laser field intensities in 
integer and fractional powers and, therefore, the frequency 
shift (17) of the clock transition. In this section, we will con-
sider three different approaches to determining MWL and 
report the numerical values for all coefficients.

3.1. Equivalence of the clock level shifts in a travelling wave

The electric dipole (E1), electric quadrupole (E2) and mag-
netic dipole interactions of the atom with the travelling-wave 
field are synchronous. Therefore, the shift in the first order 
in  the field intensity I is determined by the sum of polaris-
abilities ( )( )g ea wS . To exclude this shift, the field frequency 
is tuned to the magic frequency mag

tw w= , for which condi-
tion (1) is satisfied. For this frequency, the depth of poten-
tial (8) and all coefficients in the right-hand side of Eqn (17) 
have nonzero values:

( ) 2 /c n n
2
1E/

t
t
qm

t
rec

t1 2 Ta a=- +
S ` j,

( , ) ( )c n n n
2
3

2
1Et

t
qm

t

t
rec

t1
2T Tx a

a
b x= - + +S ` j,	 (19)

( , ) ( ) / , ( ) ( ),c n n c2
2
1E/

t
t t

rec
t

t
t3 2 2T Tx b x a x b x= + =-

S ` j

where the index t corresponds to the travelling wave. The 
corrections to the hyperpolarisability effects for the lowest 
vibrational levels with n < 3 are negligible at the intensities 
necessary to trap atoms. For example, using the numerical 
data of Table 1 for Hg atoms, one can write the frequency 
shift (in mHz) induced by the optical lattice (17) in the form

Dntcl(n, x, I ) = –9.507(2n + 1)I 1/2 

	 + [8.25 + (0.005 – 0.01x2) (n2 + n + 1/2)]I

	 + (5.80x2 – 2.88) 10–3(2n + 1)I3/2

	 + (2.5 – 5.03x2) 10–3I2,	 (20)

where the laser lattice intensity I is taken in kW cm–2. For 
I > 2 kW cm–2, the positive value of the correction linear in 
I  is completely compensated for by the negative root term, 
and the main correction (20) to the shift is determined by the 
terms proportional to I3/2 and I2. Accurate to the third decimal 
place, the dependences of the coefficient at I on n and x are 
negligible [as follows from Fig. 3, which shows dependence (20) 
for the minimum value of vibrational state energy (n = 0)].

3.2. Equivalence of the clock level shifts in a standing wave

In the standing wave of the optical lattice, atoms are cooled to 
temperatures T < W/2 » E rec /kB » 1 mK, due to which atoms 
can be trapped with the minimum vibrational energy and the 

principal vibrational quantum number n = 0. The root term 
can be excluded when ( )g

dqm
mag
sa w  = ( )e

dqm
mag
sa w  º s

dqma . 
Under these conditions, cs1/2 = 0 and 

( , , ) ( , ) ( , ) ( )n I c n I c n I c n I/
/

cl
s s s s

1 3 2
3 2

2
2Tn x x x= + + ,	 (21)

where 

( , ) ( )c n n n
2
3

2
1Es

s
qm

s
dqm
s
rec

s1
2T Tx a

a
b x=- - + +` j ,

( , ) 2 ( ) / ,c n n
2
1E/

s
s s

rec
s
dqm

3 2 Tx b x a= +` j 	 (22)

( ) ( ) .c s s2 Tx b x=-

The index s corresponds to the standing wave. Accurate to 
the third decimal place, the shift (21) for Hg atoms can be 
written without the root dependence and with negative sign 
for the linear term. The corresponding dependence is plotted 
in Fig. 4. As in the case of the travelling wave, the main cor-
rection to the shift is determined by the term linear in I, 
which depends basically on the difference in multipole polar-
isabilities, s

qmTa .
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Figure 3.  Dependences of the clock transition frequency shift Dn in Hg 
atoms on the intensity I of the optical lattice with the MWL determined 
for a travelling wave. The frequency shifts correspond to ( 1 ) linear po-
larisation, ( 2 ) magic ellipticity and ( 3 ) circular polarisation.
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Figure 4.  Dependences of the clock transition frequency shift Dn in Hg 
atoms on the intensity I of the optical lattice with the MWL determined 
for a standing wave. The frequency shifts correspond to ( 1 ) linear po-
larisation, ( 2 ) magic ellipticity and ( 3 ) circular polarisation.
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3.3. Equivalence of dipole polarisabilities for clock transitions

When ( )1 1
g
E

mag
Ea w  = ( )1 1

e
E

mag
Ea w  º 1E

maga , the first-order correc-
tions for the potential depth (8) are equivalent. Therefore, the 
main correction to the coefficient c1, which is determined in 
(19) and (22) by the difference in multipole polarisabilities, 

( )t s
qm

Ta , is compensated for, and the only correction that remains 
is the correction to hyperpolarisability, which is two orders 
of magnitude smaller (as follows from the data of Table 1). 
At the same time, the coefficient c /

1E
1 2  is only half of the coef-

ficient c /
t
1 2  in Eqn (19). In this case, the coefficients in the 

right-hand side of Eqn (17) can be presented in the form

( ) /c n n
2
1E/

1
1

1E
mag
qm

E
rec

mag
E

1 2 Ta a=- +` j ,

( , ) ( )c n n n
2
3

2
1E1

1
1 1E

mag
E
E
rec

E
1

2Tx
a

b x=- + +` j ,	 (23)

( , ) ( ) /c n n2
2
1E/

1 1
1

1E E
E
rec

mag
E

3 2 Tx b x a= +` j ,

( ) ( )c 1 1E E
2 Tx b x=- .

Thus, in the case of equal dipole polarisabilities, the coeffi-
cients ( , )c n1E

1 x , ( , )c n/
E
3 2
1 x , and ( , )c nE

2
1 x  are proportional to 

the difference in hyperpolarisabilities DbE1(x).
Obviously, in all three above-described strategies for deter-

mining the MWL, the coefficients c3/2 and c2, coinciding 
accurate to the sixth decimal place, are proportional to Db(x). 
The coefficient at the root dependence is c 0/

s
1 2 = , whereas the 

MWL values determined by Eqns (1) and (3) are equivalent 
when the condition c /

1E
1 2  » . c0 5 /

t
1 2  is satisfied and proportional 

to the difference in multipole polarisabilities, mag
qmTa . As fol-

lows from Table 1, the coefficients at the linear term in (17) 
satisfy the condition | |c 1E

1  << | |c s1  » | |c t1 . The corrections for 
multipole interactions to the coefficients ( , )c nt

1 x  and ( , )c ns
1 x  

have opposite signs, whereas the corrections for anharmonic 
interactions to the coefficient ( , )c n( )t s

1 x  are proportional to 
Db(x), and this difference is much smaller than mag

qmTa . 
Estimates show that, choosing the magic frequency 1

mag
Ew , 

one can influence the contribution of the nonlinear and mul-
tipole shifts to the clock transition frequency and, therefore, 
minimise the error caused by the laser lattice effect. The 
dependence of the frequency shift (in mHz) (17) of the clock 
transition on the intensity, with the coefficients (23) for Hg 
atoms, can be presented numerically in the form

1
cl
ETn (n, x, I ) = –9.507(n + 1/2)I 1/2 

	 + (4.98 – 10.02 x2) 10–3(n2 + n + 1/2)]I

	 + (5.80x2 – 2.88) 10–3(n + 1/2)I 3/2

	 + (2.50 – 5.03x2) 10–3I2,	 (24)

where the intensity is in kW cm–2. For the magic degree of 
circular polarisation xmag = ±0.705, all hyperpolarisabilities 
(dependent on –x) in the right-hand sides of Eqns (23) and 
(24) are zero, and it is only the term with I1/2 that remains 
nonzero. In this case, the only nonzero term is the non-
excluded shift induced by the laser lattice; for the lowest 
vibrational level (n = 0), this shift is ( , , )I01cl

E
magTn x  = –4.75I1/2. 

Therefore, at I = 25 kW cm–2, to increase the accuracy of 
measuring the clock transition frequency to the 18th decimal 

place, this shift must be controlled with an error smaller than 
4 % as a minimum. For the linear polarisation (x = 0), the 
shift is 

1
cl
ETn (0, 0, I ) = –4.75I1/2 + 2.49 ́  10–3I

	 – 2.88 ́  10–3I 3/2 + 2.5 ́  10–3I2.

Here, the positive linear and quadratic corrections are com-
pletely compensated for at I = 163 kW cm–2, as follows from 
Fig. 5, by the negative corrections proportional to I 1/2 and I 3/2. 

The dependences of the frequency shifts induced by the 
laser lattice on the lattice field intensity are presented in 
Figs 3 – 5 for the clock transition in Hg atoms at n = 0 for 
three different MWLs: in a travelling wave (Fig. 3), in a 
standing wave (Fig. 4) and in the intermediate case of equal 
dipole polarisabilities (Fig. 5). As follows from these plots, 
for the MWLs determined in the cases of travelling and 
standing waves (Figs 3, 4), the frequency shift induced by 
the laser lattice depends weakly on the polarisation of the 
laser lattice field, because the hyperpolarisability contribution 
is negligible (in comparison with the corrections taking into 
account the multipole polarisabilities) in the intensity range 
I < 200 kW cm–2. In contrast, in the case of equal dipole 
polarisabilities for the MWL (Fig. 5), where the corrections to 
the linear (in intensity) term that are related to the multipole 
polarisabilities are completely compensated for, and only the 
contributions from hyperpolarisabilities to the coefficients ci 
(i = 1, 3/2, 2) condition the dependence of the frequency shift 
on the laser wave polarisation. Therefore, this case is most 
interesting for the clock transition spectroscopy. The hyper-
polarisability correction depends strongly on the laser wave 
polarisation. In the case of linear polarisation (x = 0), at an 
intensity of I » 160 kW cm–2, the positive corrections intro-
duced by the linear and quadratic (in intensity I ) terms of 
equation (17) can be compensated for by the negative cor
rections, which are proportional to I1/2 and I3/2. For circular 
and elliptical polarisations with x > xmag » 0.7, the hyper
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Figure 5.  Dependences of the real part of the clock transition frequency 
shift Dn in Hg atoms, trapped into the ground state with the vibrational 
quantum number n = 0, on the intensity I for the linear polarisation [x 
= 0; ( 1  )], magic ellipticity [x = xmag; ( 2 )], and circular polarisation [x = 
1; ( 3 )] of the laser wave in the case of equivalent dipole polarisabilities for 
the MWL; curve ( 4 ) corresponds to the imaginary part of the frequency 
shift [broadening of the clock transition line (25)] for linearly polarised 
(x = 0) laser field.
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polarisability corrections for the frequency shift are negative 
and increase with increasing intensity I (Fig. 5).

Thus, the fundamental feature of mercury atoms in an 
optical lattice with the MWL for equivalent dipole polaris-
abilities is the possibility of controlling with high efficiency the 
lattice-induced frequency shift (24) by changing the intensity 
and polarisation. An appropriate choice of I and x (x < xmag) 
makes it possible to exclude this shift. However, one must 
also take into account the imaginary part ( , , )n I1

cl
ETn x , which 

corresponds to the two-photon ionisation of the upper clock 
transition level in the laser-wave field of the optical lattice. 
For example, in addition to the shift caused by the real part of 
hyperpolarisability, there is an effect of ionisation broadening 
G(x, n, I ) = Im Dn(x, n, I ) of the clock transition line in mercury 
atoms at the MWL; this broadening is determined by the 
imaginary part of hyperpolarisability:

G(x, n, I ) = Im [c1(x, n)]I + Im [c3/2(x, n)]I3/2 

	 + Im [c2(x, n)]I2 = Im Db(x) n n I
2
3

2
1E

mag

rec
2

a- + +` j;

	 / (2 1)n I IE /rec
mag

3 2 2a+ + - E.	 (25)

As was noted above, this broadening gives rise to an addi-
tional error, related to the two-photon ionisation; it must be 
taken into account when estimating the error of an optical 
frequency standard based on laser lattice. Figure 5 shows the 
dependences for the real and imaginary components of the 
frequency shift (17) at n = 0 and x = 0.

Figures 6 and 7 show the most interesting dependences of 
the frequency shifts ( , , )I0cl

sTn x  for Sr atoms and (0, , )I1
cl
ETn x  

for Yb atoms. In accordance with Eqns (19) – (23), the numerical 

values of coefficients ci (i = 1/2, 1, 3/2, 2) are listed in Table 2. 
The negative values of the corrections for the terms in (17) 
that are proportional to I1/2 and I3/2, for Sr atoms in the laser 
lattice at the MWL (the case of standing wave), are compen-
sated for by the positive corrections for the terms proportional 
to I 2, even at intensities from 5 kW cm–2 (circular polarisa-
tion) to 8 kW cm–2 (linear polarisation), and the dependence 

( 0, , )n Icl
sTn x=  is transformed into a parabola with a positive 

leading coefficient cs2(x) = 0.2 + 0.111x2 mHz (kW cm–2)–2 
(Fig. 6).

A more interesting result may occur for the shift ( 0,ncl
E1Tn =  

x = xmag, I ) in Yb atoms (Fig. 7), for which ( )cE mag1
1 x =

( ) ( ) 0c c/
E

mag
E

mag3 2
1

2
1x x= = . In general, for the range of intensi-

ties I under consideration, the shift may be reduced practi-
cally to zero using the corresponding degrees of circular polari-
sation xmag: ( 0, , )n I 0cl

E
mag

1Tn x= = . In particular, mag
2x (I = 

5  kW cm–2) » 0.314, mag
2x (I = 10 kW cm–2) » 0.504, and 

.lim 0 6044mag
I

2
"x

"3
.

4. Blue-detuned MWL

In the case of the MWL for an optical lattice with a repulsive 
potential, the corresponding values of the dipole polarisability 
are negative, ( )( )

1
g e
Ea w  < 0, while the Stark energy is positive; 

therefore, the atomic equilibrium positions are near the nodes 
of lattice standing wave with the electric field

E(X, t) = 2E0 sin(kX) sin(wt).	 (26)

The spatial part of the interaction operator between the atom 
and lattice field (26) can be described by the expression

( ) ( ) ( ) ( )sin cosV X V kX V V kXE E M1 2 1= + +t t t t 	 (27)

Table  2.  Coefficients for the laser-lattice-induced frequency shift (17) in the case of vibrational levels with n = 0.

Atom
c c2/ /

1t E
1 2 1 2= /

kW cm

mHz
–2

c /
s
1 2 /

kW cm

mHz
–2

c ct s
1 1=- /

kW cm

mHz
–2

( )c 01E
1 x = /

kW cm

mHz
–2

( )c 11E
1 !x = /

kW cm

mHz
–2

( )c 0/
( , 1)t s E
3 2 x = /

kW cm

mHz
–2

( )c 1/
( , 1)t s E
3 2 !x = /

(kW cm  )
mHz

–2 3/2

( )c 0( , )t s E
2

1 x = /

(kW cm–2)
mHz

2

( )c 1( , )t s E
2

1
!x = /

(kW cm–2)
mHz

2

Sr – 0.382 0 1.39 0.0115 0.0179 –0.0554 –0.0862 0.200 0.311

Yb 1.79 0 –8.06 0.0136 –0.0089 –0.0814 0.0534 0.366 –0.240

Hg –9.51 0 8.25 0.0025 –0.0025 –0.0029 0.0029 –0.240 –0.00253
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Figure 6.  Dependences of the clock transition frequency shift Dn in Sr 
atoms on the intensity I in the cases of ( 1 ) linear, ( 2 ) elliptical and ( 3 ) 
circular polarisations for the optical lattice MWL (case of laser field 
standing wave).
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Figure 7.  Dependences of the clock transition frequency shift Dn in Yb 
atoms on the intensity I for the ( 1 ) linear, ( 2 ) elliptical and ( 3 ) circular 
polarisations of the optical lattice; the MWL was determined for 
equivalent dipole polarisabilities. 
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with the operators of E1, E2 and M1 interactions in form (6). 
The trapping potential of the optical lattice with the MWL, 
which takes into account the dependence on the hyperpolaris-
ability and anharmonicity effects, may be presented, similarly 
to the case of the MWL with red detuning, in form (7). The 
main advantage of the repulsive potential is that the localisa-
tion domain of atoms is in the vicinity of the nodes of the 
lattice standing wave; the field in these nodes becomes zero. 
Therefore, hyperpolarisability effects cannot arise in the 
regions of minimum potential energy and, correspondingly, 
affect the eigenfrequencies of vibrational levels:

( ) ( 0, ) ( )U I U X I I( )
( )

( ) ( )g e g e
latt

g e
qm0

/ a w= =- , 

2 ( ) .IE( ) ( )g e
rec

g e
dqma wW = - 	

(28)

The energies of atomic vibrational levels near the nodes of a 
standing wave with MWL under conditions of blue detuning 
are given by the expression

( , ) ( )I n U n I n n
2
1

2
1E E( ) ( )

( )
( ) ( )g e

vib
g e g e g e

anh0 2W= + + - + +` `j j,	 (29)

in which the hyperpolarisability effects can be taken into 
account only in the anharmonic correction

( )
( )

( )
I

I
2
1 1

3
E E( )

( )

( )
g e
anh rec

g e
dqm
g e

a w

b w
= -= G ,	 (30)

which contains, in addition to (29), a correction in the form

( , , ) ( ) ( )I n c n I c n IE E /
/

cl
latt

mag e
vib

g
vib

1 2
1 2

1Tn w = - = + ,	 (31)

where

( ) ( ) ( ) (2 1)c n nE/
rec

e
dqm

mag g
dqm

mag1 2 a w a w= - - - +` j ;

( ) ( )c n qm
mag1 Ta w=- 	 (32)

	
( )

( )

( )

( )
n n

2
2

2
1E rec

e
dqm

mag

e mag

g
dqm

mag

g mag 2

a w

b w

a w

b w
+ - + +` j= G .

The main correction to the lattice-field-induced frequency 
shift of the optical transition is described by the second term 
in the right-hand side of Eqn (29). Therefore, the choice of 
the MWL implies provision of equivalence conditions for the 
vibrational eigenfrequencies (28), characterised by a root 
dependence on the laser field intensity, of atoms in the ground 
and excited states: Wg = We. This means that, at this choice of 
the MWL, the coefficient c1/2(n) may turn to zero, as a result of 
which only a linear dependence on I remains in expression (31). 
The linear frequency shift is 136 mHz at I = 10 kW cm–2 
(see Table 1); therefore, one must carefully control it when 
carrying out high-precision measurements of clock transition 
frequency.

5. Use of the model potential method for calcu-
lating the electromagnetic polarisabilities of alka-
line-earth atoms

The MWL calculations in the single-electron approximation 
of the model potential [7], using the corresponding empirical 

parameters determined from the known energies of atomic 
levels [12], provide numerical data for the Sr, Yb and Hg 
atoms, close to the experimental values known from the litera-
ture (see the data on lmag in Table 1). The calculation results 
are presented in Figs 8 – 10.

In general, the methods for calculating the spectroscopic 
characteristics of a many-electron atom using the single-elec-
tron approximation require some modification of the FMP 
method, more specifically, the choice of its parameters. This 
modification was demonstrated for the first time in [13]; then 
this approach was successfully used in the calculations of 
polarisabilities, hyperpolarisabilities, interactions of atoms with 
external fields, dynamic interactions, etc. (see, e.g., [7, 14 – 17]).

The basic concept of this modification is as follows. First of 
all, we introduce fractional values for the orbital momentum 
of triplet S states 3l Su , which, nevertheless, must be close to the 
real orbital momenta of S states ( 3l Su  » lS = 0), and effective 
momenta for the singlet and triplet D states, which must satisfy 
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Figure 8.  Wavelength dependences of the lattice potential depth U at 
a  laser field intensity I = 10 kW cm–2 for Sr atoms in the ( 1 ) excited 
(5s5p 3P0) and ( 2 ) ground (5s2 1S0) states.
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Figure 9.  Wavelength dependences of the lattice potential depth U at 
a laser field intensity I = 10 kW cm–2 for Yb atoms in the ( 1 ) excited 
(6s6p 3P0) and ( 2 ) ground (6s2 1S0) states. The results of the calculation 
in the model potential approximation ( lmag » 762.6 nm) are in good 
agreement with the experimental data (  expmagl  » 759.3537 nm [4]).
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the equality 3l Du  » 1l Du  » lD = 2. This choice leads to redeter-
mination of the integer values for the radial quantum number 
nr in order to provide the initial equality 3l Su  + nr + 1 = nnl for 
the effective principal quantum number nnl, which is found 
from the energy Enl = –Z2/(2n2nl) of the atomic state | nl ñ (Z is 
the effective nucleus charge).

The above-considered modification of the FMP method 
was used in this study in the calculations of the entire set of 
characteristics of Sr, Yb and Hg atoms.

6. Conclusions

We performed precise calculations of the higher-order non-
linear optical effects occurring in the interaction of alkaline-
earth atoms with the optical lattice field in order to analyse 
the possible use of the potential of these atoms in modern 
optical frequency standards based on optical lattices. In par-
ticular, the multipole expansions of the interaction operator 
between the atoms and lattice field for the electric dipole (E1) 
and multipole (M1 and E2) interactions were considered. 
Algorithms for calculating the MWL values for the red and 
blue detunings of the laser lattice field were elaborated ana-
lytically and numerically. The requirements to the accuracy of 
determining MWL in different strategies of measuring the 
clock transition frequencies for the Sr, Yb and Hg atoms in an 
optical lattice were formulated. It was shown that, in some 
situations, the contributions of nonlinear optical higher-order 
effects cannot be compensated for by the choice of the MWL; 
therefore, they must be correctly taken into account when 
analysing the results of measuring the clock transition fre-
quency in optical frequency standards [18, 19].
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Figure 10.  Wavelength dependences of the lattice potential depth U at 
a laser field intensity I = 25 kW cm–2 for Hg atoms in the ( 1 ) excited 
(6s6p 3P0) and ( 2 ) ground (6s2 1S0) states. The results of the calculation 
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